跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張蘭頤
研究生(外文):Lan-Yi CHANG
論文名稱:斑馬魚多重唾液酸化醣質體在胚胎發育過程的表現調控與結構分析
論文名稱(外文):Developmentally regulated oligosialylation pattern inZebrafish embryogenesis
指導教授:邱繼輝邱繼輝引用關係
指導教授(外文):Kay-Hooi Khoo
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:90
中文關鍵詞:唾液酸斑馬魚胚胎發育質譜儀唾液酸傳遞酶
外文關鍵詞:sialic acidoligosialylationZebrafishglycomicdevelopmentalmass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
九碳糖唾液酸是位於生物體醣質末端的修飾分子,它是細胞與細胞間的溝通橋樑,也是傳達訊息的細胞表面辨識分子。位於細胞表面的醣分子常常可以反應細胞的生理狀態,因此也被當作腫瘤生成或是胚胎發育時期的階段性指標抗原。在本篇論文,我們以斑馬魚為模式動物,去探討負責合成α2,8 鍵結的多重唾液酸鏈的多重唾液酸傳遞酶(oligo/polysialyltransferase)家族(ST8Sia)其基因表現的部位和時間,如何在胚胎發育過程中被影響和調控,並且結合化學方法和質譜儀分析去定出唾液酸化的醣質結構。首先,利用先進的質譜作醣質分子定序,我們比較不同胚胎發育階段的斑馬魚之受精卵醣質,這些唾液酸化的醣質有別於一般在哺乳類的醣質結構,像是連接在天門冬素(Asparagine)氮分子上的唾液酸化複合醣(sialylated complex type N-glycans)為4-galactosylated sialyl Lewis X; 連在絲氨酸(Serine)或羥丁氨酸(Threonine)的氧分子上的醣(O-glycans)為雙唾液酸化的O-glycans,Fucα1-3GalNAcβ1-4NeuAc/NeuGcα2-3Galβ1-3GalNAc,及多重唾液酸化的醣脂質。以質譜觀察到多重唾液酸可能只出現在特定發育階段之後,我們進一步用螢光標示液象層析去更精準的偵測及量化不同發育階段的多重唾液酸。值得注意的是,在醣蛋白上的多重唾液酸,不論在量上或鏈長都會隨著胚胎發育而漸減,而在醣脂質上的反而會漸增。為了進一步去了解多重唾液酸化的消長現象是如何發生,我們利用
定量及時聚合酶連鎖反應(quantitative real-time PCR)去檢視多重唾液酸傳遞酶的基因表現層次,和內源性唾液酸水解酶的活性在不同發育階段的調控情形。結果所有的ST8Sia的表現,皆隨著胚胎發育而增加。內源性的唾液酸水解酶活性,為醣蛋白上多重唾液酸
的降解提供了一個可能的解釋,即大多數的多重唾液酸化的醣蛋白是來自母體,他們在受精前就已經存在於卵子中,而在受精後被釋放到胚胎與卵膜的間隙,再被內源性的唾液酸水解酶降解。進一步分離授精卵的卵膜、胚胎、和介於兩著之間的間質液,並分析這三部分的多重唾液酸的鏈長和含量,以及唾液酸水解酶活性,我們初步證實了大多數重唾液酸化的醣蛋白的確是來自母體。而位於醣脂質上的多重唾液酸因為在胚胎發育後期才逐漸出現,與負責其生合成的多重唾液酸傳遞酶表現量成正相關,因此推測是由胚胎新合成,而非源自母體。經由核糖核酸整體原位雜交技術(whole-mount in situ hybridization),顯示多重唾液酸傳遞酶在發育早期都表現在胎兒的神經系統。總結本篇論文,我們利用高感度的串聯式質譜,解開了斑馬魚受精卵醣質在發育過程的全貌及改變,以及精確量化多重唾液酸化醣質的結構的消長,並且分析其調控因子,其中包括多重唾液酸傳遞酶的基因表現量和唾液酸水解梅的活性。這些數據交叉證實了多重唾液酸化在胚胎發育期間複雜的調控機制,也進一步為神經發育學家提供了唾液酸醣生物學層面的研究線索與觀點。
The nine-carbon sugar, sialic acid, plays important roles as the recognition epitopes in cell-cell communications. Its regulated expression often reflects the status of a cell, and has been reported as stage-specific antigen for tumorigenesis or embryogenesis. In this thesis work, the
biological functions of developmentally regulated sialylation, particularly in relation to the spatial and temporal regulated expression of α2-8 sialyltransferases (ST8sia) during the embryogenesis of Zebrafish, was investigated using a combination of chemical and mass spectrometry (MS) analyses. Glycomic survey mapping followed by advanced glycan sequencing were first performed across the different developmental stages of fertilized Zebrafish eggs. Among the unusual structures identified are the complex type N-glycans that carry β4-galactosylated sialyl Lewis X, the disialylated O-glycans, Fucα1-3GalNAcβ1-4NeuAc/NeuGcα2-3Galβ1-3GalNAc, and the oligosialylated glycolipids. The stage-specific, distinctive Neu5Ac/Neu5Gc sialylation patterns observed then prompted a more precise quantification of the respective oligosialylation by fluorescent chromatography after chemical derivatization. Interestingly, the oligosialic acids of glycoproteins were found to decrease whereas those of glycolipids increased along the embryogenesis. To determine if the observed profiles are due to the regulation of biosynthesis or catabolism, or both, the transcripts of all inferred Zebrafish ST8Sia genes responsible for the biosynthesis of oligosialylation were quantitatively mapped by real-time PCR, and the activity of endogenous sialidases were assayed, for each of the developmental stages. The presence of sialidases and an increased level of expression of all the ST8Sia genes led to a working model, which proposes that the oligosialic acids from glycoproteins are maternally inherited (synthesized before fertilization) and exocytosis out of the embryo into the perivitelline space where it undergoes catabolism, whereas oligosialic acids on the glycolipids are de novo synthesized by the increasingly expressed ST8Sia in the embryos. Furthermore, through whole mount in-situ hybridization, most of the ST8Sia genes were shown to be expressed in the nervous system during early embryogenesis, with different onset and locations. In summary, the precise MS and MS/MS-based glycomic profiles, together with detailed structural determination, quantitative analysis of the developmentally regulated oligosialylation pattern, and the spatial and temporal expression profiling of ST8Sia of Zebrafish, collectively provides new sialoglycobiology insights for neuroscientists at the molecular level and highlighted the significance and complicated regulation of oligosialylation in early neuronal development.
1. Introduction
1.1 Functional glycomics and glycobiology………………… 1
1.2 Animal models for embryogenesis and developmental glycobiology ……………………………………………………… 2
1.3 Sialoglycoconjugates: structures, biosynthesis and catabolism ………………………………………………………… 4
1.4 Occurrence and functional implications of oligo- and polysialylation…………………………………………………… 5
1.5 α2,8-Sialyltransferases and polysialylation ……… 7
1.6 Glycomics and glycobiology of Zebrafish ………………8
1.7 Specific aims…………………………………………………10
2. Materials and methods
2.1 Materials………………………………………………………12
2.2 Extraction and preparation of glycoconjugates………12
2.3 Chromatographic separation of glycans…………………13
2.4 Exo-glycosidase digestions ………………………………13
2.5 Chemical derivatization……………………………………14
2.6 Analysis of oligo-sialylated sequences ………………14
2.7 Mass spectrometry analyses of glycans and glycolipids15
2.8 RNA extraction and cDNA synthesis…………………………16
2.9 Real-time PCR of ST8Sia genes during development in Zebrafish…………………………………………………………… 16
2.10 Sialidases assays ………………………………………… 17
2.11 Cloning, expression, and transfection of ST8Sia VI 18
2.12 Enzymatic assay of ST8Sia ……………………………… 18
2.13 Molecular cloning of full-length Zebrafish ST8Sia…19
2.14 RNA probes ……………………………………………………19
2.15 Whole mount mRNA in situ hybridization……………… 20
3. Result
3.1 Glycomic survey mapping of Zebrafish identified unique sialylation pattern
3.1.1 Identification of the major N-glycans……………… 22
3.1.2 Discussion …………………………………………………………………………26
3.2 Molecular cloning of Zebrafish α2, 8-sialyltransferases (DreST8Sias) and enzymatic characterization of DreST8Sia VI
3.2.1 Molecular cloning, sequencing and expression………31
3.2.2 In silico identification of human ST8Sia VI ortholog in Zebrafish…………………………………………………………34
3.2.3 Screen the expression of zf ST8Sia VI……………… 35
3.2.4 Molecular cloning and expression of ST8Sia VI…… 36
3.2.5 Enzymatic characterization of ST8Sia VI…………… 37
3.2.6 Discussion……………………………………………………38
3.3 Developmental regulation of oligosialylation in Zebrafish
3.3.1 Glycans from embryos contain oligosialic acid chain …………………………………………………………………………40
3.3.1.1 Oligosialylation on N-Glycans ………………………40
3.3.1.2 Oligosialylation on O-Glycans ………………………45
3.3.1.3 Oligosialylation on glycolipids ……………………46
3.3.2 The sialic acid content changes along development 47
3.3.3 Distinctive correlation with the expression of ST8Sias and sialidase activity…………………………………53
3.3.3.1 Positive correlation with ST8Sia mRNA level ……53
3.3.3.2 Positive correlation with sialidase activities…54
3.3.3.3 Oligosialylation patterns and sialidase activities in different compartments of fertilized eggs …………55
3.3.4 Discussion…………………………………………………57
3.4 Characterization of the expression pattern of Zebrafish α2,8-sialyltransferases in the developing nervous system
3.4.1 Spatial-temporal expression of Zebrafish ST8Sia mRNA…………………………………………………………………62
3.4.2 Discussion…………………………………………………66
4. Conclusion and Discussion
4.1 SSEA-1 in Zebrafish…………………………………………71
4.2 Unique Neu5Ac/Gcα2-8Neu5Gc disialylated O-Glycans…72
4.3 Developmental stage-specific oligosialylation………73
4.4 Biological implication of developmentally regulated oligosialylation……………… 74
5. Reference ……………………………………………………78
6. Abbreviations…………………………………………………91
Ahmed, H., Du, S.J., O''Leary, N. and Vasta, G.R. (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology, 14, 219-232.
Ando, S. and Yu, R.K. (1979) Isolation and characterization of two isomers of brain tetrasialogangliosides. J Biol Chem, 254, 12224-12229.
Angata, K., Huckaby, V., Ranscht, B., Terskikh, A., Marth, J.D. and Fukuda, M. (2007) Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol Cell Biol, 27, 6659-6668.
Angata, K., Long, J.M., Bukalo, O., Lee, W., Dityatev, A., Wynshaw-Boris, A., Schachner, M., Fukuda, M. and Marth, J.D. (2004) Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J Biol Chem, 279, 32603-32613.
Angata, T. and Varki, A. (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev, 102, 439-469.
Asahina, S., Sato, C., Matsuno, M., Matsuda, T., Colley, K. and Kitajima, K. (2006) Involvement of the alpha2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the O-linked glycoproteins in rainbow trout ovary. J Biochem, 140, 687-701.
Avrova, N.F., Li, Y.T. and Obukhova, E.L. (1979) On the composition and structure of individual gangliosides from the brain of elasmobranches. J Neurochem, 32, 1807-1815.
Bakkers, J., Semino, C.E., Stroband, H., Kijne, J.W., Robbins, P.W. and Spaink, H.P. (1997) An important developmental role for oligosaccharides during early embryogenesis of cyprinid fish. Proc Natl Acad Sci U S A, 94, 7982-7986.
Bartsch, U., Kirchhoff, F. and Schachner, M. (1990) Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina. J Neurocytol, 19, 550-565.
Bastmeyer, M., Schlosshauer, B. and Stuermer, C.A. (1990) The spatiotemporal distribution of N-CAM in the retinotectal pathway of adult goldfish detected by the monoclonal antibody D3. Development, 108, 299-311.
Becker, C.G. and Becker, T. (2002) Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J Neurosci, 22, 842-853.
Becker, T., Becker, C.G., Schachner, M. and Bernhardt, R.R. (2001) Antibody to the HNK-1 glycoepitope affects fasciculation and axonal pathfinding in the developing posterior lateral line nerve of embryonic zebrafish. Mech Dev, 109, 37-49.
Bentrop, J., Marx, M., Schattschneider, S., Rivera-Milla, E. and Bastmeyer, M. (2008) Molecular evolution and expression of zebrafish St8SiaIII, an alpha-2,8-sialyltransferase involved in myotome development. Dev Dyn, 237, 808-818.
Bernhardt, R.R. and Schachner, M. (2000) Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. Dev Biol, 221, 206-219.
Bink, R.J., Habuchi, H., Lele, Z., Dolk, E., Joore, J., Rauch, G.J., Geisler, R., Wilson, S.W., den Hertog, J., Kimata, K. and Zivkovic, D. (2003) Heparan sulfate 6-o-sulfotransferase is essential for muscle development in zebrafish. J Biol Chem, 278, 31118-31127.
Blix, F.G., Gottschalk, A. and Klenk, E. (1957) Proposed nomenclature in the field of neuraminic and sialic acids. Nature, 179, 1088.
Bonsignorio, D., Perego, L., Del Giacco, L. and Cotelli, F. (1996) Structure and macromolecular composition of the zebrafish egg chorion. Zygote, 4, 101-108.
Chang, L.Y., Harduin-Lepers, A., Kitajima, K., Sato, C., Huang, C.J., Khoo, K.H. and Guerardel, Y. (2008) Developmental regulation of oligosialylation in zebrafish. Glycoconj J.
Chang, L.Y., Mir, A.M., Thisse, C., Guerardel, Y., Delannoy, P., Thisse, B. and Harduin-Lepers, A. (2008) Molecular cloning and characterization of the expression pattern of the zebrafish alpha2, 8-sialyltransferases (ST8Sia) in the developing nervous system. Glycoconj J.
Chuong, C.M., McClain, D.A., Streit, P. and Edelman, G.M. (1982) Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity. Proc Natl Acad Sci U S A, 79, 4234-4238.
Coutinho, P.M., Deleury, E., Davies, G.J. and Henrissat, B. (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 328, 307-317.
Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S. and et al. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature, 367, 455-459.
Daniotti, J.L., Rosales Fritz, V., Kunda, P., Nishi, T. and Maccioni, H.J. (1997) Cloning, characterization and developmental expression of alpha2,8 sialyltransferase (GD3 synthase, ST8Sia I) gene in chick brain and retina. Int J Dev Neurosci, 15, 767-776.
DeGasperi, R., Koerner, T.A., Quarles, R.H., Ilyas, A.A., Ishikawa, Y., Li, S.C. and Li, Y.T. (1987) Isolation and characterization of gangliosides with hybrid neolacto-ganglio-type sugar chains. J Biol Chem, 262, 17149-17155.
Dell, A., Reason, A.J., Khoo, K.H., Panico, M., McDowell, R.A. and Morris, H.R. (1994) Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol, 230, 108-132.
Dietert, R.R. and Sanders, B.G. (1977) Evidence for multiple cell surface chicken fetal-leukemic antigens (CFA) in the developing chick and other avian species. J Exp Zool, 202, 171-177.
Eckhardt, M., Bukalo, O., Chazal, G., Wang, L., Goridis, C., Schachner, M., Gerardy-Schahn, R., Cremer, H. and Dityatev, A. (2000) Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J Neurosci, 20, 5234-5244.
Finne, J., Bitter-Suermann, D., Goridis, C. and Finne, U. (1987) An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol, 138, 4402-4407.
Finne, J., Finne, U., Deagostini-Bazin, H. and Goridis, C. (1983) Occurrence of alpha 2-8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun, 112, 482-487.
Finne, J., Krusius, T., Rauvala, H. and Hemminki, K. (1977) The disialosyl group of glycoproteins. Occurrence in different tissues and cellular membranes. Eur J Biochem, 77, 319-323.
Fredette, B., Rutishauser, U. and Landmesser, L. (1993) Regulation and activity-dependence of N-cadherin, NCAM isoforms, and polysialic acid on chick myotubes during development. J Cell Biol, 123, 1867-1888.
Freischutz, B., Saito, M., Rahmann, H. and Yu, R.K. (1994) Activities of five different sialyltransferases in fish and rat brains. J Neurochem, 62, 1965-1973.
Freischutz, B., Saito, M., Rahmann, H. and Yu, R.K. (1995) Characterization of sialyltransferase-IV activity and its involvement in the c-pathway of brain ganglioside metabolism. J Neurochem, 64, 385-393.
Fukuda, M., Dell, A. and Fukuda, M.N. (1984) Structure of fetal lactosaminoglycan. The carbohydrate moiety of Band 3 isolated from human umbilical cord erythrocytes. J Biol Chem, 259, 4782-4791.
Fukuda, M., Lauffenburger, M., Sasaki, H., Rogers, M.E. and Dell, A. (1987) Structures of novel sialylated O-linked oligosaccharides isolated from human erythrocyte glycophorins. J Biol Chem, 262, 11952-11957.
Fukuda, M.N., Dell, A., Oates, J.E. and Fukuda, M. (1985) Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl alpha 2----9 sialyl) terminals isolated from PA1 human embryonal carcinoma cells. J Biol Chem, 260, 6623-6631.
Gilbert, S.F. (2006) Developmental Biology. Sinauer.
Gooi, H.C., Feizi, T., Kapadia, A., Knowles, B.B., Solter, D. and Evans, M.J. (1981) Stage-specific embryonic antigen involves alpha 1 goes to 3 fucosylated type 2 blood group chains. Nature, 292, 156-158.
Gornati, R., Basu, S., Bernardini, G., Rizzo, A.M., Rossi, F. and Berra, B. (1997) Activities of glycolipid glycosyltransferases and sialidases during the early development of Xenopus laevis. Mol Cell Biochem, 166, 117-124.
Grunwald, D.J. and Eisen, J.S. (2002) Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet, 3, 717-724.
Guérardel, Y., Chang, L.Y., Maes, E., Huang, C.J. and Khoo, K.H. (2006) Glycomic survey mapping of zebrafish identifies unique sialylation pattern. Glycobiology, 16, 244-257.
Hakomori, S. (2000) Traveling for the glycosphingolipid path. Glycoconj J, 17, 627-647.
Hakomori, S. (2001) Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol, 491, 369-402.
Hakomori, S.I. (2008) Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta, 1780, 325-346.
Haltiwanger, R.S. and Lowe, J.B. (2004) Role of glycosylation in development. Annu Rev Biochem, 73, 491-537.
Handa, Y., Ozaki, N., Honda, T., Furukawa, K., Tomita, Y., Inoue, M., Furukawa, K., Okada, M. and Sugiura, Y. (2005) GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain, 117, 271-279.
Hara, S., Takemori, Y., Yamaguchi, M., Nakamura, M. and Ohkura, Y. (1987) Fluorometric high-performance liquid chromatography of N-acetyl- and N-glycolylneuraminic acids and its application to their microdetermination in human and animal sera, glycoproteins, and glycolipids. Anal Biochem, 164, 138-145.
Haraguchi, M., Yamashiro, S., Yamamoto, A., Furukawa, K., Takamiya, K., Lloyd, K.O., Shiku, H. and Furukawa, K. (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci U S A, 91, 10455-10459.
Harduin-Lepers, A., Mollicone, R., Delannoy, P. and Oriol, R. (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology, 15, 805-817.
Harduin-Lepers, A., Petit, D., Mollicone, R., Delannoy, P., Petit, J.M. and Oriol, R. (2008) Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Evol Biol, 8, 258.
Harduin-Lepers, A., Recchi, M.A. and Delannoy, P. (1995) 1994, the year of sialyltransferases. Glycobiology, 5, 741-758.
Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S. and Delannoy, P. (2001) The human sialyltransferase family. Biochimie, 83, 727-737.
Higa, H.H. and Paulson, J.C. (1985) Sialylation of glycoprotein oligosaccharides with N-acetyl-, N-glycolyl-, and N-O-diacetylneuraminic acids. J Biol Chem, 260, 8838-8849.
Hildebrandt, H., Muhlenhoff, M., Weinhold, B. and Gerardy-Schahn, R. (2007) Dissecting polysialic acid and NCAM functions in brain development. J Neurochem, 103 Suppl 1, 56-64.
Hirohashi, N. and Vacquier, V.D. (2002) Egg sialoglycans increase intracellular pH and potentiate the acrosome reaction of sea urchin sperm. J Biol Chem, 277, 8041-8047.
Holm, M., Mansson, J.E., Vanier, M.T. and Svennerholm, L. (1972) Gangliosides of human, bovine and rabbit retina. Biochim Biophys Acta, 280, 356-364.
Inoue, S. and Iwasaki, M. (1978) Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains. Biochem Biophys Res Commun, 83, 1018-1023.
Inoue, S. and Iwasaki, M. (1980) Sialoglycoproteins from the eggs of Pacific herring. Isolation and characterization. Eur J Biochem, 111, 131-135.
Inoue, S., Iwasaki, M., Ishii, K., Kitajima, K. and Inoue, Y. (1989) Isolation and structures of glycoprotein-derived free sialooligosaccharides from the unfertilized eggs of Tribolodon hakonensis, a dace. Intracellular accumulation of a novel class of biantennary disialooligosaccharides. J Biol Chem, 264, 18520-18526.
Inoue, S., Lin, S.L. and Inoue, Y. (2000) Chemical analysis of the developmental pattern of polysialylation in chicken brain. Expression of only an extended form of polysialyl chains during embryogenesis and the presence of disialyl residues in both embryonic and adult chicken brains. J Biol Chem, 275, 29968-29979.
Inoue, S., Lin, S.L., Lee, Y.C. and Inoue, Y. (2001) An ultrasensitive chemical method for polysialic acid analysis. Glycobiology, 11, 759-767.
Inoue, S.a.I., Y (1997) Fish glycoproteins. Elsevier.
Iwasaki, M., Inoue, S., Kitajima, K., Nomoto, H. and Inoue, Y. (1984) Novel oligosaccharide chains on polysialoglycoproteins isolated from rainbow trout eggs. A unique carbohydrate sequence with a sialidase-resistant sialyl group, DGa1NAc beta 1 leads to 4(NeuGc2 leads to 3)DGa1NAc. Biochemistry, 23, 305-310.
Iwasaki, M., Seko, A., Kitajima, K., Inoue, Y. and Inoue, S. (1992) Fish egg glycophosphoproteins have species-specific N-linked glycan units previously found in a storage pool of free glycan chains. J Biol Chem, 267, 24287-24296.
Jungalwala, F.B. (1994) Expression and biological functions of sulfoglucuronyl glycolipids (SGGLs) in the nervous system--a review. Neurochem Res, 19, 945-957.
Kageyama, N., Natsuka, S. and Hase, S. (1999) Molecular cloning and characterization of two zebrafish alpha(1,3)fucosyltransferase genes developmentally regulated in embryogenesis. J Biochem, 125, 838-845.
Kamerling, R.S.a.J.P. (1997) Chemistry, biochemistry and biology of sialic acids. Elsevier, Amsterdam.
Kanamori, A., Inoue, S., Iwasaki, M., Kitajima, K., Kawai, G., Yokoyama, S. and Inoue, Y. (1990) Deaminated neuraminic acid-rich glycoprotein of rainbow trout egg vitelline envelope. Occurrence of a novel alpha-2,8-linked oligo(deaminated neuraminic acid) structure in O-linked glycan chains. J Biol Chem, 265, 21811-21819.
Kannagi, R., Cochran, N.A., Ishigami, F., Hakomori, S., Andrews, P.W., Knowles, B.B. and Solter, D. (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. Embo J, 2, 2355-2361.
Kapadia, A., Feizi, T. and Evans, M.J. (1981) Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation. Exp Cell Res, 131, 185-195.
Key, B. and Akeson, R.A. (1991) Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. Neuron, 6, 381-396.
Key, B. and Devine, C.A. (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci, 25, 1-6.
Kiang, W.L., Krusius, T., Finne, J., Margolis, R.U. and Margolis, R.K. (1982) Glycoproteins and proteoglycans of the chromaffin granule matrix. J Biol Chem, 257, 1651-1659.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. and Schilling, T.F. (1995) Stages of embryonic development of the zebrafish. Dev Dyn, 203, 253-310.
Kitajima, K., Inoue, S. and Inoue, Y. (1989) Isolation and characterization of a novel type of sialoglycoproteins (hyosophorin) from the eggs of medaka, Oryzias latipes: nonapeptide with a large N-linked glycan chain as a tandem repeat unit. Dev Biol, 132, 544-553.
Kitajima, K., Inoue, Y. and Inoue, S. (1986) Polysialoglycoproteins of Salmonidae fish eggs. Complete structure of 200-kDa polysialoglycoprotein from the unfertilized eggs of rainbow trout (Salmo gairdneri). J Biol Chem, 261, 5262-5269.
Kitazume, S., Kitajima, K., Inoue, S., Troy, F.A., 2nd, Cho, J.W., Lennarz, W.J. and Inoue, Y. (1994) Identification of polysialic acid-containing glycoprotein in the jelly coat of sea urchin eggs. Occurrence of a novel type of polysialic acid structure. J Biol Chem, 269, 22712-22718.
Kojima, N., Kono, M., Yoshida, Y., Tachida, Y., Nakafuku, M. and Tsuji, S. (1996) Biosynthesis and expression of polysialic acid on the neural cell adhesion molecule is predominantly directed by ST8Sia II/STX during in vitro neuronal differentiation. J Biol Chem, 271, 22058-22062.
Kojima, N., Tachida, Y. and Tsuji, S. (1997) Two polysialic acid synthases, mouse ST8Sia II and IV, synthesize different degrees of polysialic acids on different substrate glycoproteins in mouse neuroblastoma Neuro2a cells. J Biochem, 122, 1265-1273.
Laughlin, S.T., Baskin, J.M., Amacher, S.L. and Bertozzi, C.R. (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 320, 664-667.
Lepers, A., Shaw, L., Cacan, R., Schauer, R., Montreuil, J. and Verbert, A. (1989) Transport of CMP-N-glycoloylneuraminic acid into mouse liver Golgi vesicles. FEBS Lett, 250, 245-250.
Lepers, A., Shaw, L., Schneckenburger, P., Cacan, R., Verbert, A. and Schauer, R. (1990) A study on the regulation of N-glycoloylneuraminic acid biosynthesis and utilization in rat and mouse liver. Eur J Biochem, 193, 715-723.
Luque, M.E., Crespo, P.M., Monaco, M.E., Aybar, M.J., Daniotti, J.L. and Sanchez, S.S. (2008) Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian Xenopus laevis. Dev Dyn, 237, 112-123.
Manzoni, M., Colombi, P., Papini, N., Rubaga, L., Tiso, N., Preti, A., Venerando, B., Tettamanti, G., Bresciani, R., Argenton, F., Borsani, G. and Monti, E. (2007) Molecular cloning and biochemical characterization of sialidases from zebrafish (Danio rerio). Biochem J, 408, 395-406.
Marx, M., Rivera-Milla, E., Stummeyer, K., Gerardy-Schahn, R. and Bastmeyer, M. (2007) Divergent evolution of the vertebrate polysialyltransferase Stx and Pst genes revealed by fish-to-mammal comparison. Dev Biol, 306, 560-571.
Marx, M., Rutishauser, U. and Bastmeyer, M. (2001) Dual function of polysialic acid during zebrafish central nervous system development. Development, 128, 4949-4958.
McClay, D.R. and Fink, R.D. (1982) Sea urchin hyalin: appearance and function in development. Dev Biol, 92, 285-293.
Metcalfe, W.K., Myers, P.Z., Trevarrow, B., Bass, M.B. and Kimmel, C.B. (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development, 110, 491-504.
Monti, E., Preti, A., Venerando, B. and Borsani, G. (2002) Recent development in mammalian sialidase molecular biology. Neurochem Res, 27, 649-663.
Morgan, W.T. and Watkins, W.M. (1953) The inhibition of the haemagglutinins in plant seeds by human blood group substances and simple sugars. Br J Exp Pathol, 34, 94-103.
Moriguchi, K., Takemoto, T., Aoki, T., Nakakita, S., Natsuka, S. and Hase, S. (2007) Free oligosaccharides with Lewis x structure expressed in the segmentation period of zebrafish embryo. J Biochem, 142, 213-227.
Muramatsu, H., Ishihara, H., Miyauchi, T., Gachelin, G., Fujisaki, T., Tejima, S. and Muramatsu, T. (1983) Glycoprotein-bound large carbohydrates of early embryonic cells: structural characteristic of the glycan isolated from F9 embryonal carcinoma cells. J Biochem, 94, 799-810.
Muramatsu, T., Gachelin, G., Damonneville, M., Delarbre, C. and Jacob, F. (1979) Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell, 18, 183-191.
Muramatsu, T., Gachelin, G., Nicolas, J.F., Condamine, H., Jakob, H. and Jacob, F. (1978) Carbohydrate structure and cell differentitation: unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells. Proc Natl Acad Sci U S A, 75, 2315-2319.
Nakamura, K., Tamai, Y. and Kasama, T. (1997) Gangliosides of dogfish (Squalus acanthias) brain. Neurochem Int, 30, 593-604.
Nakayama, J., Angata, K., Ong, E., Katsuyama, T. and Fukuda, M. (1998) Polysialic acid, a unique glycan that is developmentally regulated by two polysialyltransferases, PST and STX, in the central nervous system: from biosynthesis to function. Pathol Int, 48, 665-677.
Nakayama, J., Fukuda, M.N., Fredette, B., Ranscht, B. and Fukuda, M. (1995) Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc Natl Acad Sci U S A, 92, 7031-7035.
Nara, K., Watanabe, Y., Maruyama, K., Kasahara, K., Nagai, Y. and Sanai, Y. (1994) Expression cloning of a CMP-NeuAc:NeuAc alpha 2-3Gal beta 1-4Glc beta 1-1''Cer alpha 2,8-sialyltransferase (GD3 synthase) from human melanoma cells. Proc Natl Acad Sci U S A, 91, 7952-7956.
Nasevicius, A. and Ekker, S.C. (2000) Effective targeted gene ''knockdown'' in zebrafish. Nat Genet, 26, 216-220.
Ngamukote, S., Yanagisawa, M., Ariga, T., Ando, S. and Yu, R.K. (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem, 103, 2327-2341.
Nikonova, E.Y., Tertov, V.V., Sato, C., Kitajima, K. and Bovin, N.V. (2004) Specificity of human trans-sialidase as probed with gangliosides. Bioorg Med Chem Lett, 14, 5161-5164.
Ong, E., Nakayama, J., Angata, K., Reyes, L., Katsuyama, T., Arai, Y. and Fukuda, M. (1998) Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases, PST and STX. Glycobiology, 8, 415-424.
Oppenheimer, S.B. (1977) Interactions of lectins with embryonic cell surfaces. Curr Top Dev Biol, 11, 1-16.
Patel, R.Y. and Balaji, P.V. (2006) Identification of linkage-specific sequence motifs in sialyltransferases. Glycobiology, 16, 108-116.
Pelegri, F. (2004) The role of maternal factors in early Zebrafish development.
Pennington, J.E., Rastan, S., Roelcke, D. and Feizi, T. (1985) Saccharide structures of the mouse embryo during the first eight days of development. Inferences from immunocytochemical studies using monoclonal antibodies in conjunction with glycosidases. J Embryol Exp Morphol, 90, 335-361.
Pradel, G., Schachner, M. and Schmidt, R. (1999) Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J Neurobiol, 39, 197-206.
Pujic, Z., Omori, Y., Tsujikawa, M., Thisse, B., Thisse, C. and Malicki, J. (2006) Reverse genetic analysis of neurogenesis in the zebrafish retina. Dev Biol, 293, 330-347.
Rauvala, H. (1984) Neurite outgrowth of neuroblastoma cells: dependence on adhesion surface--cell surface interactions. J Cell Biol, 98, 1010-1016.
Rieger, S., Volkmann, K. and Koster, R.W. (2008) Polysialyltransferase expression is linked to neuronal migration in the developing and adult zebrafish. Dev Dyn, 237, 276-285.
Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. and Dwek, R.A. (2001) Glycosylation and the immune system. Science, 291, 2370-2376.
Rutishauser, U. (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci, 9, 26-35.
Sato, C., Fukuoka, H., Ohta, K., Matsuda, T., Koshino, R., Kobayashi, K., Troy, F.A., 2nd and Kitajima, K. (2000) Frequent occurrence of pre-existing alpha 2-->8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J Biol Chem, 275, 15422-15431.
Sato, C., Inoue, S., Matsuda, T. and Kitajima, K. (1998) Development of a highly sensitive chemical method for detecting alpha2-->8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Anal Biochem, 261, 191-197.
Sato, C., Inoue, S., Matsuda, T. and Kitajima, K. (1999) Fluorescent-assisted detection of oligosialyl units in glycoconjugates. Anal Biochem, 266, 102-109.
Sato, C., Kitajima, K., Tazawa, I., Inoue, Y., Inoue, S. and Troy, F.A., 2nd (1993) Structural diversity in the alpha 2-->8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms. J Biol Chem, 268, 23675-23684.
Sato, C., Matsuda, T. and Kitajima, K. (2002) Neuronal differentiation-dependent expression of the disialic acid epitope on CD166 and its involvement in neurite formation in Neuro2A cells. J Biol Chem, 277, 45299-45305.
Sato, C., Yasukawa, Z., Honda, N., Matsuda, T. and Kitajima, K. (2001) Identification and adipocyte differentiation-dependent expression of the unique disialic acid residue in an adipose tissue-specific glycoprotein, adipo Q. J Biol Chem, 276, 28849-28856.
Sawaguchi, A., Idate, Y., Ide, S., Kawano, J., Nagaike, R., Oinuma, T. and Suganuma, T. (1999) Multistratified expression of polysialic acid and its relationship to VAChT-containing neurons in the inner plexiform layer of adult rat retina. J Histochem Cytochem, 47, 919-928.
Schnaar, R.L. (1994) Isolation of glycosphingolipids. Methods Enzymol, 230, 348-370.
Schwarz, A. and Futerman, A.H. (1996) The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Biochim Biophys Acta, 1286, 247-267.
Schwarzkopf, M., Knobeloch, K.P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., Horak, I., Reutter, W. and Horstkorte, R. (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A, 99, 5267-5270.
Seko, A., Kitajima, K., Iwasaki, M., Inoue, S. and Inoue, Y. (1989) Structural studies of fertilization-associated carbohydrate-rich glycoproteins (hyosophorin) isolated from the fertilized and unfertilized eggs of flounder, Paralichthys olivaceus. Presence of a novel penta-antennary N-linked glycan chain in the tandem repeating glycopeptide unit of hyosophorin. J Biol Chem, 264, 15922-15929.
Semino, C.E. and Allende, M.L. (2000) Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int J Dev Biol, 44, 183-193.
Semino, C.E., Allende, M.L., Bakkers, J., Spaink, H.P. and Robbins, P.P. (1998) Expression of Rhizobium chitin oligosaccharide fucosyltransferase in zebrafish embryos disrupts normal development. Ann N Y Acad Sci, 842, 49-54.
Sevigny, M.B., Ye, J., Kitazume-Kawaguchi, S. and Troy, F.A., 2nd (1998) Developmental expression and characterization of the alpha2,8-polysialyltransferase activity in embryonic chick brain. Glycobiology, 8, 857-867.
Seyrantepe, V., Landry, K., Trudel, S., Hassan, J.A., Morales, C.R. and Pshezhetsky, A.V. (2004) Neu4, a novel human lysosomal lumen sialidase, confers normal phenotype to sialidosis and galactosialidosis cells. J Biol Chem, 279, 37021-37029.
Shibata, Y., Iwamatsu, T., Oba, Y., Kobayashi, D., Tanaka, M., Nagahama, Y., Suzuki, N. and Yoshikuni, M. (2000) Identification and cDNA cloning of alveolin, an extracellular metalloproteinase, which induces chorion hardening of medaka (Oryzias latipes) eggs upon fertilization. J Biol Chem, 275, 8349-8354.
Shimamura, M., Endo, T., Inoue, Y., Inoue, S. and Kambara, H. (1984) Fish egg polysialoglycoproteins: structures of new sialooligosaccharide chains isolated from the eggs of Oncorhynchus keta (Walbaum). Fucose-containing units with oligosialyl groups. Biochemistry, 23, 317-322.
Snaar-Jagalska, B.E., Krens, S.F., Robina, I., Wang, L.X. and Spaink, H.P. (2003) Specific activation of ERK pathways by chitin oligosaccharides in embryonic zebrafish cell lines. Glycobiology, 13, 725-732.
Sohn, H., Kim, Y.S., Kim, H.T., Kim, C.H., Cho, E.W., Kang, H.Y., Kim, N.S., Kim, C.H., Ryu, S.E., Lee, J.H. and Ko, J.H. (2006) Ganglioside GM3 is involved in neuronal cell death. Faseb J, 20, 1248-1250.
Solter, D. and Knowles, B.B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A, 75, 5565-5569.
Suganuma, T., Muramatsu, H., Murata, F. and Muramatsu, T. (1987) Purification and properties of N-acetylglucosaminide beta 1----4 galactosyltransferase from embryonal carcinoma cells. J Biochem, 102, 665-671.
Sunshine, J., Balak, K., Rutishauser, U. and Jacobson, M. (1987) Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development. Proc Natl Acad Sci U S A, 84, 5986-5990.
Suzuki, N., Khoo, K.H., Chen, C.M., Chen, H.C. and Lee, Y.C. (2003) N-glycan structures of pigeon IgG: a major serum glycoprotein containing Galalpha1-4 Gal termini. J Biol Chem, 278, 46293-46306.
Szulman, A.E. (1964) The Histological Histological Distribution of the Blood Group Substances in Man as Disclosed by Immunofluorescence. Iii. the a, B, and H Antigens in Embryos and Fetuses from 18 Mm in Length. J Exp Med, 119, 503-516.
Szulman, A.E. (1971) The histological distribution of the blood group substances in man as disclosed by immunofluorescence. IV. The ABH antigens in embryos at the fifth week post fertilization. Hum Pathol, 2, 575-585.
Szulman, A.E. and Marcus, D.M. (1973) The histologic distribution of the blood group substances in man as disclosed by immunofluorescence. VI. The Le and Le antigens during fetal development. Lab Invest, 28, 565-574.
Taguchi, T., Iwasaki, M., Muto, Y., Kitajima, K., Inoue, S., Khoo, K.H., Morris, H.R., Dell, A. and Inoue, Y. (1996) Occurrence and structural analysis of highly sulfated multiantennary N-linked glycan chains derived from a fertilization-associated carbohydrate-rich glycoprotein in unfertilized eggs of Tribolodon hakonensis. Eur J Biochem, 238, 357-367.
Taguchi, T., Kitajima, K., Muto, Y., Inoue, S., Khoo, K.H., Morris, H.R., Dell, A., Wallace, R.A., Selman, K. and Inoue, Y. (1995) A precise structural analysis of a fertilization-associated carbohydrate-rich glycopeptide isolated from the fertilized eggs of euryhaline killi fish (Fundulus heteroclitus). Novel penta-antennary N-glycan chains with a bisecting N-acetylglucosaminyl residue. Glycobiology, 5, 611-624.
Taguchi, T., Seko, A., Kitajima, K., Inoue, S., Iwamatsu, T., Khoo, K.H., Morris, H.R., Dell, A. and Inoue, Y. (1993) Structural studies of a novel type of tetraantennary sialoglycan unit in a carbohydrate-rich glycopeptide isolated from the fertilized eggs of Indian Medaka fish, Oryzias melastigma. J Biol Chem, 268, 2353-2362.
Taguchi, T., Seko, A., Kitajima, K., Muto, Y., Inoue, S., Khoo, K.H., Morris, H.R., Dell, A. and Inoue, Y. (1994) Structural studies of a novel type of pentaantennary large glycan unit in the fertilization-associated carbohydrate-rich glycopeptide isolated from the fertilized eggs of Oryzias latipes. J Biol Chem, 269, 8762-8771.
Takashima, S., Ishida, H.K., Inazu, T., Ando, T., Ishida, H., Kiso, M., Tsuji, S. and Tsujimoto, M. (2002) Molecular cloning and expression of a sixth type of alpha 2,8-sialyltransferase (ST8Sia VI) that sialylates O-glycans. J Biol Chem, 277, 24030-24038.
Takemoto, T., Natsuka, S., Nakakita, S. and Hase, S. (2005) Expression of complex-type N-glycans in developmental periods of zebrafish embryo. Glycoconj J, 22, 21-26.
Tang, J., Rutishauser, U. and Landmesser, L. (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron, 13, 405-414.
Teintenier-Lelievre, M., Julien, S., Juliant, S., Guerardel, Y., Duonor-Cerutti, M., Delannoy, P. and Harduin-Lepers, A. (2005) Molecular cloning and expression of a human hST8Sia VI (alpha2,8-sialyltransferase) responsible for the synthesis of the diSia motif on O-glycosylproteins. Biochem J, 392, 665-674.
Theodosis, D.T., Rougon, G. and Poulain, D.A. (1991) Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc Natl Acad Sci U S A, 88, 5494-5498.
Thiery, J.P., Brackenbury, R., Rutishauser, U. and Edelman, G.M. (1977) Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem, 252, 6841-6845.
Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.P. and Thisse, C. (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol, 77, 505-519.
Thisse, B., Pflumio, S., Fürthauer, M., Loppin, B., Heyer, V., Degrave, A., Woehl, R., Lux, A., Steffan, T., Charbonnier, X.Q., Thisse, C (2001) Expression of the zebrafish genome during embryogenesis.
Thisse, C. and Thisse, B. (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc, 3, 59-69.
Thisse, C., Thisse, B (1998) High resolution whole-mount in situ hybridization.
Traving, C. and Schauer, R. (1998) Structure, function and metabolism of sialic acids. Cell Mol Life Sci, 54, 1330-1349.
Troy, F.A., 2nd (1992) Polysialylation: from bacteria to brains. Glycobiology, 2, 5-23.
Tsuji, S., Datta, A.K. and Paulson, J.C. (1996) Systematic nomenclature for sialyltransferases. Glycobiology, 6, v-vii.
Varki, A. (2007) Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 446, 1023-1029.
Varki, N.M. and Varki, A. (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest, 87, 851-857.
Weinhold, B., Seidenfaden, R., Rockle, I., Muhlenhoff, M., Schertzinger, F., Conzelmann, S., Marth, J.D., Gerardy-Schahn, R. and Hildebrandt, H. (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem, 280, 42971-42977.
Wessel, G.M., Berg, L., Adelson, D.L., Cannon, G. and McClay, D.R. (1998) A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo. Dev Biol, 193, 115-126.
Wessel, G.M., Truschel, M.R., Chambers, S.A. and McClay, D.R. (1987) A cortical granule-specific enzyme, B-1,3-glucanase, in sea urchin eggs. Gamete Res, 18, 339-348.
Yamaguchi, K., Hata, K., Koseki, K., Shiozaki, K., Akita, H., Wada, T., Moriya, S. and Miyagi, T. (2005) Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochem J, 390, 85-93.
Yamamoto, A., Haraguchi, M., Yamashiro, S., Fukumoto, S., Furukawa, K., Takamiya, K., Atsuta, M., Shiku, H. and Furukawa, K. (1996) Heterogeneity in the expression pattern of two ganglioside synthase genes during mouse brain development. J Neurochem, 66, 26-34.
Yamamoto, A., Yamashiro, S., Fukumoto, S., Haraguchi, M., Atsuta, M., Shiku, H. and Furukawa, K. (1996) Site restricted and neuron dominant expression of alpha 2,8sialyltransferase gene in the adult mouse brain and retina. Glycoconj J, 13, 471-480.
Yu, R.K., Macala, L.J., Taki, T., Weinfield, H.M. and Yu, F.S. (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem, 50, 1825-1829.
Yu, S.Y., Wu, S.W. and Khoo, K.H. (2006) Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconj J, 23, 355-369.
Zako, M., Iwaki, M., Yoneda, M., Miyaishi, O., Zhao, J., Suzuki, Y., Takeuchi, M., Miyake, G., Ikagawa, H. and Kimata, K. (2002) Molecular cloning and characterization of chick sialoprotein associated with cones and rods, a developmentally regulated glycoprotein of interphotoreceptor matrix. J Biol Chem, 277, 25592-25600.
Zanetta, J.P., Timmerman, P. and Leroy, Y. (1999) Determination of constituents of sulphated proteoglycans using a methanolysis procedure and gas chromatography/mass spectrometry of heptafluorobutyrate derivatives. Glycoconj J, 16, 617-627.
Zhou, X.Y., van der Spoel, A., Rottier, R., Hale, G., Willemsen, R., Berry, G.T., Strisciuglio, P., Morrone, A., Zammarchi, E., Andria, G. and d''Azzo, A. (1996) Molecular and biochemical analysis of protective protein/cathepsin A mutations: correlation with clinical severity in galactosialidosis. Hum Mol Genet, 5, 1977-1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊