跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭致榮
研究生(外文):Chih-Jung Kuo
論文名稱:病毒3C及3C-Like蛋白酶的鑑定、抑制和改造
論文名稱(外文):Characterization, Inhibition, and Engineering of 3C and 3C-Like Viral Proteases
指導教授:梁博煌
指導教授(外文):Po-Huang Liang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:113
中文關鍵詞:嚴重急性呼吸道症候群腸病毒柯薩奇病毒冠狀病毒小RNA病毒抑制劑蛋白酶
外文關鍵詞:SARSenteroviruscoxsackieviruscoronaviruspicornavirusinhibitorprotease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
嚴重急性呼吸道症候群(Severe Acute Respiratory Syndrome)是由新型人類冠狀病毒 (SARS-CoV) 感染所造成。此疾病在2002~2003年爆發,造成全球性的感染與恐慌。根據世界衛生組織(WHO)指出,這段期間內各國總共有8,465通報病例,而其中有801死亡病例。SARS病毒在宿主體內之成熟需藉由一主要蛋白酶(3CLpro),其負責的工作為切剪由病毒基因轉錄而產生的蛋白鏈,進而產生病毒內部各個重要且具功能的蛋白質,讓病毒得以感染與複製。在人類小RNA病毒(picornavirus,簡稱PV)的感染機制中,也需要一個類似的蛋白酶(3Cpro)來專職上述功能。 因此,3CL與3C蛋白酶遂成為研究抗CoV與PV藥物的重要標靶。然而,目前已知的鼻病毒(rhinovirus,亦屬PV的成員之一)抑制劑,AG7088,並無法有效的抑制SARS 3CLpro活性,這顯示此兩種蛋白酶在結構上具有某程度的差異性。
本篇論文利用大腸桿菌表現SARS 3CL蛋白酶,並設計螢光胜肽受質來偵測酵素活性與催化特性,以及篩選抑制劑。配合上蛋白酶之蛋白質晶體結構,我們推論出3CL蛋白質二聚體之成熟(maturation)模式。在藥物篩選方面,我們成功的篩選出多種形式的抑制劑,並透過蛋白質共結晶技術與電腦分子模擬,深入探討這些抑制劑與酵素之間的結合模式,且進一步的將其修飾與改良。在另一方面,我們也針對抗PV藥物進行研究,包括腸病毒(enterovirus)71型與柯薩奇病毒(coxsackievirus)B3型。我們篩選出數個化合物能有效的抑制酵素活性,並證明其可以有效的保護細胞抵抗病毒的感染。此外,我們從6800個小分子中,利用高效能藥物篩選方法來篩選SARS 3CLpro的抑制劑,在篩選出的五個化合物之中,有一個化合物與其類似物可以同時抑制CoV與PV的蛋白酶。接著,我們利用電腦分子模擬運算,釐清出這些抑制劑與此兩類蛋白酶在結合模式上的差異。
另一方面,我們也探討SARS 3CL蛋白酶結構中,調控受質P1’位置專一性之重要胺基酸(Threonine),將其突變成甘胺酸(Glycine)後,可將原本受質P1’位置上的可供辨識的絲胺酸(Serine)置換成甲硫胺酸(methionine)。這個改造過的SARS T25G 3CL蛋白酶,可將利用大腸桿菌與酵母菌所表現出來的融合蛋白(fusion protein)上的標誌蛋白(tag),作有效率切除,頗具商業應用價值。
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus (CoV), which infected more than 8000 people during the 2003 outbreak. The viral maturation requires a main protease (3CLpro) to cleave the virus-encoded polyproteins. Accordingly, in human picornavirus (PV) family which consists of over 200 medically relevant viruses, a chymotrypsin-like protease (3Cpro) is required for viral replication through the processing the polyproteins. As a result, the 3CLpro and 3Cpro are regarded as anti-viral drug targets. However, known inhibitors (AG7088) against PV 3Cpro failed to inhibit SARS-CoV 3CLpro, indicating differences in their active-site structures.
In this study, we have prepared the recombinant SARS 3CLpro without redundant residues at both N- and C-termini and characterized its kinetic property using a fluorogenic substrate. Combined with our crystallography data, we proposed a model to illustrate the maturation process of SARS 3CLpro. In addition, we evaluated several types of inhibitors and investigated their inhibitory mechanisms.
Additionally, the recombinant 3Cpro from PV (including entervirus, coxsackievirus, and rhinovirus, abbreviated as EV, CV, and RV, respectively) were purified and characterized as well. We have identified several inhibitors which show their potencies against viral replication. Furthermore, we tested 6800 small molecules by high-throughput screening for anti-SARS agents and found one hit and its analogues could serve as the common inhibitors against CoV 3CLpro and PV 3Cpro. By computer modeling, the structural features of these compounds were elucidated to enhance our knowledge for developing anti-viral agents against PV and CoV.
In order to determine the amino acid residues essential for the substrate specificity and engineer 3CLpro as a tool for tag removal of the recombinant fusion proteins, we developed a mutant 3CLpro (T25G) which has altered substrate specificity to cleave Gln↓Met. We have also constructed E. coli and yeast vectors to express recombinant fusion proteins with the T25G 3CLpro recognition site (Ala-Val-Leu-Gln↓Met) between the tags and the target proteins for tag removal.
誌謝...i
中文摘要...vii
ABSTRACT...ix
ABBREVIATIONS...xi
1. INTRODUCTION... 1
2. MATERIALS AND METHODS... 7
Materials...7
Inhibitors...7
Fluorogenic substrate of SARS 3CLpro...7
Expression and purification of SARS 3CLpro...7
Gel filtration determination of SARS 3CLpro quaternary structure...9
Activity assay of SARS 3CLpro using the fluorogenic substrate...9
Inhibition assay: IC50 determination...10
Inhibitor assay: Ki determination... 11
Expression and purification of SARS 3CLpro mutants for maturation study...11
Kinetics of maturation assayed by SDS-PAGE...13
Analytical ultracentrifuge experiments...14
Expression and purification of EV71 3Cpro...14
Protease activity assay of EV71 3Cpro...16
Enzyme inhibition assay for EV71 3Cpro...17
Anti-viral assay for EV71...18
Western blot analysis for detecting EV71 3Cpro...18
Structural modeling of EV71 3Cpro...19
Preparation of CVB3 3Cpro, RV14 3Cpro, and CoV-229E 3CLpro...19
Examination of substrate specificity of CVB3 3Cpro...20
Protease activity assay of CVB3 3Cpro...21
Enzyme inhibition assay of CVB3 3Cpro...21
Primary screening of SARS 3CLpro inhibitors...21
IC50 determination of the inhibitors of coronavirus and picornarvirus main proteases...22
Computer modeling of the inhibitors binding with the proteases...22
Expression and purification of mutant SRAS 3CLpro for cleaving Q-M...23
Expression of the tag-cleavable fusion proteins in E. coli and in yeast...24
Tag cleavage of the fusion protein by the mutant SARS 3CLpro... 26
Substrate specificity and kinetic parameters of the mutant SARS 3CLpro...27
3. RESULTS...29
Expression and purification of SARS 3CLpro... 29
Effect of reducing agents on enzyme activity...29
Kinetic and equilibrium constants of SARS 3CLpro...30
Gel filtration experiments...30
Inhibitor assay using the fluorogenic substrate...31
Inhibition of C2-symmetric compounds against SARS 3CLpro...32
Inhibition of anilide compounds against SARS 3CLpro...33
Inhibition of α,β-unsaturated ester compounds against SARS 3CLpro...33
Inhibition of benzotriazole ester compounds against SARS 3CLpro...34
Autoprocessing of tagged SARS 3CLpro during lysate preparation...35
Facilitated processing...36
AUC analysis of wild-type and mutant SARS 3CLpro...36
Preparation of the EV71 3Cpro...37
Substrate specificity and kinetics of EV71 3Cpro...37
Synthesis of inhibitors against EV71 3Cpro...38
Evaluation of the EV71 3Cpro inhibitors...39
Substrate specificity and kinetics of CVB3 3Cpro...41
Evaluation of CVB3 3Cpro inhibitors...42
Obtaining SARS 3CLpro inhibitors by high-throughput screening...42
Inhibition potencies of the 43146 analogues...43
Computer modeling of 21155, 22723, 27548, and 48511 binding to the proteases...44
Binding modes of 43146 and its analogues to the proteases...45
Predicting the role of Thr25 of SARS 3CLpro in P1’-specificity by computer modeling...46
Preparation and characterization of T25G and T25S 3CLpro...46
Substrate specificity of T25G 3CLpro...47
Construction of E. coli and yeast vectors to express tag-cleavable fusion proteins by T25G 3CLpro...48
Comparison of the tag cleavage using TEVpro and T25G 3CLpro...50
4. DISCUSSION...51
TABLES...63
Table 1 Ki values and the structures of metal-containing inhibitors of SARS 3CLpro...63
Table 2 Ki values of three metal ions in inhibiting the SARS 3CLpro...64
Table 3 IC50 Values for Some 2-Chloro-4-nitroanilide Inhibitors against the SARS 3CLpro...65
Table 4 IC50 values of AG7088 (E1a) and the related compounds for inhibition of SARS 3CLpro...66
Table 5 IC50, Ki, kinact, and CC50 of Benzotriazole Esters...67
Table 6 IC50, EC50, and CC50 of the peptidomimetic inhibitors against the EV71 3Cpro...68
Table 7 Inhibition of peptidemimetic against CVB3 3Cpro and SARS 3CLpro...69
Table 8 Summary of IC50 values (μM) of the five hits with SARS-CoV 3CLpro, and other 3C(L) proteases...70
Table 9 IC50 values (μM) of compound 43146 analogs with SARS 3CLpro, and other 3C(L) proteases...71
FIGURES...72
Figure 1 SDS-PAGE analysis of the SARS 3CLpro at different stages of purification procedure...72
Figure 2 Measurements of kinetic parameters of SARS 3CLpro using a fluorogenic substrate...73
Figure 3 Dependence of SARS 3CLpro reaction rate on enzyme concentration...74
Figure 4 Gel filtration study of the SARS 3CLpro...75
Figure 5 The Ki measurements of a selected SARS 3CLpro inhibitor 1-hydroxypyridine-2-thione zinc...76
Figure 6 The Ki measurement for zinc ion...77
Figure 7 The Lopinavir-like structures and their IC50 against SARS 3CLpro...78
Figure 8 Summary of anilide inhibitors of the SARS 3CLpro...79
Figure 9 Molecular structures of α,β-unsaturated ester compounds...80
Figure 10 Molecular structures of inhibitors B3-B10 against SARS 3CLpro...81
Figure 11 Kinetic studies of inhibitor 4 and SARS 3CLpro...82
Figure 12 SDS-PAGE analysis of the maturation of SARS 3CLpro...83
Figure 13 Facilitated processing of Trx-10aa-C145A-10aa-GST by the active 3CLpro...84
Figure 14 AUC experiments of wild-type SARS 3CLpro...85
Figure 15 Proposed scheme of SARS 3CLpro maturation...86
Figure 16 Purification and characterization of EV71 3Cpro...87
Figure 17 Synthesis of EV71 3C protease inhibitors with α,β-unsaturated ester...88
Figure 18 Enzyme inhibition studies of 6b...89
Figure 19 Inhibition of EV71 protein accumulation in RD cells by 10d treatment...90
Figure 20 Computer modeling of the complex structures of EV71 3Cpro with 6b and 10b based on the published structure (PDB code 1CQQ) of RV protease with AG7088 bound...91
Figure 21 Substrate specificity and kinetics of CVB3 3Cpro...92
Figure 22 Ki of EPDTC against CVB3 3Cpro...93
Figure 23 Dose-response curves for the five hits against SARS 3CLpro from the screening...94
Figure 24 Dose-response curves for 43146 against 229E 3CLpro, CVB3 3Cpro, EV71 3Cpro and RV14 3Cpro...95
Figure 25 Computer modeling of the binding modes of the inhibitors in the active site of the SARS 3CLpro...96
Figure 26 Predicted structural model of SARS 3CLpro with a modified peptide (Thr-Ser-Ala-Val-Leu-Gln-Met-Phe-Arg-Lys) containing Met at P1’ site...97
Figure 27 Purification and activity measurements of SARS 3CLpro T25G mutants...98
Figure 28 Substrate specificities and kinetics of wild-type and T25G 3CLpro...99
Figure 29 Expression of UPPs fusion protein in E. coli and the tag cleavage by the 3CLpro...100
Figure 30 Expression of EGFP fusion protein in yeast Pichia and the tag cleavage by T25G 3CLpro...101
Figure 31 Comparison of the efficiency of tag cleavage using TEVpro and T25G 3CLpro...102
REFERENCES...103
PUBLICATION LIST...110
APPENDIX...113
1.Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., Berger, A., Burguiere, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H., and Doerr, H. W. (2003) N Engl J Med 348, 1967-1976
2.Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J., and Anderson, L. J. (2003) N Engl J Med 348, 1953-1966
3.Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K., and Osterhaus, A. D. (2003) Nature 423, 240
4.Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K., and Yuen, K. Y. (2003) Lancet 361, 1319-1325
5.Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray, M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C., and Roper, R. L. (2003) Science 300, 1399-1404
6.Ruan, Y. J., Wei, C. L., Ee, A. L., Vega, V. B., Thoreau, H., Su, S. T., Chia, J. M., Ng, P., Chiu, K. P., Lim, L., Zhang, T., Peng, C. K., Lin, E. O., Lee, N. M., Yee, S. L., Ng, L. F., Chee, R. E., Stanton, L. W., Long, P. M., and Liu, E. T. (2003) Lancet 361, 1779-1785
7.Gorbalenya, A. E., Donchenko, A. P., Blinov, V. M., and Koonin, E. V. (1989) FEBS Lett 243, 103-114
8.Hegyi, A., and Ziebuhr, J. (2002) J Gen Virol 83, 595-599
9.David, M., Peter, MH., Diane, EG., Robert, AL., Malcolm, AM., Bernard, R., and Stephen, ES. (2007) Fields Virology, 5th Ed., pp. 795–893, Wolters Kluwer Health-Lippincott Williams and Wilkins, New York
10.Melnick, J. (1996) Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. In: B.N. Fields, D.M. Knipe and P.M. Howley, Editors, Fields Virology (3rd ed.), Lipincott-Raven, Philadelphia.
11.Blomberg, J., Lycke, E., Ahlfors, K., Johnsson, T., Wolontis, S., and von Zeipel, G. (1974) Lancet 2, 112
12.Chang, L. Y., Lin, T. Y., Hsu, K. H., Huang, Y. C., Lin, K. L., Hsueh, C., Shih, S. R., Ning, H. C., Hwang, M. S., Wang, H. S., and Lee, C. Y. (1999) Lancet 354, 1682-1686
13.Lum, L. C., Wong, K. T., Lam, S. K., Chua, K. B., and Goh, A. Y. (1998) Lancet 352, 1391
14.Chen, Y. H., Chen, A. P., Chen, C. T., Wang, A. H., and Liang, P. H. (2002) J Biol Chem 277, 7369-7376
15.Chonmaitree, T., Menegus, M. A., Schervish-Swierkosz, E. M., and Schwalenstocker, E. (1981) Pediatrics 67, 489-493
16.Gilbert, G. L., Dickson, K. E., Waters, M. J., Kennett, M. L., Land, S. A., and Sneddon, M. (1988) Pediatr Infect Dis J 7, 484-488
17.Alexander, J. P., Jr., Baden, L., Pallansch, M. A., and Anderson, L. J. (1994) J Infect Dis 169, 905-908
18.Samuda, G. M., Chang, W. K., Yeung, C. Y., and Tang, P. S. (1987) Pediatr Infect Dis J 6, 206-208
19.Ho, M., Chen, E. R., Hsu, K. H., Twu, S. J., Chen, K. T., Tsai, S. F., Wang, J. R., and Shih, S. R. (1999) N Engl J Med 341, 929-935
20.Ho, M. (2000) J Microbiol Immunol Infect 33, 205-216
21.Maze, S. S., and Adolph, R. J. (1990) Clin Cardiol 13, 69-79
22.Krausslich, H. G., and Wimmer, E. (1988) Annu Rev Biochem 57, 701-754
23.De Clercq, E. (2006) Expert Rev Anti Infect Ther 4, 291-302
24.Liang, P. H. (2006) Curr Top Med Chem 6, 361-376
25.Zhai, S., Liu, W., and Yan, B. (2007) Recent Pat Antiinfect Drug Discov 2, 1-10
26.Lee, C. C., Kuo, C. J., Ko, T. P., Hsu, M. F., Tsui, Y. C., Chang, S. C., Yang, S., Chen, S. J., Chen, H. C., Hsu, M. C., Shih, S. R., Liang, P. H., and Wang, A. H. (2009) J Biol Chem 284, 7646-7655
27.Bradford, M. M. (1976) Anal Biochem 72, 248-254
28.Shie, J. J., Fang, J. M., Kuo, T. H., Kuo, C. J., Liang, P. H., Huang, H. J., Wu, Y. T., Jan, J. T., Cheng, Y. S., and Wong, C. H. (2005) Bioorg Med Chem 13, 5240-5252
29.Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., and Hilgenfeld, R. (2003) Science 300, 1763-1767
30.Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J., and Lai, L. (2004) J Biol Chem 279, 1637-1642
31.Thiel, V., Ivanov, K. A., Putics, A., Hertzig, T., Schelle, B., Bayer, S., Weissbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., and Ziebuhr, J. (2003) J Gen Virol 84, 2305-2315
32.Hsu, M. F., Kuo, C. J., Chang, K. T., Chang, H. C., Chou, C. C., Ko, T. P., Shr, H. L., Chang, G. G., Wang, A. H., and Liang, P. H. (2005) J Biol Chem 280, 31257-31266
33.Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., and Rao, Z. (2003) Proc Natl Acad Sci U S A 100, 13190-13195
34.Xue, X., Yang, H., Shen, W., Zhao, Q., Li, J., Yang, K., Chen, C., Jin, Y., Bartlam, M., and Rao, Z. (2007) J Mol Biol 366, 965-975
35.Shih, Y. P., Kung, W. M., Chen, J. C., Yeh, C. H., Wang, A. H., and Wang, T. F. (2002) Protein Sci 11, 1714-1719
36.Zeng, G. (1998) Biotechniques 25, 206-208
37.Yeh, S. H., Wang, H. Y., Tsai, C. Y., Kao, C. L., Yang, J. Y., Liu, H. W., Su, I. J., Tsai, S. F., Chen, D. S., and Chen, P. J. (2004) Proc Natl Acad Sci U S A 101, 2542-2547
38.Sun, H., Luo, H., Yu, C., Sun, T., Chen, J., Peng, S., Qin, J., Shen, J., Yang, Y., Xie, Y., Chen, K., Wang, Y., Shen, X., and Jiang, H. (2003) Protein Expr Purif 32, 302-308
39.Chang, H. C., and Chang, G. G. (2003) J Biol Chem 278, 23996-24002
40.Matthews, D. A., Dragovich, P. S., Webber, S. E., Fuhrman, S. A., Patick, A. K., Zalman, L. S., Hendrickson, T. F., Love, R. A., Prins, T. J., Marakovits, J. T., Zhou, R., Tikhe, J., Ford, C. E., Meador, J. W., Ferre, R. A., Brown, E. L., Binford, S. L., Brothers, M. A., DeLisle, D. M., and Worland, S. T. (1999) Proc Natl Acad Sci U S A 96, 11000-11007
41.Pan, J. J., Chiou, S. T., and Liang, P. H. (2000) Biochemistry 39, 10936-10942
42.Brik, A., Lin, Y. C., Elder, J., and Wong, C. H. (2002) Chem Biol 9, 891-896
43.Brik, A., and Wong, C. H. (2003) Org Biomol Chem 1, 5-14
44.Huitron-Resendiz, S., De Rozieres, S., Sanchez-Alavez, M., Buhler, B., Lin, Y. C., Lerner, D. L., Henriksen, N. W., Burudi, M., Fox, H. S., Torbett, B. E., Henriksen, S., and Elder, J. H. (2004) J Virol 78, 4525-4532
45.Sirois, S., Wei, D. Q., Du, Q., and Chou, K. C. (2004) J Chem Inf Comput Sci 44, 1111-1122
46.Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S., Hsu, H. H., Huang, H. C., Wu, D., Brik, A., Liang, F. S., Liu, R. S., Fang, J. M., Chen, S. T., Liang, P. H., and Wong, C. H. (2004) Proc Natl Acad Sci U S A 101, 10012-10017
47.Kuo, C. J., Chi, Y. H., Hsu, J. T., and Liang, P. H. (2004) Biochem Biophys Res Commun 318, 862-867
48.Dragovich, P. S., Prins, T. J., Zhou, R., Webber, S. E., Marakovits, J. T., Fuhrman, S. A., Patick, A. K., Matthews, D. A., Lee, C. A., Ford, C. E., Burke, B. J., Rejto, P. A., Hendrickson, T. F., Tuntland, T., Brown, E. L., Meador, J. W., 3rd, Ferre, R. A., Harr, J. E., Kosa, M. B., and Worland, S. T. (1999) J Med Chem 42, 1213-1224
49.Lopez, M. A., Rodriguez, Z., Gonzalez, M., Tolon, B., Avila, R., Gonzalez, I., Garmendia, L., Mamposo, T., Carrasco, R., Pellon, R., Velez, H., and Fini, A. (2004) Eur J Med Chem 39, 657-664
50.Tian, Q., Nayyar, NK, Babu, S, Chen, L, Tao, J, Lee, S, Tibbetts, A, Moran, T, Liou, J, Guo, M, and Kennedy, TP. (2001) Tetrahedron Letters 42, 6807-6809
51.Lee, C. C., Kuo, C. J., Hsu, M. F., Liang, P. H., Fang, J. M., Shie, J. J., and Wang, A. H. (2007) FEBS Lett 581, 5454-5458
52.Yang, S., Chen, S. J., Hsu, M. F., Wu, J. D., Tseng, C. T., Liu, Y. F., Chen, H. C., Kuo, C. W., Wu, C. S., Chang, L. W., Chen, W. C., Liao, S. Y., Chang, T. Y., Hung, H. H., Shr, H. L., Liu, C. Y., Huang, Y. A., Chang, L. Y., Hsu, J. C., Peters, C. J., Wang, A. H., and Hsu, M. C. (2006) J Med Chem 49, 4971-4980
53.Tung, J. Y., Chang, M. D., Chou, W. I., Liu, Y. Y., Yeh, Y. H., Chang, F. Y., Lin, S. C., Qiu, Z. L., and Sun, Y. J. (2008) Biochem J 416, 27-36
54.Khayat, R., Batra, R., Bebernitz, G. A., Olson, M. W., and Tong, L. (2004) Biochemistry 43, 316-322
55.Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., and Hilgenfeld, R. (2002) Embo J 21, 3213-3224
56.Chou, K. C., Wei, D. Q., and Zhong, W. Z. (2003) Biochem Biophys Res Commun 308, 148-151
57.Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J., and Bellini, W. J. (2003) Science 300, 1394-1399
58.Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., and Farzan, M. (2003) Nature 426, 450-454
59.Shie, J. J., Fang, J. M., Kuo, C. J., Kuo, T. H., Liang, P. H., Huang, H. J., Yang, W. B., Lin, C. H., Chen, J. L., Wu, Y. T., and Wong, C. H. (2005) J Med Chem 48, 4469-4473
60.Hsu, J. T., Kuo, C. J., Hsieh, H. P., Wang, Y. C., Huang, K. K., Lin, C. P., Huang, P. F., Chen, X., and Liang, P. H. (2004) FEBS Lett 574, 116-120
61.Wu, C. Y., King, K. Y., Kuo, C. J., Fang, J. M., Wu, Y. T., Ho, M. Y., Liao, C. L., Shie, J. J., Liang, P. H., and Wong, C. H. (2006) Chem Biol 13, 261-268
62.Lu, I. L., Mahindroo, N., Liang, P. H., Peng, Y. H., Kuo, C. J., Tsai, K. C., Hsieh, H. P., Chao, Y. S., and Wu, S. Y. (2006) J Med Chem 49, 5154-5161
63.Wen, C. C., Kuo, Y. H., Jan, J. T., Liang, P. H., Wang, S. Y., Liu, H. G., Lee, C. K., Chang, S. T., Kuo, C. J., Lee, S. S., Hou, C. C., Hsiao, P. W., Chien, S. C., Shyur, L. F., and Yang, N. S. (2007) J Med Chem 50, 4087-4095
64.Shao, Y. M., Yang, W. B., Peng, H. P., Hsu, M. F., Tsai, K. C., Kuo, T. H., Wang, A. H., Liang, P. H., Lin, C. H., Yang, A. S., and Wong, C. H. (2007) Chembiochem 8, 1654-1657
65.Rowe, R., Sheskey, PJ and Weller, PJ. (2003) Handook of Pharmaceutical Excipients, 4th Edn. Pharmaceutical Press.
66.Basak, A., Toure, B. B., Lazure, C., Mbikay, M., Chretien, M., and Seidah, N. G. (1999) Biochem J 343 Pt 1, 29-37
67.Brewer, G. J., Johnson, V. D., Dick, R. D., Hedera, P., Fink, J. K., and Kluin, K. J. (2000) Hepatology 31, 364-370
68.Chou, C. Y., Chang, H. C., Hsu, W. C., Lin, T. Z., Lin, C. H., and Chang, G. G. (2004) Biochemistry 43, 14958-14970
69.McQueney, M. S., Amegadzie, B. Y., D''Alessio, K., Hanning, C. R., McLaughlin, M. M., McNulty, D., Carr, S. A., Ijames, C., Kurdyla, J., and Jones, C. S. (1997) J Biol Chem 272, 13955-13960
70.Rotonda, J., Nicholson, D. W., Fazil, K. M., Gallant, M., Gareau, Y., Labelle, M., Peterson, E. P., Rasper, D. M., Ruel, R., Vaillancourt, J. P., Thornberry, N. A., and Becker, J. W. (1996) Nat Struct Biol 3, 619-625
71.De Clercq, E. (2002) Nat Rev Drug Discov 1, 13-25
72.Webber, S. E., Okano, K., Little, T. L., Reich, S. H., Xin, Y., Fuhrman, S. A., Matthews, D. A., Love, R. A., Hendrickson, T. F., Patick, A. K., Meador, J. W., 3rd, Ferre, R. A., Brown, E. L., Ford, C. E., Binford, S. L., and Worland, S. T. (1998) J Med Chem 41, 2786-2805
73.Binford, S. L., Maldonado, F., Brothers, M. A., Weady, P. T., Zalman, L. S., Meador, J. W., 3rd, Matthews, D. A., and Patick, A. K. (2005) Antimicrob Agents Chemother 49, 619-626
74.Wang, T., Wang, AHJ. (2004) High-throughput screening of soluble recombinant proteins. In Purifying proteins for proteomics: A laboratory manual Simpson RJ, Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor: NY, pp 111-119
75.Emsley, P., and Cowtan, K. (2004) Acta Crystallogr D Biol Crystallogr 60, 2126-2132
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 從全球SARS疫情的衝擊論我國防疫觀念與政策的改變
2. 胡塞爾「存而不論」概念初探–附以人類如何以人文態度面對SARS病毒為例
3. 設計及合成SARS冠狀病毒蛋白酶抑制劑:建構a-羥基膦酸二烷基酯、a-羥基醯胺與a-酮基醯胺之小型分子庫
4. SARS主要蛋白酶與抑制劑結合作用之電腦模擬
5. 病毒結構及抗病毒策略之研究:(一)傳染性華氏囊病毒之VP2次病毒顆粒晶體結構之研究及病毒顆粒組裝與免疫原性之探討(二)3C及3C-like蛋白酶與其金屬結合抑制物形成複合體之研究
6. SARS冠狀病毒與細胞黏著分子(DC-SIGN)交互作用之相關性研究
7. 探討SARS冠狀病毒類木瓜蛋白酶對第一型干擾素訊號傳遞路徑之影響
8. 以電腦模擬來探討抑制劑在3CL蛋白酶的結合位置
9. 嚴重急性呼吸道症候群冠狀病毒核殼蛋白質負調控Daxx蛋白質之轉錄抑制作用
10. 克沙奇B3型病毒3C蛋白酶及其抑制劑複合體結構分析--抗病毒藥物設計之應用
11. 設計及合成L-苯丙胺酸衍生物對抗SARS-CoV3CL蛋白酶
12. 以SARS-CoV之DNA及重組腺病毒疫苗免疫小鼠並利用大腸桿菌系統表現SARS-CoV套膜蛋白
13. SARS冠狀病毒之PLpro蛋白酶之特性分析
14. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
15. SARS-CoV3C-like蛋白酶之全新小化合物抑制劑的虛擬篩選和三維定量結構活性關係之研究
 
無相關期刊