跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 00:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂郁蕙
研究生(外文):Yu-Huei Liu
論文名稱:探討CD74誘導人類透明細胞型腎細胞癌之增殖與轉移角色及調控機轉:促進D型血管內皮生長因子過度表現
論文名稱(外文):Effects of CD74 on Proliferation and Metastasis in Human clear Cell Renal Cell Carcinoma: Involvement of Vascular Endothelial Growth Factor-D Upregulation
指導教授:林榮耀林榮耀引用關係
指導教授(外文):Jung-Yaw Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:147
中文關鍵詞:CD74D 型血管表皮生長因子人類透明細胞型腎細胞癌
外文關鍵詞:CD74VEGF-Dclear cell renal cell carcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據國際癌症研究署 (International Agency for Research on Cancer, IARC) 於 2002 年發表全球癌症發生率、死亡率及及盛行率統計資料 GLOBALCAN 2002,估計腎臟癌於 2002 年新增病例達 208,000 例,佔全世界罹癌人口數1.9%;同時 2002 年因腎臟癌死亡的病例達 102,000 例。腎臟癌在澳洲、歐洲與美洲有最高的發生率。其好發程度,歐洲國家發生率佔排名第九位,美國成年男性排名第七位、成年女性排名第九位。在台灣,根據行政院衛生署2007年度統計資料,有 522 例死於腎臟癌, 其好發程度於成年男性排名第十三位、成年女性排名第十四位。比較全世界腎臟癌發生率與死亡率人口分佈結果發現,成年男性罹癌人口約為成年女性 1.5 倍。雖然已有報告認為吸煙、肥胖、以及環境因子,如砷皆與腎臟癌發生有關,但真正的罹癌原因仍有待研究。
透明細胞型腎細胞癌是主要的成年癌症型態,約佔總腎臟癌發生率的約70 %,透明細胞型腎細胞癌以腫瘤細胞引起的血管新生以及其高密度的微小血管網為特點。研究已經揭示引起透明細胞型腎細胞癌的主要的原因是由於 von Hippel-Lindau (VHL) 抑癌因子的突變,引起缺氧因子 hypoxia-inducible factor-α(HIF-α)的過度活化,進而導致 A 型血管表皮生長因子的過度表現。然而目前標的於表皮生長因子接受器 (EGFR) 或 A 型血管表皮生長因子 (VEGF-A) 的臨床試驗用藥其抑癌作用有限。此外,近來陸續發表的研究認為腎臟癌的發生與慢性發炎反應有關,但目前機制仍眾說紛紜。儘管如此,發現癌症治療的新標的,並針對該新標的設計新癌症療法或複合療法,成為目前生物醫學研究重點之一。
CD74 的過度表現與許多人類癌症有關,其中包括透明細胞型腎細胞癌,然而其間的關聯性仍屬未知之數。在本篇論文中。為了釐清 CD74 在透明細胞型腎細胞癌致癌過程中所扮演的角色,我們將 CD74 穩定表現於人類腎臟胚胎細胞株 HEK293 中,或抑制人類轉移性透明細胞腎臟細胞株 Caki-1 中高度表現之 CD74,藉以探討 CD74 致癌潛力。結果顯示 CD74 調控 D 型血管表皮生長因子 (VEGF-D) 表現,於人類透明細胞型腎細胞癌組織中發現其二者表現呈現顯著正相關 (r = 0.65,p<0.001). 小鼠實驗中並發現 CD74 促進腫瘤增生、增加腫瘤細胞引起的血管新生,並且促進腫瘤細胞轉移。細胞實驗顯示抑制 CD74 或 VEGF-D 表達導致抑制細胞增生、侵犯以及癌細胞引起的血管內皮細胞遷移。進一步探討 CD74 促進VEGF-D 過度表現之機制發現 CD74 藉由活化 PI3K/AKT 及 MEK/ERK 途徑而促使NF-kB 轉錄因子轉位至細胞核中,結合 VEGF-D 促進子而活化 VEGF-D 的表現。這些結果表明 VEGF-D 對 CD74 引起的人類透明細胞型腎細胞癌之增生與轉移至關重要。
According to GLOBALCAN 2002, the recent estimates of the cancer incidence, mortality and prevalence of all the countries of the world, worldwide about 208,000 new cases of kidney cancer have been diagnosed (1.9% of the world total), and 102,000 persons died because of kidney cancer in 2002. Kidney cancer has the highest rates in America, Australia and Europe. Kidney cancer is the 9th most common cancer in the European Union and the 7th most common cancer in men and the 9th in women in the United States. In Taiwan, there are 522 persons died because of kidney cancer in 2007, which is the 14th most common cause of cancer death in men and the 13th in women. Incidence and mortality rates are approximately 1.5 fold as high for men as for women worldwide. Although some factors, such as tobacco smoking, obesity, and environmental chemicals especially arsenic have been thought to be involved in tumorigenesis of kidney cancer, the precise mechanism needs to be identified.
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer (~70%) in adults, which characterized by a high microvascular density produced by tumor-induced neoangiogenesis. Studies have revealed that the major cause of ccRCC is due to loss of the von Hippel-Lindau (VHL) gene, which causes an upregulation of hypoxia-inducible factor-alpha (HIF-alpha) activity, and subsequencely leads to overexpression of VEGF-A. The other groups suggest that link between chronic inflammation and carcinogenesis may play an important role in renal cell carcinoma (RCC), but are not well understood. The undergoing therapies for metastatic ccRCC that include the use of the tyrosine kinase inhibitors as well as anti-EGFR and anti-VEGF agents demonstrate minimal efficacy, therefore to discover new targets for combined cancer therapy is required.
Elevation of CD74 is associated with a number of human cancers, including clear cell renal cell carcinoma (ccRCC). To understand the role of CD74 in the oncogenic process of ccRCC, we ectopically expressed CD74 in human embryonic kidney 293 cells (HEK/CD74) and evaluated its oncogenic potential. By overexpression of CD74 in HEK293 and Caki-2 cells, and downregulation of CD74 in Caki-1 cells, we show that VEGF-D expression is modified accordingly. A significant, positive correlation between CD74 and VEGF-D is found in human ccRCC tissues (Pearson’s correlation, r= 0.65, p<0.001). In HEK/CD74 xenograft mice, CD74 significantly induced the formation of tumor masses, increased tumor-induced angiogenesis, and promoted cancer cell metastasis. Blockage of VEGF-D expression by small interference RNA resulted in a decrease in cell proliferation, invasion and cancer cell-induced HUVEC migration enhanced by CD74. Furthermore, we provide evidence that the intracellular signaling cascade responsible for VEGF-D upregulation by CD74 is both PI3K/AKT- and MEK/ERK-dependent, both of which are associated with NF-kappaB nuclear translocation and DNA-binding activity. These results suggest that VEGF-D is crucial for CD74-induced human renal carcinoma cancer cell tumorigenesis.
口試委員會審定書........................i
ACKNOWLEDGEMENT........................ii
ABREVIATION........................v
中文摘要........................vii
ABSTRACT........................ix
LIST of TABLES........................xi
LIST of FIGURES........................xii

CHAPTER 1 INTRODUCTION........................1
1.1 Introduction of clear cell renal cell carcinoma........................1
1.2 Discovery of the CD74 upregulation in clear cell renal cell carcinoma—the full-length cDNA library screening........................2
1.3 Introduction of CD74........................2
1.4 Problem statement........................3
1.5 Research objectives........................4

CHAPTER 2 CLEAR CELL RENAL CELL CARCINOMA........................6
2.1 Epidemiology of kidney cancer........................6
2.2 Classification of kidney cancer........................7
2.3 Clear cell renal cell carcinoma (ccRCC) ...............7
2.4 CD74, a potential target for ccRCC.....................8
CHAPTER 3. CD74........................10
3.1 Introduction of CD74........................10
3.2 Endoplasmic reticulum CD74........................12
3.3 Nuclear CD74........................12
3.4 Cell-membrane-associated CD74........................13
3.5 CD74, cell proliferation, invasion, and apoptosis.....14
3.6 CD74 as a membrane receptor in the gut................17

Chapter 4 VEGF-D.........................................19
4.1 Overview of VEGF family......................19
4.2 Vascular endothelial growth factor-D and cancer ......................20

CHAPTER 5. MATERIALS AND METHODS......................22
5.1 Antibodies used for Western blot analysis and chemical inhibitors......................22
5.2 Patients, specimens, and immunohistochemical staining 22
5.3 Cell lines......................23
5.4 Preparation of whole cell lysate and subcellular Fractions......................24
5.5 Determination of protein concentration by BCA assay......................25
5.6 SDS-polyacrylamide slab gel electrophoresis (SDS-PAGE)26
5.7 Western blot analysis......................27
5.8 Construction and preparation of plasmids for transfection......................28
5.9 Creation and maintenance of CD74 stable transformants 29
5.10 Immunofluorescence confocal microscope analysis......30
5.11 RNA isolation and Real-time quantitative RT-PCR......30
5.12 Animals......................31
5.13 Short interference RNA (siRNA)......................32
5.14 Cell proliferation assay......................32
5.15 Anchorage-independent growth assay..................33
5.16 Cancer cell invasion assay......................33
5.17 Cancer cell-induced HUVEC migration assay............34
5.18 Isolation and maintenance of dendritic cells (DCs)...34
5.19 Flow cytometry-based assays......................35
5.20 Immunoprecipitation-Western analysis.................36
5.21 Chromatin immunoprecipitation (ChIP) assays..........37
5.22 Luciferase reporter assay......................37
5.23 Statistical analysis......................38

CHAPTER 6 RESULTS......................39
6.1 Up-regulation of CD74 among ccRCC tissues and different human kidney or renal cancer cell lines and ccRCC tissues .........................39
6.2 CD74 induced the up-regulation of VEGF-D............40
6.3 Correlation between CD74 and VEGF-D expression in ccRCC biopsy tissues......................41
6.4 CD74 induces tumor growth and angiogenesis............42
6.5 CD74 induces tumor metastasis......................44
6.6 Partial inhibition of MHC CLASS II antigen presentation and trafficking by CD74 in tumor cells might be involved in CD74-induced tumor growth and metastasis.................45
6.7 VEGF-D is involved in CD74-induced promotion of cell proliferation......................46
6.8 VEGF-D is involved in CD74-induced promotion of cell invasion......................46
6.9 VEGF-D is involved in CD74-induced promotion of tumor-induced HUVEC migration......................47
6.10 CXCRs are involved in CD74-mediated VEGF-D expression and CD74-induced cell proliferation and invasion.........48
6.11 NF-κB is involved in CD74-mediated VEGF-D expression..................49
6.12 Ras-Raf-MEK-ERK and PI3K-AKT-mediated NF-kappaB signaling pathways are required for CD74-induced VEGF-D expression......................51
6.13 CD44 interacts with CD74 in HEK/CD74 cells...........52

CHAPTER 7 CONCLUSIONS, DISCUSSION AND RECOMMENDATIONS 53
7.1 Insights of this study......................53
7.2 Inflammation and cancer......................54
7.3 Oncogeneic role of CD74 is MIF-dependent..............56
7.4 Regulation of VEGF-D......................58
7.5 Target genes that involved in CD74/VEGF-D promte cell proliferation and tumorigenesis......................59
7.6 CD74, an alternative regulation mechanism exists in ccRCC metastasis?......... 60
7.7 Summary, recommendations and perspectives.............60

TABLES......................63
FIGURES......................76
APPENDIXES......................104
REFERENCES......................121
PUBLICATION......................136
1. Achen, M.G., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A.F., Alitalo, K., and Stacker, S.A. (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 95, 548-553.
2. Achen, M.G., Williams, R.A., Minekus, M.P., Thornton, G.E., Stenvers, K., Rogers, P.A., Lederman, F., Roufail, S., and Stacker, S.A. (2001). Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. J Pathol 193, 147-154.
3. Aggarwal, B.B., Shishodia, S., Sandur, S.K., Pandey, M.K., and Sethi, G. (2006). Inflammation and cancer: how hot is the link? Biochem Pharmacol 72, 1605-1621.
4. Akahane, M., Akahane, T., Matheny, S.L., Shah, A., Okajima, E., and Thorgeirsson, U.P. (2006). Vascular endothelial growth factor-D is a survival factor for human breast carcinoma cells. Int J Cancer 118, 841-849.
5. Al-Rawi, M.A., Watkins, G., Mansel, R.E., and Jiang, W.G. (2005). Interleukin 7 upregulates vascular endothelial growth factor D in breast cancer cells and induces lymphangiogenesis in vivo. Br J Surg 92, 305-310.
6. Alessi, D.R., and Cohen, P. (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8, 55-62.
7. Bach, J.P., Rinn, B., Meyer, B., Dodel, R., and Bacher, M. (2008). Role of MIF in Inflammation and Tumorigenesis. Oncology 75, 127-133.
8. Battegay, M., Bachmann, M.F., Burhkart, C., Viville, S., Benoist, C., Mathis, D., Hengartner, H., and Zinkernagel, R.M. (1996). Antiviral immune responses of mice lacking MHC class II or its associated invariant chain. Cell Immunol 167, 115-121.
9. Bernhagen, J., Krohn, R., Lue, H., Gregory, J.L., Zernecke, A., Koenen, R.R., Dewor, M., Georgiev, I., Schober, A., Leng, L., et al. (2007). MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13, 587-596.
10. Bertolino, P., and Rabourdin-Combe, C. (1996). The MHC class II-associated invariant chain: a molecule with multiple roles in MHC class II biosynthesis and antigen presentation to CD4+ T cells. Critical reviews in immunology 16, 359-379.
11. Beswick, E.J., Bland, D.A., Suarez, G., Barrera, C.A., Fan, X., and Reyes, V.E. (2005). Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect Immun 73, 2736-2743.
12. Beswick, E.J., Pinchuk, I.V., Minch, K., Suarez, G., Sierra, J.C., Yamaoka, Y., and Reyes, V.E. (2006a). The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-kappaB activation and interleukin-8 production. Infect Immun 74, 1148-1155.
13. Beswick, E.J., Pinchuk, I.V., Suarez, G., Sierra, J.C., and Reyes, V.E. (2006b). Helicobacter pylori CagA-dependent macrophage migration inhibitory factor produced by gastric epithelial cells binds to CD74 and stimulates procarcinogenic events. J Immunol 176, 6794-6801.
14. Bierer, S., Herrmann, E., Kopke, T., Neumann, J., Eltze, E., Hertle, L., and Wulfing, C. (2008). Lymphangiogenesis in kidney cancer: Expression of VEGF-C, VEGF-D and VEGFR-3 in clear cell and papillary renal cell carcinoma. Oncol Rep 20, 721-725.
15. Bikoff, E.K., Huang, L.Y., Episkopou, V., van Meerwijk, J., Germain, R.N., and Robertson, E.J. (1993). Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. The Journal of experimental medicine 177, 1699-1712.
16. Binsky, I., Haran, M., Starlets, D., Gore, Y., Lantner, F., Harpaz, N., Leng, L., Goldenberg, D.M., Shvidel, L., Berrebi, A., et al. (2007). IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci U S A 104, 13408-13413.
17. Bosetti, C., Bertuccio, P., Levi, F., Lucchini, F., Negri, E., and La Vecchia, C. (2008). Cancer mortality in the European Union, 1970-2003, with a joinpoint analysis. Ann Oncol 19, 631-640.
18. Bourguignon, L.Y., Zhu, H., Shao, L., and Chen, Y.W. (2001). CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276, 7327-7336.
19. Brazil, D.P., Park, J., and Hemmings, B.A. (2002). PKB binding proteins. Getting in on the Akt. Cell 111, 293-303.
20. Bunt, S.K., Sinha, P., Clements, V.K., Leips, J., and Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176, 284-290.
21. Bunt, S.K., Yang, L., Sinha, P., Clements, V.K., Leips, J., and Ostrand-Rosenberg, S. (2007). Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67, 10019-10026.
22. Burton, J.D., Ely, S., Reddy, P.K., Stein, R., Gold, D.V., Cardillo, T.M., and Goldenberg, D.M. (2004). CD74 is expressed by multiple myeloma and is a promising target for therapy. Clin Cancer Res 10, 6606-6611.
23. Busch, R., Rinderknecht, C.H., Roh, S., Lee, A.W., Harding, J.J., Burster, T., Hornell, T.M., and Mellins, E.D. (2005). Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 207, 242-260.
24. Byzova, T.V., Goldman, C.K., Pampori, N., Thomas, K.A., Bett, A., Shattil, S.J., and Plow, E.F. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6, 851-860.
25. Chang, F., Steelman, L.S., Lee, J.T., Shelton, J.G., Navolanic, P.M., Blalock, W.L., Franklin, R.A., and McCubrey, J.A. (2003). Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263-1293.
26. Chen, C.J., Chen, C.W., Wu, M.M., and Kuo, T.L. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66, 888-892.
27. Cordon-Cardo, C., and Prives, C. (1999). At the crossroads of inflammation and tumorigenesis. The Journal of experimental medicine 190, 1367-1370.
28. Currie, M.J., Hanrahan, V., Gunningham, S.P., Morrin, H.R., Frampton, C., Han, C., Robinson, B.A., and Fox, S.B. (2004). Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1alpha) and the HIF-1alpha target gene DEC1, but not lymph node metastasis in primary human breast carcinomas. J Clin Pathol 57, 829-834.
29. Datta, M.W., Shahsafaei, A., Nadler, L.M., Freeman, G.J., and Dorfman, D.M. (2000). Expression of MHC class II-associated invariant chain (Ii;CD74) in thymic epithelial neoplasms. Appl Immunohistochem Mol Morphol 8, 210-215.
30. Datta, S.R., Ranger, A.M., Lin, M.Z., Sturgill, J.F., Ma, Y.C., Cowan, C.W., Dikkes, P., Korsmeyer, S.J., and Greenberg, M.E. (2002). Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 3, 631-643.
31. Dias, S., Choy, M., Alitalo, K., and Rafii, S. (2002). Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 99, 2179-2184.
32. Dulaimi, E., Ibanez de Caceres, I., Uzzo, R.G., Al-Saleem, T., Greenberg, R.E., Polascik, T.J., Babb, J.S., Grizzle, W.E., and Cairns, P. (2004). Promoter hypermethylation profile of kidney cancer. Clin Cancer Res 10, 3972-3979.
33. Erkizan, O., Kirkali, G., Yorukoglu, K., and Kirkali, Z. (2004). Significance of heat shock protein-27 expression in patients with renal cell carcinoma. Urology 64, 474-478.
34. Ferrara, N., and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr Rev 18, 4-25.
35. Ferrara, N., and Keyt, B. (1997). Vascular endothelial growth factor: basic biology and clinical implications. EXS 79, 209-232.
36. Fineschi, B., Arneson, L.S., Naujokas, M.F., and Miller, J. (1995). Proteolysis of major histocompatibility complex class II-associated invariant chain is regulated by the alternatively spliced gene product, p41. Proc Natl Acad Sci U S A 92, 10257-10261.
37. Funaki, H., Nishimura, G., Harada, S., Ninomiya, I., Terada, I., Fushida, S., Tani, T., Fujimura, T., Kayahara, M., Shimizu, K., et al. (2003). Expression of vascular endothelial growth factor D is associated with lymph node metastasis in human colorectal carcinoma. Oncology 64, 416-422.
38. Gore, Y., Starlets, D., Maharshak, N., Becker-Herman, S., Kaneyuki, U., Leng, L., Bucala, R., and Shachar, I. (2008). Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem 283, 2784-2792.
39. Gu, Y., Qi, X., and Guo, S. (2008). Lymphangiogenesis induced by VEGF-C and VEGF-D promotes metastasis and a poor outcome in breast carcinoma: a retrospective study of 61 cases. Clin Exp Metastasis 25, 717-725.
40. Hanrahan, V., Currie, M.J., Gunningham, S.P., Morrin, H.R., Scott, P.A., Robinson, B.A., and Fox, S.B. (2003). The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200, 183-194.
41. Herrmann, E., Eltze, E., Bierer, S., Kopke, T., Gorge, T., Neumann, J., Hertle, L., and Wulfing, C. (2007). VEGF-C, VEGF-D and Flt-4 in transitional bladder cancer: relationships to clinicopathological parameters and long-term survival. Anticancer Res 27, 3127-3133.
42. Hodges, A., Talley, L., and Gokden, N. (2006). Human Papillomavirus DNA and P16INK4A are not detected in renal tumors with immunohistochemistry and signal-amplified in situ hybridization in paraffin-embedded tissue. Appl Immunohistochem Mol Morphol 14, 432-435.
43. Hojilla, C.V., Wood, G.A., and Khokha, R. (2008). Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res 10, 205.
44. Hopenhayn-Rich, C., Biggs, M.L., and Smith, A.H. (1998). Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol 27, 561-569.
45. Hustinx, S.R., Cao, D., Maitra, A., Sato, N., Martin, S.T., Sudhir, D., Iacobuzio-Donahue, C., Cameron, J.L., Yeo, C.J., Kern, S.E., et al. (2004). Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression. Cancer Biol Ther 3, 1254-1261.
46. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer J Clin 58, 71-96.
47. Jensen, P.E., Weber, D.A., Thayer, W.P., Westerman, L.E., and Dao, C.T. (1999). Peptide exchange in MHC molecules. Immunol Rev 172, 229-238.
48. Johrer, K., Zelle-Rieser, C., Perathoner, A., Moser, P., Hager, M., Ramoner, R., Gander, H., Holtl, L., Bartsch, G., Greil, R., et al. (2005). Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clin Cancer Res 11, 2459-2465.
49. Juttner, S., Wissmann, C., Jons, T., Vieth, M., Hertel, J., Gretschel, S., Schlag, P.M., Kemmner, W., and Hocker, M. (2006). Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol 24, 228-240.
50. Karkkainen, M.J., and Petrova, T.V. (2000). Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19, 5598-5605.
51. Koide, N., Yamada, T., Shibata, R., Mori, T., Fukuma, M., Yamazaki, K., Aiura, K., Shimazu, M., Hirohashi, S., Nimura, Y., et al. (2006). Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res 12, 2419-2426.
52. Kopper, L., and Timar, J. (2006). Genomics of renal cell cancer-- does it provide breakthrough? Pathol Oncol Res 12, 5-11.
53. Koyama, Y., Kaneko, K., Akazawa, K., Kanbayashi, C., Kanda, T., and Hatakeyama, K. (2003). Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer: association with lymph node metastasis. Clin Breast Cancer 4, 354-360.
54. Koyasu, S. (2003). The role of PI3K in immune cells. Nat Immunol 4, 313-319.
55. Kurttio, P., Pukkala, E., Kahelin, H., Auvinen, A., and Pekkanen, J. (1999). Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect 107, 705-710.
56. Lan, H.Y. (2008). Role of macrophage migration inhibition factor in kidney disease. Nephron Exp Nephrol 109, e79-83.
57. Lantner, F., Starlets, D., Gore, Y., Flaishon, L., Yamit-Hezi, A., Dikstein, R., Leng, L., Bucala, R., Machluf, Y., Oren, M., et al. (2007). CD74 induces TAp63 expression leading to B-cell survival. Blood 110, 4303-4311.
58. Lazova, R., Moynes, R., May, D., and Scott, G. (1997). LN-2 (CD74). A marker to distinguish atypical fibroxanthoma from malignant fibrous histiocytoma. Cancer 79, 2115-2124.
59. Lee, J., Hwan Kim, K., and Kim, H. (2007). Role of vascular endothelial growth factor-D (VEGF-D) on IL-6 expression in cerulein-stimulated pancreatic acinar cells. Ann N Y Acad Sci 1095, 129-133.
60. Lee, J.M., Yanagawa, J., Peebles, K.A., Sharma, S., Mao, J.T., and Dubinett, S.M. (2008). Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66, 208-217.
61. Leng, L., Metz, C.N., Fang, Y., Xu, J., Donnelly, S., Baugh, J., Delohery, T., Chen, Y., Mitchell, R.A., and Bucala, R. (2003). MIF signal transduction initiated by binding to CD74. The Journal of experimental medicine 197, 1467-1476.
62. Li, S., Kurts, C., Kontgen, F., Holdsworth, S.R., and Tipping, P.G. (1998). Major histocompatibility complex class II expression by intrinsic renal cells is required for crescentic glomerulonephritis. The Journal of experimental medicine 188, 597-602.
63. Liao, H., Bucala, R., and Mitchell, R.A. (2003). Adhesion-dependent signaling by macrophage migration inhibitory factor (MIF). J Biol Chem 278, 76-81.
64. Lin, S.Y., Makino, K., Xia, W., Matin, A., Wen, Y., Kwong, K.Y., Bourguignon, L., and Hung, M.C. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3, 802-808.
65. Liu, B., Earl, H.M., Baban, D., Shoaibi, M., Fabra, A., Kerr, D.J., and Seymour, L.W. (1995). Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun 217, 721-727.
66. Liu, Y.H., Lin, C.Y., Lin, W.C., Tang, S.W., Lai, M.K., and Lin, J.Y. (2008). Up-regulation of vascular endothelial growth factor-D expression in clear cell renal cell carcinoma by CD74: a critical role in cancer cell tumorigenesis. J Immunol 181, 6584-6594.
67. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif 25, 402-408.
68. Lue, H., Kapurniotu, A., Fingerle-Rowson, G., Roger, T., Leng, L., Thiele, M., Calandra, T., Bucala, R., and Bernhagen, J. (2006). Rapid and transient activation of the ERK MAPK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on JAB1/CSN5 and Src kinase activity. Cellular signalling 18, 688-703.
69. Lue, H., Thiele, M., Franz, J., Dahl, E., Speckgens, S., Leng, L., Fingerle-Rowson, G., Bucala, R., Luscher, B., and Bernhagen, J. (2007). Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene 26, 5046-5059.
70. Maekawa, S., Iwasaki, A., Shirakusa, T., Enatsu, S., Kawakami, T., and Kuroki, M. (2007). Correlation between lymph node metastasis and the expression of VEGF-C, VEGF-D and VEGFR-3 in T1 lung adenocarcinoma. Anticancer Res 27, 3735-3741.
71. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436-444.
72. Marconcini, L., Marchio, S., Morbidelli, L., Cartocci, E., Albini, A., Ziche, M., Bussolino, F., and Oliviero, S. (1999). c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci U S A 96, 9671-9676.
73. Matza, D., Kerem, A., Medvedovsky, H., Lantner, F., and Shachar, I. (2002). Invariant chain-induced B cell differentiation requires intramembrane proteolytic release of the cytosolic domain. Immunity 17, 549-560.
74. Matza, D., Kerem, A., and Shachar, I. (2003). Invariant chain, a chain of command. Trends Immunol 24, 264-268.
75. Matza, D., Wolstein, O., Dikstein, R., and Shachar, I. (2001). Invariant chain induces B cell maturation by activating a TAF(II)105-NF-kappaB-dependent transcription program. J Biol Chem 276, 27203-27206.
76. Mburu, Y.K., Wang, J., Wood, M.A., Walker, W.H., and Ferris, R.L. (2006). CCR7 mediates inflammation-associated tumor progression. Immunol Res 36, 61-72.
77. McCredie, M., and Stewart, J.H. (1992). Risk factors for kidney cancer in New South Wales--I. Cigarette smoking. Eur J Cancer 28A, 2050-2054.
78. McKay, C.J., Glen, P., and McMillan, D.C. (2008). Chronic inflammation and pancreatic cancer. Best Pract Res Clin Gastroenterol 22, 65-73.
79. Mestas, J., Burdick, M.D., Reckamp, K., Pantuck, A., Figlin, R.A., and Strieter, R.M. (2005). The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J Immunol 175, 5351-5357.
80. Meyer-Siegler, K.L., Iczkowski, K.A., Leng, L., Bucala, R., and Vera, P.L. (2006). Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol 177, 8730-8739.
81. Meyer-Siegler, K.L., Leifheit, E.C., and Vera, P.L. (2004). Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells. BMC cancer 4, 34.
82. Michaud, D.S. (2007). Chronic inflammation and bladder cancer. Urol Oncol 25, 260-268.
83. Mitchell, R.A. (2004). Mechanisms and effectors of MIF-dependent promotion of tumourigenesis. Cellular signalling 16, 13-19.
84. Mitchell, R.A., Liao, H., Chesney, J., Fingerle-Rowson, G., Baugh, J., David, J., and Bucala, R. (2002). Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A 99, 345-350.
85. Mitchell, R.A., Metz, C.N., Peng, T., and Bucala, R. (1999). Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem 274, 18100-18106.
86. Moehler, M., Frings, C., Mueller, A., Gockel, I., Schimanski, C.C., Biesterfeld, S., Galle, P.R., and Holtmann, M.H. (2008). VEGF-D expression correlates with colorectal cancer aggressiveness and is downregulated by cetuximab. World J Gastroenterol 14, 4156-4167.
87. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55-63.
88. Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yang, Q., Imabun, S., Nakahara, M., Nakao, K., Nakamura, M., Mori, I., and Kakudo, K. (2003a). Flt-4-positive vessel density correlates with vascular endothelial growth factor-d expression, nodal status, and prognosis in breast cancer. Clin Cancer Res 9, 5313-5317.
89. Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yang, Q., Imabun, S., Nakahara, M., Nakao, K., Nakamura, M., Mori, I., and Kakudo, K. (2003b). Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clin Cancer Res 9, 716-721.
90. Nakamura, Y., Yasuoka, H., Zuo, H., Takamura, Y., Miyauchi, A., Nakamura, M., and Kakudo, K. (2006). Nitric oxide in papillary thyroid carcinoma: induction of vascular endothelial growth factor D and correlation with lymph node metastasis. J Clin Endocrinol Metab 91, 1582-1585.
91. Naumnik, W., Izycki, T., Swidzinska, E., Ossoliniska, M., and Chyczewska, E. (2007). Serum levels of VEGF-C, VEGF-D, and sVEGF-R2 in patients with lung cancer during chemotherapy. Oncol Res 16, 445-451.
92. Ni, X., Yan, M., Yan, C., Liu, B.Y., Chen, X.H., Qu, Y., Ji, J., Yu, B.Q., and Zhu, Z.G. (2008). [Vascular endothelial growth factor D promoting the growth of lymphatic vessel in gastric carcinoma]. Zhonghua Wei Chang Wai Ke Za Zhi 11, 362-366.
93. Nishihira, J., Ishibashi, T., Fukushima, T., Sun, B., Sato, Y., and Todo, S. (2003). Macrophage migration inhibitory factor (MIF): Its potential role in tumor growth and tumor-associated angiogenesis. Ann N Y Acad Sci 995, 171-182.
94. Okada, F. (2002). Inflammation and free radicals in tumor development and progression. Redox Rep 7, 357-368.
95. Ong, G.L., Goldenberg, D.M., Hansen, H.J., and Mattes, M.J. (1999). Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology 98, 296-302.
96. Onogawa, S., Kitadai, Y., Amioka, T., Kodama, M., Cho, S., Kuroda, T., Ochiumi, T., Kimura, S., Kuwai, T., Tanaka, S., et al. (2005). Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in early gastric carcinoma: correlation with clinicopathological parameters. Cancer Lett 226, 85-90.
97. Onogawa, S., Kitadai, Y., Tanaka, S., Kuwai, T., Kimura, S., and Chayama, K. (2004). Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci 95, 32-39.
98. Pan, S.Y., DesMeules, M., Morrison, H., and Wen, S.W. (2006). Obesity, high energy intake, lack of physical activity, and the risk of kidney cancer. Cancer Epidemiol Biomarkers Prev 15, 2453-2460.
99. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J Clin 55, 74-108.
100. Pazgal, I., Boycov, O., Shpilberg, O., Okon, E., and Bairey, O. (2007). Expression of VEGF-C, VEGF-D and their receptor VEGFR-3 in diffuse large B-cell lymphomas. Leuk Lymphoma 48, 2213-2220.
101. Pehlivan, M., Pehlivan, S., Onay, H., Koyuncuoglu, M., and Kirkali, Z. (2005). Can mycoplasma-mediated oncogenesis be responsible for formation of conventional renal cell carcinoma? Urology 65, 411-414.
102. Plate, K. (2001). From angiogenesis to lymphangiogenesis. Nat Med 7, 151-152.
103. Poloso, N.J., Muntasell, A., and Roche, P.A. (2004). MHC class II molecules traffic into lipid rafts during intracellular transport. J Immunol 173, 4539-4546.
104. Porter, D., Lahti-Domenici, J., Keshaviah, A., Bae, Y.K., Argani, P., Marks, J., Richardson, A., Cooper, A., Strausberg, R., Riggins, G.J., et al. (2003). Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 1, 362-375.
105. Prieto, J. (2008). Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol 48, 380-381.
106. Ren, Y., Chan, H.M., Fan, J., Xie, Y., Chen, Y.X., Li, W., Jiang, G.P., Liu, Q., Meinhardt, A., and Tam, P.K. (2006). Inhibition of tumor growth and metastasis in vitro and in vivo by targeting macrophage migration inhibitory factor in human neuroblastoma. Oncogene 25, 3501-3508.
107. Roger, T., David, J., Glauser, M.P., and Calandra, T. (2001). MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 414, 920-924.
108. Saito, T., Kimura, M., Kawasaki, T., Sato, S., and Tomita, Y. (1997). MHC class II antigen-associated invariant chain on renal cell cancer may contribute to the anti-tumor immune response of the host. Cancer letters 115, 121-127.
109. Sakamoto, S., Ryan, A.J., and Kyprianou, N. (2008). Targeting vasculature in urologic tumors: mechanistic and therapeutic significance. J Cell Biochem 103, 691-708.
110. Sanchez, J.C., Schaller, D., Ravier, F., Golaz, O., Jaccoud, S., Belet, M., Wilkins, M.R., James, R., Deshusses, J., and Hochstrasser, D. (1997). Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18, 150-155.
111. Santiago, C., Pagan, B., Isidro, A.A., and Appleyard, C.B. (2007). Prolonged chronic inflammation progresses to dysplasia in a novel rat model of colitis-associated colon cancer. Cancer Res 67, 10766-10773.
112. Saxena, N.K., Sharma, D., Ding, X., Lin, S., Marra, F., Merlin, D., and Anania, F.A. (2007). Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 67, 2497-2507.
113. Scarpino, S., Di Napoli, A., Melotti, F., Talerico, C., Cancrini, A., and Ruco, L. (2007). Papillary carcinoma of the thyroid: low expression of NCAM (CD56) is associated with downregulation of VEGF-D production by tumour cells. J Pathol 212, 411-419.
114. Seyama, K., Kumasaka, T., Souma, S., Sato, T., Kurihara, M., Mitani, K., Tominaga, S., and Fukuchi, Y. (2006). Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat Res Biol 4, 143-152.
115. Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., McDonald, C., Chen, Z., Murphy, J.W., Lolis, E., et al. (2006). CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25, 595-606.
116. Shida, A., Fujioka, S., Ishibashi, Y., Kobayashi, K., Nimura, H., Mitsumori, N., Suzuki, Y., Kawakami, M., Urashima, M., and Yanaga, K. (2005). Prognostic significance of vascular endothelial growth factor D in gastric carcinoma. World J Surg 29, 1600-1607.
117. Shihabi, Z.K., and Dyer, R.D. (1988). Protein analysis with bicinchoninic acid. Ann Clin Lab Sci 18, 235-239.
118. Shimakage, M., Kawahara, K., Harada, S., Sasagawa, T., Shinka, T., and Oka, T. (2007). Expression of Epstein-Barr virus in renal cell carcinoma. Oncol Rep 18, 41-46.
119. Sloma, I., Zilber, M.T., Vasselon, T., Setterblad, N., Cavallari, M., Mori, L., De Libero, G., Charron, D., Mooney, N., and Gelin, C. (2008). Regulation of CD1a surface expression and antigen presentation by invariant chain and lipid rafts. J Immunol 180, 980-987.
120. Song, G., Ouyang, G., and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9, 59-71.
121. Starlets, D., Gore, Y., Binsky, I., Haran, M., Harpaz, N., Shvidel, L., Becker-Herman, S., Berrebi, A., and Shachar, I. (2006). Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 107, 4807-4816.
122. Steelman, L.S., Abrams, S.L., Whelan, J., Bertrand, F.E., Ludwig, D.E., Basecke, J., Libra, M., Stivala, F., Milella, M., Tafuri, A., et al. (2008). Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22, 686-707.
123. Stein, R., Mattes, M.J., Cardillo, T.M., Hansen, H.J., Chang, C.H., Burton, J., Govindan, S., and Goldenberg, D.M. (2007). CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res 13, 5556s-5563s.
124. Stein, R., Qu, Z., Cardillo, T.M., Chen, S., Rosario, A., Horak, I.D., Hansen, H.J., and Goldenberg, D.M. (2004). Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 104, 3705-3711.
125. Strizzi, L., Catalano, A., Vianale, G., Orecchia, S., Casalini, A., Tassi, G., Puntoni, R., Mutti, L., and Procopio, A. (2001). Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 193, 468-475.
126. Struckmann, K., Mertz, K., Steu, S., Storz, M., Staller, P., Krek, W., Schraml, P., and Moch, H. (2008). pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma. J Pathol 214, 464-471.
127. Su, J.L., Yang, P.C., Shih, J.Y., Yang, C.Y., Wei, L.H., Hsieh, C.Y., Chou, C.H., Jeng, Y.M., Wang, M.Y., Chang, K.J., et al. (2006). The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9, 209-223.
128. Suen, J.L., Chuang, Y.H., Tsai, B.Y., Yau, P.M., and Chiang, B.L. (2004). Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum 50, 3250-3259.
129. Sun, B., Nishihira, J., Suzuki, M., Fukushima, N., Ishibashi, T., Kondo, M., Sato, Y., and Todo, S. (2003). Induction of macrophage migration inhibitory factor by lysophosphatidic acid: relevance to tumor growth and angiogenesis. International journal of molecular medicine 12, 633-641.
130. Sun, B., Nishihira, J., Yoshiki, T., Kondo, M., Sato, Y., Sasaki, F., and Todo, S. (2005). Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway. Clin Cancer Res 11, 1050-1058.
131. Swant, J.D., Rendon, B.E., Symons, M., and Mitchell, R.A. (2005). Rho GTPase-dependent signaling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem 280, 23066-23072.
132. Tamori, Y., Tan, X., Nakagawa, K., Takai, E., Akagi, J., Kageshita, T., Egami, H., and Ogawa, M. (2005). Clinical significance of MHC class II-associated invariant chain expression in human gastric carcinoma. Oncol Rep 14, 873-877.
133. Tang, S.W., Chang, W.H., Chao, Y.W., Lin, C.Y., Chen, H.F., Lai, Y.H., Zhan, B.W., Su, Y.C., Jane, S.W., Chen, Y.C., et al. (2006). Identification of differentially expressed genes in clear cell renal cell carcinoma by analysis of full-length enriched cDNA library. Journal of biomedical science 13, 233-240.
134. Topilski, I., Harmelin, A., Flavell, R.A., Levo, Y., and Shachar, I. (2002). Preferential Th1 immune response in invariant chain-deficient mice. J Immunol 168, 1610-1617.
135. van Iterson, V., Leidenius, M., von Smitten, K., Bono, P., and Heikkila, P. (2007). VEGF-D in association with VEGFR-3 promotes nodal metastasis in human invasive lobular breast cancer. Am J Clin Pathol 128, 759-766.
136. Van Trappen, P.O., Steele, D., Lowe, D.G., Baithun, S., Beasley, N., Thiele, W., Weich, H., Krishnan, J., Shepherd, J.H., Pepper, M.S., et al. (2003). Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 201, 544-554.
137. Vasko, V.V., and Saji, M. (2007). Molecular mechanisms involved in differentiated thyroid cancer invasion and metastasis. Current opinion in oncology 19, 11-17.
138. Viville, S., Neefjes, J., Lotteau, V., Dierich, A., Lemeur, M., Ploegh, H., Benoist, C., and Mathis, D. (1993). Mice lacking the MHC class II-associated invariant chain. Cell 72, 635-648.
139. von Marschall, Z., Cramer, T., Hocker, M., Burde, R., Plath, T., Schirner, M., Heidenreich, R., Breier, G., Riecken, E.O., Wiedenmann, B., et al. (2000). De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 119, 1358-1372.
140. Von Marschall, Z., Scholz, A., Stacker, S.A., Achen, M.G., Jackson, D.G., Alves, F., Schirner, M., Haberey, M., Thierauch, K.H., Wiedenmann, B., et al. (2005). Vascular endothelial growth factor-D induces lymphangiogenesis and lymphatic metastasis in models of ductal pancreatic cancer. Int J Oncol 27, 669-679.
141. Walseng, E., Bakke, O., and Roche, P.A. (2008). Major histocompatibility complex class II-peptide complexes internalize using a clathrin- and dynamin-independent endocytosis pathway. J Biol Chem 283, 14717-14727.
142. White, J.D., Hewett, P.W., Kosuge, D., McCulloch, T., Enholm, B.C., Carmichael, J., and Murray, J.C. (2002). Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res 62, 1669-1675.
143. Witte, D., Thomas, A., Ali, N., Carlson, N., and Younes, M. (2002). Expression of the vascular endothelial growth factor receptor-3 (VEGFR-3) and its ligand VEGF-C in human colorectal adenocarcinoma. Anticancer Res 22, 1463-1466.
144. Wong, P., and Rudensky, A.Y. (1996). Phenotype and function of CD4+ T cells in mice lacking invariant chain. J Immunol 156, 2133-2142.
145. Wraight, C.J., van Endert, P., Moller, P., Lipp, J., Ling, N.R., MacLennan, I.C., Koch, N., and Moldenhauer, G. (1990). Human major histocompatibility complex class II invariant chain is expressed on the cell surface. J Biol Chem 265, 5787-5792.
146. Wu, W., Shu, X., Hovsepyan, H., Mosteller, R.D., and Broek, D. (2003). VEGF receptor expression and signaling in human bladder tumors. Oncogene 22, 3361-3370.
147. Xu, M., Qiu, G., Jiang, Z., von Hofe, E., and Humphreys, R.E. (2000). Genetic modulation of tumor antigen presentation. Trends Biotechnol 18, 167-172.
148. Yang, C.Y., Chiu, H.F., Wu, T.N., Chuang, H.Y., and Ho, S.C. (2004). Reduction in kidney cancer mortality following installation of a tap water supply system in an arsenic-endemic area of Taiwan. Arch Environ Health 59, 484-488.
149. Yokoyama, Y., Charnock-Jones, D.S., Licence, D., Yanaihara, A., Hastings, J.M., Holland, C.M., Emoto, M., Sakamoto, A., Sakamoto, T., Maruyama, H., et al. (2003a). Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin Cancer Res 9, 1361-1369.
150. Yokoyama, Y., Charnock-Jones, D.S., Licence, D., Yanaihara, A., Hastings, J.M., Holland, C.M., Emoto, M., Umemoto, M., Sakamoto, T., Sato, S., et al. (2003b). Vascular endothelial growth factor-D is an independent prognostic factor in epithelial ovarian carcinoma. Br J Cancer 88, 237-244.
151. Young, A.N., Amin, M.B., Moreno, C.S., Lim, S.D., Cohen, C., Petros, J.A., Marshall, F.F., and Neish, A.S. (2001). Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 158, 1639-1651.
152. Zeng, G., Gao, L., Birkle, S., and Yu, R.K. (2000). Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res 60, 6670-6676.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top