跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧宸昕
研究生(外文):Chen-Hsin Teng
論文名稱:第二型肝細胞生長因子活化抑制者透過抑制間質蛋白酶活性以調控攝護腺癌細胞的移動與侵襲
論文名稱(外文):HAI-2 regulates prostate cancer cell migration and invasion via inhibiting matriptase activity
指導教授:李明學李明學引用關係
指導教授(外文):Ming-Shyue Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:107
中文關鍵詞:第二型肝細胞生長因子活化抑制者間質蛋白酶攝護腺癌轉移
外文關鍵詞:HAI-2matriptaseprostate cancermetastasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌細胞轉移為由原先的腫瘤部位擴散到身體其他器官,是一個多重步驟的過程。目前,對於攝護腺癌細胞轉移的確切機制依然不清楚。間質蛋白酶(Matriptase)為上皮細胞衍生的第二型穿膜絲胺酸蛋白酶,它的活性是受到同源抑制蛋白質-第一型肝細胞生長因子活化抑制者(HAI-1)的調控。當間質蛋白酶和第一型肝細胞生長因子活化抑制者之間的比例,處於不均衡狀態會造成間質蛋白酶失調而活化,進一步地促進癌細胞的演進及轉移。
第一型和第二型肝細胞生長因子活化抑制者(HAI-1,HAI-2)為高度同源具Kunitz domain型的絲氨酸蛋白酶抑制劑。近年來,研究指出第一型和第二型肝細胞生長因子活化抑制劑能夠抑制促轉移的絲胺酸蛋白酶,並且減弱癌細胞的侵襲及移動力。儘管第一型和第二型肝細胞生長因子活化抑制者在可能具有抑制間質蛋白酶的功能部位上擁有高度保守性,第二型肝細胞生長因子活化抑制者對於調控間質蛋白酶活性及其生理功能依然不清楚。我們利用一組具轉移能力越來越強的人類攝護線惡化轉移細胞模式,包括103E, N1,N2細胞,來探討第二型肝細胞生長因子活化抑制者在攝護腺癌細胞中扮演的角色,及其如何調控間質蛋白酶的活性,進一步地調節癌細胞的移動及侵襲。
我們的結果發現第二型肝細胞生長因子活化抑制者的蛋白表現量與間質蛋白酶的活性,及攝護腺癌細胞的侵襲能力,呈現負相關。大量表現第二型細胞生長因子活化抑制者會減低癌細胞的生長,侵襲及移動力。此外,我們證實了在攝護腺癌細胞中,間質蛋白酶為第二型肝細胞生長因子活化抑制者的目標蛋白酶。第二型會與第一型肝細胞生長因子活化抑制者競爭,以直接地結合上間質蛋白酶來抑制其活性,進一步地降低癌細胞的移動與侵襲。利用點突變或是片段缺失突變所產生的第二型肝細胞生長因子活化抑制者突變體,進行研究,結果顯示當HAI-2(ΔKD1)或是 HAI-2(R48L)突變體大量表現時,都會降低其原有對間質蛋白酶的抑制功能;然而當大量表現 HAI-2(ΔKD2),HAI-2(ΔTM)或HAI-2(R143L)突變體時,可以保留其抑制間質蛋白酶的角色。再者,我們的結果發現,第二型肝細胞生長因子活化抑制者可透過防止在間質蛋白酶上精胺酸614的位置上進行酶原切割,以抑制間質蛋白酶活性,因為這個位置的切割對於蛋白酶的活化是不可或缺的一步。這個發現顯示出第二型肝細胞生長因子活化抑制者透過抑制間質蛋白酶的酶原激活的過程,來達到降低攝護線癌細胞的侵襲及移動力。
根據在降低第二型肝細胞生長因子活化抑制者表現量的細胞中,發現間質蛋白酶的表現量也隨之降低的現像,顯示出第二型肝細胞生長因子活化抑制者同時也參與了間質蛋白酶的蛋白穩定度。在HEK293T細胞中,間質蛋白酶的蛋白表現量,在具有第二型肝細胞生長因子活化抑制者共同表現的狀況下,表現量會高出許多。此外,利用cycloheximide的處理下,在降低第二型肝細胞生長因子活化抑制者表現量的細胞中,間質蛋白酶的蛋白降解速率會比控制組細胞快上許多。
綜合以上結果顯示出,第二型肝細胞生長因子活化抑制者藉由它的Kunitz domain1,抑制間質蛋白酶的活性,以執行其抗癌效力。第二型肝細胞生長因子同時也調控間質蛋白酶的蛋白表現量、酶原激活的切割、以及細胞外的釋放。因此,這些結果表明在攝護腺癌細胞中,因為第二型肝細胞生長因子活化抑制者的表現量降低,造成了持續活化的間質蛋白酶以及增強癌細胞的轉移能力。第二型肝細胞生長因子活化抑制者和間質蛋白酶的不平衡交互作用為攝護腺癌細胞得以移動與侵襲的重要因素。
Metastasis is a multistep process with the spread of cancer cells from a primary tumor site to distant organs. Dysregulation of proteolysis on cell surface has been strongly proposed to play am important role in cancer cell invasion and metastasis. In this study, we delineated the roles of hepatocyte growth factor activator inhibitors (HAI-1and HAI-2) in prostate cancer cell migration and invasion, as well as identified their target protease(s) in human prostate cancer. With a human prostate progression model (103E, N1, and N2 cells), which has an increased metastasis potential.
Our results showed that the protein level of HAI-2, but not HAI-1, was dramatically decreased in highly invasive N2 cells, compared to 103E cells, which was inversely related with matriptase activity and cancer cell invasion. Ectopic expression of HAI-2 resulted in reduced cell proliferation, migration and invasion. Moreover, we identified a type Ⅱtransmembrane serine protease matriptase was a HAI-2 regulated serine protease in human prostate cancer cells. HAI-2 was able to directly interact with matriptase and inhibited the protease activity, leading to reduced cell migration and invasion. Using several HAI-2 mutants with point and deletion mutations on its functional Kunitz domains (KDs) and transmembrane domain, our data showed that overexpression of HAI-2(ΔKD1) or HAI-2(R48L)mutant lost its inhibitory effects on matriptase activity and cancer cell migration and invasion, whereas overexpression of HAI-2(ΔKD2), HAI-2(ΔTM) or HAI-2(R143L) mutant retained its role against matriptase activity and these two biological events. Thus, the KD1 of HAI-2 played an essential role in modulating matriptase activity and prostate cancer cell migration and invasion. Furthermore, our data observed that HAI-2 affecting matriptase activation was through preventing a proteolytic cleavage at the residue Arg614 of matriptase, which is a critical step for protease activation. This finding indicated that HAI-2 reduced prostate cancer cell invasion and migration by inhibiting a proteolytic process for matriptase zymogen activation.
HAI-2 also participated in the protein stability of matriptase. This was supported by the results that in HAI-2-knockdown cells, the protein level of matriptase was reduced. Moreover, matriptase proteins were expressed at much higher levels in the presence of HAI-2 than matriptase alone in HEK293T cells. Under cycloheximide treatment, the degradation rate of matriptase is faster in HAI-2–knockdown cells than that in control cells.
In summary, HAI-2 exerted its anti-tumor invasiveness through inhibiting matripase activity via its Kunitz domain 1. The roles of HAI-2 may play in regulating matriptase were to modulate matriptase’s protein expression, autoproteolytic cleavage for activation, and subsequent shedding. These results indicate that duringthe progression of human prostate cancer cells, HAI-2 expression was reduced, leading to constitutive matriptase activation and increase cell migration and invasion. Imbalance of HAI-2-matriptase system is strongly suggested to be involved in the prostate cancer cell invasion and tumor metastasis.
致謝 i
中文摘要 ii
Abstract iii
Chapter 1. Introduction 1
1.1 Prostate cancer 2
1.2 Proteolytic enzymes 3
1.3 Matriptase 4
1.4 HAI-1 (Hepatocyte Growth Factor Activator Inhibitor-1) 9
1.5 HAI-2 (Hepatocyte Growth Factor Activator Inhibitor-2) 13
1.6 Research motivation 16
Chapter 2. Materials and Methods 18
2.1 Materials 19
2.2 Methods 22
2.3 Table 31
2.4 Buffers 32
Chapter 3. Results 34
3.1 Human prostate cancer cell progression model 35
3.2 Protein levels of HAI-2 in human prostate cancer cell progression model. 36
3.3 Restoration of HAI-2 gene expression upon 5-Aza-dC treatment 37
3.4 Inhibitory roles of HAI-2 in prostate cancer cell invasion and migration 38
3.5 Characterization of functional HAI-2 domain on cell migration and invasion. 39
3.5 Inhibitory roles of HAI-2 in prostate cancer cell proliferation 40
3.6 Inhibitory roles of HAI-2 in prostate cancer cell invasion and migration were via inhibiting serine protease(s). 41
3.7 Endogenous expression levels of matriptase and HAI-1 in the prostate cancer cell progression model. 42
3.8 Matriptase and HAI-1 in human prostate cancer cell progression model. 43
3.9 Inhibitory roles of HAI-2 in matriptase activation 44
3.10 Requirement of Kunitz domain 1 of HAI-2 in matriptase inhibition. 46
3.11 Reciprocal effects of HAI-2 and matriptase on prostate cancer. 47
3.12 Decreased shedding of activated matriptase by HAI-2 48
3.13 HAI-2 prevents a proteolytic cleavage of matriptase 49
3.14 HAI-2 affects matriptase protein stability 51
3.15 The inhibitory role of HAI-2 on matriptase activation was not mediated by PI3K/AKT pathway 54
3.16 HAI-2 directly interacts with matriptase 55
3.17 Reciprocal effects of HAI-1 and HAI-2 on matriptase 57
Chapter 4. Discussion 58
Chapter 5. Figure 69
Chapter 6. Reference 99
1Denmeade, S.R., Lin, X.S., & Isaacs, J.T., Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28 (4), 251-265 (1996).
2Grubb, R.L., 3rd & Kibel, A.S., Prostate cancer: screening, diagnosis and management in 2007. Mo Med 104 (5), 408-413; quiz 413-404 (2007).
3Kasper, S. & Cookson, M.S., Mechanisms leading to the development of hormone-resistant prostate cancer. Urol Clin North Am 33 (2), 201-210, vii (2006).
4Goretzki, L. et al., Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 297 (1-2), 112-118 (1992).
5Rivett, A.J., Proteasomes: multicatalytic proteinase complexes. The Biochemical journal 291 ( Pt 1), 1-10 (1993).
6Uhlmann, F., Lottspeich, F., & Nasmyth, K., Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400 (6739), 37-42 (1999).
7Shi, Y.E. et al., Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer research 53 (6), 1409-1415 (1993).
8Takeuchi, T., Shuman, M.A., & Craik, C.S., Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A 96 (20), 11054-11061 (1999).
9Zhang, Y., Cai, X., Schlegelberger, B., & Zheng, S., Assignment1 of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24-->q25 by in situ hybridization. Cytogenet Cell Genet 83 (1-2), 56-57 (1998).
10Tanimoto, H. et al., Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 22 (2), 104-114 (2001).
11Kim, M.G. et al., Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49 (5), 420-428 (1999).
12Kim, C. et al., Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO reports 6 (11), 1045-1051 (2005).
13Lee, M.S., Kiyomiya, K., Benaud, C., Dickson, R.B., & Lin, C.Y., Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol 288 (4), C932-941 (2005).
14Oberst, M.D., Williams, C.A., Dickson, R.B., Johnson, M.D., & Lin, C.Y., The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. The Journal of biological chemistry 278 (29), 26773-26779 (2003).
15Kojima, K., Tsuzuki, S., Fushiki, T., & Inouye, K., Role of the Stem Domain of Matriptase in the Interaction with its Physiological Inhibitor, Hepatocyte Growth Factor Activator Inhibitor Type I. Journal of biochemistry (2009).
16Ihara, S. et al., Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. The Journal of biological chemistry 277 (19), 16960-16967 (2002).
17Eun-Gyung Cho, M.G.K., Chungho Kim, Seung-Ryul Kim, Ihn Sik Seong, Chinha Chung, Ronald H. Schwart, and Dongeun Park, N-terminal processing is essential for release of epithin, a mouse Type II membrane serine protease. J. Biol. Chem. 276, 44581-44589 (2001).
18Benaud, C., Dickson, R.B., & Lin, C.Y., Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. European journal of biochemistry / FEBS 268 (5), 1439-1447 (2001).
19Benaud, C. et al., Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem 277 (12), 10539-10546 (2002).
20Kiyomiya, K. et al., Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 291 (1), C40-49 (2006).
21Lee, M.S. et al., Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. Am J Physiol Cell Physiol 293 (1), C95-105 (2007).
22Friedrich, R. et al., Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem 277 (3), 2160-2168 (2002).
23Takeuchi, T. et al., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. The Journal of biological chemistry 275 (34), 26333-26342 (2000).
24Lee, S.L., Dickson, R.B., & Lin, C.Y., Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. The Journal of biological chemistry 275 (47), 36720-36725 (2000).
25Jin, X. et al., Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer science 97 (12), 1327-1334 (2006).
26Ahmed, S. et al., Identification of membrane-bound serine proteinase matriptase as processing enzyme of insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1/angiomodulin/mac25). The FEBS journal 273 (3), 615-627 (2006).
27List, K. et al., Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. The Journal of cell biology 163 (4), 901-910 (2003).
28Netzel-Arnett, S. et al., Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281 (44), 32941-32945 (2006).
29Leyvraz, C. et al., The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol 170 (3), 487-496 (2005).
30List, K. et al., Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21 (23), 3765-3779 (2002).
31Riddick, A.C. et al., Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British journal of cancer 92 (12), 2171-2180 (2005).
32Santin, A.D. et al., The novel serine protease tumor-associated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma. Cancer 98 (9), 1898-1904 (2003).
33Benaud, C.M., Oberst, M., Dickson, R.B., & Lin, C.Y., Deregulated activation of matriptase in breast cancer cells. Clinical & experimental metastasis 19 (7), 639-649 (2002).
34Oberst, M. et al., Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. The American journal of pathology 158 (4), 1301-1311 (2001).
35List, K. et al., Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes & development 19 (16), 1934-1950 (2005).
36Suzuki, M. et al., Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. The Journal of biological chemistry 279 (15), 14899-14908 (2004).
37Forbs, D. et al., In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 27 (4), 1061-1070 (2005).
38Takeshi Shimomura, K.D., Akiko Kitamura, Toshiya Kawaguchi, Masahiro Kito, Jun Kondo, Shinji Kagaya, Li Qin, Hiroyuki Takata, Keiji Miyazawa, and Naomi Kitamura, Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. The Journal of biological chemistry 272 (March 7), 6370-5376 (1997).
39Lin, C.Y. et al., Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. The Journal of biological chemistry 272 (14), 9147-9152 (1997).
40Lin, C.Y., Anders, J., Johnson, M., & Dickson, R.B., Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. The Journal of biological chemistry 274 (26), 18237-18242 (1999).
41Shimomura, T. et al., Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. The Journal of biological chemistry 272 (10), 6370-6376 (1997).
42Oberst, M.D. et al., HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. American journal of physiology 289 (2), C462-470 (2005).
43Shia, S. et al., Conformational lability in serine protease active sites: structures of hepatocyte growth factor activator (HGFA) alone and with the inhibitory domain from HGFA inhibitor-1B. J Mol Biol 346 (5), 1335-1349 (2005).
44Fan, B., Wu, T.D., Li, W., & Kirchhofer, D., Identification of hepatocyte growth factor activator inhibitor-1B as a potential physiological inhibitor of prostasin. The Journal of biological chemistry 280 (41), 34513-34520 (2005).
45Herter, S. et al., Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. The Biochemical journal 390 (Pt 1), 125-136 (2005).
46Parr, C. & Jiang, W.G., Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. International journal of cancer 119 (5), 1176-1183 (2006).
47Miyata, S. et al., Roles of Kunitz domains in the anti-invasive effect of hepatocyte growth factor activator inhibitor type 1 in human glioblastoma cells. Hum Cell 20 (4), 100-106 (2007).
48Cheng, H., Fukushima, T., Takahashi, N., Tanaka, H., & Kataoka, H., Hepatocyte growth factor activator inhibitor type 1 regulates epithelial to mesenchymal transition through membrane-bound serine proteinases. Cancer research 69 (5), 1828-1835 (2009).
49Tanaka, H., Fukushima, T., Yorita, K., Kawaguchi, M., & Kataoka, H., Tissue injury alters the site of expression of hepatocyte growth factor activator inhibitor type 1 in bronchial epithelial cells. Hum Cell 22 (1), 11-17 (2009).
50Tanaka, H. et al., Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is required for branching morphogenesis in the chorioallantoic placenta. Molecular and cellular biology 25 (13), 5687-5698 (2005).
51Fan, B. et al., Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. Developmental biology 303 (1), 222-230 (2007).
52Mathias, J.R. et al., Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. Journal of cell science 120 (Pt 19), 3372-3383 (2007).
53Zeng, L., Cao, J., & Zhang, X., Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World J Gastroenterol 11 (39), 6202-6207 (2005).
54Oberst, M.D. et al., Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 8 (4), 1101-1107 (2002).
55Kawaguchi, T. et al., Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. The Journal of biological chemistry 272 (44), 27558-27564 (1997).
56Marlor, C.W. et al., Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. The Journal of biological chemistry 272 (18), 12202-12208 (1997).
57Muller-Pillasch, F. et al., Cloning of a new Kunitz-type protease inhibitor with a putative transmembrane domain overexpressed in pancreatic cancer. Biochimica et biophysica acta 1395 (1), 88-95 (1998).
58Hamasuna, R. et al., Reduced expression of hepatocyte growth factor activator inhibitor type-2/placental bikunin (HAI-2/PB) in human glioblastomas: implication for anti-invasive role of HAI-2/PB in glioblastoma cells. International journal of cancer 93 (3), 339-345 (2001).
59Generali, D. et al., Regulation of hepatocyte growth factor activator inhibitor 2 by hypoxia in breast cancer. Clin Cancer Res 13 (2 Pt 1), 550-558 (2007).
60Schuster, J.M., Longo, M., & Nelson, P.S., Differential expression of bikunin (HAI-2/PB), a proposed mediator of glioma invasion, by demethylation treatment. Journal of neuro-oncology 64 (3), 219-225 (2003).
61Morris, M.R. et al., Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer research 65 (11), 4598-4606 (2005).
62Fukai, K. et al., Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma. Cancer research 63 (24), 8674-8679 (2003).
63Kongkham, P.N. et al., An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer research 68 (23), 9945-9953 (2008).
64Qin, L., Denda, K., Shimomura, T., Kawaguchi, T., & Kitamura, N., Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 2. FEBS letters 436 (1), 111-114 (1998).
65Kataoka, H. et al., Mouse hepatocyte growth factor (HGF) activator inhibitor type 2 lacking the first Kunitz domain potently inhibits the HGF activator. Biochemical and biophysical research communications 290 (3), 1096-1100 (2002).
66Delaria, K.A. et al., Characterization of placental bikunin, a novel human serine protease inhibitor. The Journal of biological chemistry 272 (18), 12209-12214 (1997).
67Suzuki, M. et al., Suppression of invasion and peritoneal carcinomatosis of ovarian cancer cell line by overexpression of bikunin. International journal of cancer 104 (3), 289-302 (2003).
68Kobayashi, H. et al., Bikunin plus paclitaxel markedly reduces tumor burden and ascites in mouse model of ovarian cancer. International journal of cancer 110 (1), 134-139 (2004).
69Tung, E.K. et al., HAI-2 is epigenetically downregulated in human hepatocellular carcinoma, and its Kunitz domain type 1 is critical for anti-invasive functions. International journal of cancer 124 (8), 1811-1819 (2009).
70Kobayashi, H. et al., Inhibition of the soluble and the tumor cell receptor-bound plasmin by urinary trypsin inhibitor and subsequent effects on tumor cell invasion and metastasis. Cancer research 54 (3), 844-849 (1994).
71Nakamura, K. et al., Hepatocyte growth factor activator inhibitor-2 (HAI-2) is a favorable prognosis marker and inhibits cell growth through the apoptotic pathway in cervical cancer. Ann Oncol 20 (1), 63-70 (2009).
72Wakahara, K. et al., Bikunin suppresses lipopolysaccharide-induced lethality through down-regulation of tumor necrosis factor- alpha and interleukin-1 beta in macrophages. The Journal of infectious diseases 191 (6), 930-938 (2005).
73Tu, W.C. et al., Diterpenes from Cryptomeria japonica inhibit androgen receptor transcriptional activity in prostate cancer cells. Planta Med 73 (13), 1407-1409 (2007).
74Kang, J.Y. et al., Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer research 63 (5), 1101-1105 (2003).
75Suzuki, M. et al., Bikunin target genes in ovarian cancer cells identified by microarray analysis. The Journal of biological chemistry 278 (17), 14640-14646 (2003).
76Tsui, K.H. et al., Down-regulation of matriptase by overexpression of bikunin attenuates cell invasion in prostate carcinoma cells. Anticancer Res 28 (4A), 1977-1983 (2008).
77Suzuki, M. et al., Suppression of invasion and peritoneal carcinomatosis of ovarian cancer cell line by overexpression of bikunin. International journal of cancer 104 (3), 289-302 (2003).
78Suzuki, M. et al., Kunitz-type protease inhibitor bikunin disrupts phorbol ester-induced oligomerization of CD44 variant isoforms containing epitope v9 and subsequently suppresses expression of urokinase-type plasminogen activator in human chondrosarcoma cells. The Journal of biological chemistry 277 (10), 8022-8032 (2002).
79Kanayama, N. et al., Urinary trypsin inhibitor prevents uterine muscle contraction by inhibition of Ca++ influx. Am J Obstet Gynecol 173 (1), 192-199 (1995).
80Kobayashi, H., Suzuki, M., Tanaka, Y., Kanayama, N., & Terao, T., A Kunitz-type protease inhibitor, bikunin, inhibits ovarian cancer cell invasion by blocking the calcium-dependent transforming growth factor-beta 1 signaling cascade. The Journal of biological chemistry 278 (10), 7790-7799 (2003).
81Szabo, R. et al., Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. The Journal of biological chemistry 283 (43), 29495-29504 (2008).
82Kataoka, H. et al., Distribution of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in human tissues. Cellular surface localization of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues. J Histochem Cytochem 47 (5), 673-682 (1999).
83Itoh, H. et al., Upregulation of HGF activator inhibitor type 1 but not type 2 along with regeneration of intestinal mucosa. American journal of physiology 278 (4), G635-643 (2000).
84Suzuki, M., Kobayashi, H., Tanaka, Y., Kanayama, N., & Terao, T., Reproductive failure in mice lacking inter-alpha-trypsin inhibitor (ITI)--ITI target genes in mouse ovary identified by microarray analysis. J Endocrinol 183 (1), 29-38 (2004).
85Kobayashi, H. et al., Anti-metastatic therapy by urinary trypsin inhibitor in combination with an anti-cancer agent. British journal of cancer 72 (5), 1131-1137 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊