跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/15 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江珮琪
研究生(外文):Pei-Chi Chiang
論文名稱:利用質譜分析比較Saccharomycescerevisiae臨床與實驗室菌株的細胞壁蛋白質體
論文名稱(外文):A Comparison of Cell Wall Proteomics between Clinical and Laboratory Saccharomyces cerevisiae Strains by Mass Spectrometric Analysis
指導教授:張雅雯張雅雯引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:Saccharomyces cerevisiae致病性細胞壁蛋白質質譜分析SILAC
外文關鍵詞:Saccharomyces cerevisiaepathogenicitycell wall proteinmass spectrometric analysisSILAC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酵母菌Saccharomyces cerevisiae普遍被使用於食品工業、生物科學研究,然而近年來臨床感染報告的增加,使其成為一個可能的新興真菌病原,本研究藉由比較臨床分離菌株與實驗室菌株之間的差異,探討臨床菌株可能的致病機轉。首先希望建立一個體外檢測S. cerevisiae致病性的方法,能夠在進行活體實驗之前對菌株致病性做一個初步的篩選,過去研究指出S. cerevisiae菌株致病性和其刺激巨噬細胞產生促發炎細胞激素的能力呈正相關,我們利用菌株感染BALB/c及C57BL/6小鼠腹腔分離的巨噬細胞,發現其TNF-α的分泌量和菌株致病能力之間無法歸納出關聯性,顯示此體外檢測系統的可行性需要再評估。真菌細胞為細胞壁所包覆,細胞表面結構的改變將影響菌株和免疫細胞的交互作用,以MATH (Microbial Adhesion To Hydrocarbon)方法測定菌株細胞表面疏水性,結果顯示相較於實驗室菌株,臨床菌株表現出較高的疏水性,不同菌株之間細胞表面的性質確實有所不同。酵母菌細胞壁的最外層是由許多緊密堆疊的甘露醣蛋白所組成,利用質譜分析配合SILAC (Stable Isotope Labeling by Amino acids in Cell culture)定量方法比較臨床菌株和實驗室菌株細胞壁蛋白質體的組成,結果顯示S. cerevisiae臨床菌株整體細胞壁蛋白質的表現量較實驗室菌株為高,尤其以Scw10p、Pst1p、Hsp150p三個蛋白質最為顯著,這些蛋白質和臨床菌株致病性的關係期待更多的研究來探討。我們推測臨床菌株表現較多的細胞壁蛋白質,而能在細胞外層緊密地堆疊成為一面屏障,將細胞壁內層易引發免疫反應的β-glucan隱藏起來,免疫系統因而無法偵測其存在,使之能夠在宿主體內停留較長時間而不被清除,但此推測仍有待進一步證實;總結來說,本研究發現S. cerevisiae臨床菌株和實驗室菌株細胞壁蛋白質體的差異,這可能有助於釐清臨床菌株表現出較高致病能力的原因。
The yeast Saccharomyces cerevisiae is widely used in food industry and biotechnology. However, it has been regarded as an emerging fungal pathogen because of an increasing number of infections being reported in these two decades. In this study, we investigated the possible pathogenic mechanism of S. cerevisiae by characterizing the differences between the clinical and laboratory strains. First, we tried to set up an in vitro system of virulence determination, by which we can get some preliminary concepts of pathogenic potential of the yeast strains before in vivo murine model experiment. Previous study revealed that the virulence of S. cerevisiae strains correlated with the potential of proinflammtory cytokine induction in macrophages. We used the isolated peritoneal macrophages from BALA/c and C57BL/6 mice as the infected cells to do this test. However, we did not observe the correlation between TNF-α production levels and the pathogenicity of the clinical isolates we collected. The feasibility of the in vitro system should be further investigated. Fungal cells are surrounded by a cell wall, alterations of which are known to influence the host immune response after infection. MATH (Microbial Adhesion To Hydrocarbon) was used to characterize the cell surface property of different yeast strains, and the results showed that the clinical strains are more hydrophobic than the laboratory strains, indicating certain difference existed on the cell surface between these strains. The outermost part of yeast cell wall is composed of a dense layer of mannoproteins. To examine the difference in cell wall protein composition between the clinical and laboratory strains, we performed a mass spectrometry-based quantitative proteomics with the labeling strategy using SILAC (Stable Isotope Labeling by Amino acids in Cell culture). The expression levels of most cell wall proteins increased in the clinical strains we observed, especially for proteins Scw10p, Pst1p, and Hsp150p. Further study should be done to understand whether these proteins play important roles in the pathogenicity of the clinical strains. We propose that the clinical strains upregulate cell wall protein expression to form a dense coat, under which the potent proinflammatory β-glucan of inner cell wall cannot be recognize by host immune system. Thus, the yeast cells are capable of prolonged persistence in the host. However, this hypothesis needs further confirmation. Altogether, we reported here the characterization of the difference in cell wall proteomics that might be important to the pathogenicity of the clinical strains.
中文摘要 I
英文摘要 II

緒論 1
材料與方法 7
一、實驗菌株與培養方式 7
二、S. cerevisiae菌株致病性的體外初步篩選 7
1. 小鼠腹腔巨噬細胞的分離 7
2. 小鼠腹腔分離巨噬細胞之純度檢測 9
3. S. cerevisiae菌株對數期細胞的取得 9
4. S. cerevisiae菌株感染前處理 10
5. 菌株感染與細胞激素的誘導 10
6. TNF-α分泌量的測定 11
三、S. cerevisiae細胞表面疏水性的測定 12
1. S. cerevisiae菌株對數期細胞的取得 12
2. MATH (Microbial Adhesion To Hydrocarbon) 12
3. 以黏附到o-xylene的細胞比例表示S. cerevisiae細胞表面的疏水性 13
四、S. cerevisiae臨床分離株及實驗室菌株細胞壁蛋白質體的比較 13
1. 建構賴氨酸合成路徑有缺失的雙倍體S. cerevisiae實驗室菌株 13
2. S. cerevisiae菌株對數期細胞的取得及穩定同位素標定胺基酸的嵌入 14
3. 臨床分離株/YYC370細胞壁的分離 15
4. 質譜樣品的前處理 16
5. 奈米毛細管液相層析串聯質譜儀分析(nano-LC-MS/MS) 17
6. 質譜結果的定量分析 18
實驗結果 19
一、S. cerevisiae菌株致病性體外篩選系統的建立 19
二、S. cerevisiae菌株細胞表面疏水性的測定 21
三、以質譜分析S. cerevisiae的細胞壁蛋白質體 22
四、細胞壁蛋白質SILAC相對定量系統的建立 23
五、S. cerevisiae臨床菌株和實驗室菌株細胞壁蛋白質的相對定量 25
討論 26
圖表 32
參考資料 49
附錄 54
Amaral, P.F., Lehocky, M., Barros-Timmons, A.M., Rocha-Leao, M.H., Coelho, M.A., and Coutinho, J.A. (2006). Cell surface characterization of Yarrowia lipolytica IMUFRJ 50682. Yeast 23, 867-877.
Antley, P.P., and Hazen, K.C. (1988). Role of yeast cell growth temperature on Candida albicans virulence in mice. Infect Immun 56, 2884-2890.
Baba, M., Baba, N., Ohsumi, Y., Kanaya, K., and Osumi, M. (1989). Three-dimensional analysis of morphogenesis induced by mating pheromone alpha factor in Saccharomyces cerevisiae. J Cell Sci 94 ( Pt 2), 207-216.
Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132.
Brown, G.D., and Gordon, S. (2005). Immune recognition of fungal beta-glucans. Cell Microbiol 7, 471-479.
Busscher, H.J., van de Belt-Gritter, B., and van der Mei, H.C. (1995). Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets. Colloids and Surfaces B: Biointerfaces 5, 111-116.
Byron, J.K., Clemons, K.V., McCusker, J.H., Davis, R.W., and Stevens, D.A. (1995). Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice. Infect Immun 63, 478-485.
Cairoli, R., Marenco, P., Perego, R., and de Cataldo, F. (1995). Saccharomyces cerevisiae fungemia with granulomas in the bone marrow in a patient undergoing BMT. Bone Marrow Transplant 15, 785-786.
Cappellaro, C., Mrsa, V., and Tanner, W. (1998). New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180, 5030-5037.
Chaffin, W.L., Lopez-Ribot, J.L., Casanova, M., Gozalbo, D., and Martinez, J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62, 130-180.
Cimolai, N., Gill, M.J., and Church, D. (1987). Saccharomyces cerevisiae fungemia: case report and review of the literature. Diagn Microbiol Infect Dis 8, 113-117.
Clemons, K.V., McCusker, J.H., Davis, R.W., and Stevens, D.A. (1994). Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis 169, 859-867.
Coimbra, C.D., Rufino, R.D., Luna, J.M., and Sarubbo, L.A. (2009). Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications. Curr Microbiol 58, 245-251.
de Godoy, L.M., Olsen, J.V., Cox, J., Nielsen, M.L., Hubner, N.C., Frohlich, F., Walther, T.C., and Mann, M. (2008). Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251-1254.
de Godoy, L.M., Olsen, J.V., de Souza, G.A., Li, G., Mortensen, P., and Mann, M. (2006). Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7, R50.
de Groot, P.W., de Boer, A.D., Cunningham, J., Dekker, H.L., de Jong, L., Hellingwerf, K.J., de Koster, C., and Klis, F.M. (2004). Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3, 955-965.
de Groot, P.W., Kraneveld, E.A., Yin, Q.Y., Dekker, H.L., Gross, U., Crielaard, W., de Koster, C.G., Bader, O., Klis, F.M., and Weig, M. (2008). The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7, 1951-1964.
Garcia-Sanchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J.M., and d''Enfert, C. (2004). Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3, 536-545.
Glee, P.M., Sundstrom, P., and Hazen, K.C. (1995). Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun 63, 1373-1379.
Gruhler, A., Olsen, J.V., Mohammed, S., Mortensen, P., Faergeman, N.J., Mann, M., and Jensen, O.N. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4, 310-327.
Gruhler, S., and Kratchmarova, I. (2008). Stable isotope labeling by amino acids in cell culture (SILAC). Methods Mol Biol 424, 101-111.
Hazen, K.C. (1989). Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells. Infect Immun 57, 1894-1900.

Holzschu, D.L., Chandler, F.W., Ajello, L., and Ahearn, D.G. (1979). Evaluation of industrial yeasts for pathogenicity. Sabouraudia 17, 71-78.
Hoyer, L.L. (2001). The ALS gene family of Candida albicans. Trends Microbiol 9, 176-180.
Klis, F.M., Mol, P., Hellingwerf, K., and Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26, 239-256.
Klotz, S.A., Gaur, N.K., Lake, D.F., Chan, V., Rauceo, J., and Lipke, P.N. (2004). Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun 72, 2029-2034.
Kollar, R., Petrakova, E., Ashwell, G., Robbins, P.W., and Cabib, E. (1995). Architecture of the yeast cell wall. The linkage between chitin and beta(1-->3)-glucan. J Biol Chem 270, 1170-1178.
Kollar, R., Reinhold, B.B., Petrakova, E., Yeh, H.J., Ashwell, G., Drgonova, J., Kapteyn, J.C., Klis, F.M., and Cabib, E. (1997). Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin. J Biol Chem 272, 17762-17775.
Kovacs, M., Stuparevic, I., Mrsa, V., and Maraz, A. (2008). Characterization of Ccw7p cell wall proteins and the encoding genes of Saccharomyces cerevisiae wine yeast strains: relevance for flor formation. FEMS Yeast Res 8, 1115-1126.
Lee, J.N., Lee, D.Y., Ji, I.H., Kim, G.E., Kim, H.N., Sohn, J., Kim, S., and Kim, C.W. (2001). Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast. Biosci Biotechnol Biochem 65, 837-841.
Lesage, G., and Bussey, H. (2006). Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70, 317-343.
Mansour, M.K., and Levitz, S.M. (2002). Interactions of fungi with phagocytes. Current Opinion in Microbiology 5, 359-365.
McCusker, J.H., Clemons, K.V., Stevens, D.A., and Davis, R.W. (1994). Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun 62, 5447-5455.
Mosser, D.M., and Zhang, X. (2008). Activation of murine macrophages. Curr Protoc Immunol Chapter 14, Unit 14 12.
Moukadiri, I., Armero, J., Abad, A., Sentandreu, R., and Zueco, J. (1997). Identification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J Bacteriol 179, 2154-2162.
Mouyna, I., Fontaine, T., Vai, M., Monod, M., Fonzi, W.A., Diaquin, M., Popolo, L., Hartland, R.P., and Latge, J.P. (2000). Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275, 14882-14889.
Mrsa, V., Ecker, M., Strahl-Bolsinger, S., Nimtz, M., Lehle, L., and Tanner, W. (1999). Deletion of new covalently linked cell wall glycoproteins alters the electrophoretic mobility of phosphorylated wall components of Saccharomyces cerevisiae. J Bacteriol 181, 3076-3086.
Mrsa, V., Seidl, T., Gentzsch, M., and Tanner, W. (1997). Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 13, 1145-1154.
Murphy, A., and Kavanagh, K. (1999). Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology. Enzyme and Microbial Technology 25, 551-557.
Nguyen, T.H., Fleet, G.H., and Rogers, P.L. (1998). Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50, 206-212.
Pitarch, A., Nombela, C., and Gil, C. (2008). Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 425, 217-239.
Pitarch, A., Sanchez, M., Nombela, C., and Gil, C. (2002). Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1, 967-982.
Reynolds, T.B., and Fink, G.R. (2001). Bakers'' yeast, a model for fungal biofilm formation. Science 291, 878-881.
Rosenberg, M., Gutnick, D., and Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS microbiology letters 9, 29-33.
Sethi, N., and Mandell, W. (1988). Saccharomyces fungemia in a patient with AIDS. N Y State J Med 88, 278-279.

Silva, T.M., Glee, P.M., and Hazen, K.C. (1995). Influence of cell surface hydrophobicity on attachment of Candida albicans to extracellular matrix proteins. J Med Vet Mycol 33, 117-122.
Smith, D.L. (1996). Brewer''s yeast as a cause of infection. Clin Infect Dis 22, 201.
Sobel, J.D., Vazquez, J., Lynch, M., Meriwether, C., and Zervos, M.J. (1993). Vaginitis due to Saccharomyces cerevisiae: epidemiology, clinical aspects, and therapy. Clin Infect Dis 16, 93-99.
Sundstrom, P. (2002). Adhesion in Candida spp. Cell Microbiol 4, 461-469.
Tawfik, O.W., Papasian, C.J., Dixon, A.Y., and Potter, L.M. (1989). Saccharomyces cerevisiae pneumonia in a patient with acquired immune deficiency syndrome. J Clin Microbiol 27, 1689-1691.
van der Mei, H.C., de Vries, J., and Busscher, H.J. (1993). Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci. Appl Environ Microbiol 59, 4305-4312.
van der Vaart, J.M., Caro, L.H., Chapman, J.W., Klis, F.M., and Verrips, C.T. (1995). Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177, 3104-3110.
Wheeler, R.T., and Fink, G.R. (2006). A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2, e35.
Wheeler, R.T., Kupiec, M., Magnelli, P., Abeijon, C., and Fink, G.R. (2003). A Saccharomyces cerevisiae mutant with increased virulence. Proc Natl Acad Sci U S A 100, 2766-2770.
Williams, N. (1996). Yeast genome sequence ferments new research. Science 272, 481.
Yin, Q.Y., de Groot, P.W., de Jong, L., Klis, F.M., and De Koster, C.G. (2007). Mass spectrometric quantitation of covalently bound cell wall proteins in Saccharomyces cerevisiae. FEMS Yeast Res 7, 887-896.
Yin, Q.Y., de Groot, P.W., Dekker, H.L., de Jong, L., Klis, F.M., and de Koster, C.G. (2005). Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280, 20894-20901.
Zhang, X., Goncalves, R., and Mosser, D.M. (2008). The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter 14, Unit 14 11.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top