跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉晏禎
研究生(外文):Yan-Zhen Liu
論文名稱:短期睡眠剝奪增進雄性成年大鼠於Morris水迷宮空間學習之能力
論文名稱(外文):Short-term Sleep Deprivation Enhances Spatial Learning in the Morris Water Maze in Male Adult Rats
指導教授:蔡元奮蔡元奮引用關係
指導教授(外文):Yuan-Feen Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:72
中文關鍵詞:海馬迴記憶與學習水迷宮睡眠剝奪神經新生
外文關鍵詞:HippocampusLearning and memoryMorris water mazeSleep deprivationNeurogenesisBromodeoxyuridine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:548
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多研究顯示長期的睡眠剝奪會造成雄性成年大鼠海馬迴中齒狀回神經新生遭受到抑制,並損壞海馬迴依賴性的學習能力,然而對於短期的睡眠剝奪所造成的結果並不甚清楚。本研究之主要目的在觀察Long-Evans雄性大鼠進行12小時的短期睡眠剝奪後,對其海馬迴神經新生與空間學習之影響。
本實驗利用觸擾動物使其無法睡眠(觸擾組),或置放動物於水中的小平台上(小平台組)作為睡眠剝奪之方式,於上午5時至下午5時給予大鼠12小時的睡眠剝奪;而對照組動物則是在鼠籠裡不受任何干擾。於下午1時及3時以腹腔注射方式給予所有大鼠劑量為100 mg/kg的5-bromo-2’-deoxyuridine (BrdU)之處理。睡眠剝奪結束後立刻或經過21天後將動物犧牲,並以免疫組織化學染色分別觀察其海馬迴背側齒狀回神經新生的細胞增生與細胞存活情況。結果發現觸擾組動物於12小時睡眠剝奪後,與小平台組或對照組者相比,其齒狀回中神經前驅細胞的增生有顯著的增加;而小平台組與對照組間彼此則無差異。但觀察睡眠剝奪21天後該腦區細胞存活之情形,發現三組動物之間並無顯著差異。當進行每週一次之12小時睡眠剝奪共四次後,觀察大鼠在Morris水迷宮之空間學習行為的表現,發現在給予每天四次試驗共連續3天的水迷宮訓練期中,隨著天數的增加各組之逃脫潛伏期(大鼠從置入水池到游至水下平台的時間)皆有明顯的縮短,但各組間並無差異,顯示三組動物記憶習得(acquisition)的情形隨著時間而有明顯的進步,並不受睡眠剝奪的影響。於水迷宮訓練結束後的1小時移走平台並進行探索試驗(probe test),結果發現觸擾組在原置放平台之象限內(水迷宮被虛擬劃分為四個象限)停留的時間較其它二組為久,而小平台組與對照組之間並無差異。於水迷宮行為實驗結束之後將大鼠犧牲並採集血液,以酵素免疫法分析三組動物血清中皮質酮的含量,結果顯示三組間皆無差異。
綜合上述結果,睡眠剝奪可促進觸擾組齒狀回神經前驅細胞的增生,同時其空間記憶學習的能力會因12小時的睡眠剝奪而被增進。根據文獻報告,水迷宮行為實驗能增加6∼10天的新生細胞之存活。故推測本實驗中,雄性成年大鼠新生的神經前軀細胞的數量受到短期睡眠剝奪而明顯增加,並受到睡眠剝奪7日後的水迷宮空間記憶學習的影響,因此增進了新生細胞的存活並開始建立複雜的神經連結網路,進而提升海馬迴依賴性之學習能力,然而此能力的提升與皮質酮無關。
Several studies have shown that sleep deprivation (SD) of relatively long duration impaired hippocampal-dependent learning and neurogenesis in the hippocampal dentate gyrus (DG) of adult male rats. However, effects of the short-term SD on learning and neurogenesis were controversy and still not clear. The aim of the present study was to determine the effects of short-term SD for 12 h on spatial learning in young adult Long-Evans rats, using handling and small platform as models for SD, and leaving animals undisturbed in home cages as controls.
During 12 h of SD (5:00 h - 17:00 h), 5-bromo-2’-deoxyuridine (BrdU) was given at a dose of 100 mg/kg to rats at 13:00 h and 15:00 h by intraperitoneal injection, respectively. Then we sacrificed animals immediately or 21 days of SD later, and the immunohistochemistry of BrdU was conducted to investigate cell proliferation (Day 0) and cell survival (Day 21) in the hippocampal DG of adult rats, respectively. Our results showed that handling-treated animals significantly increased cell proliferation in DG on Day 0 when compared to both small platform-treated ones and controls, while no difference in cell proliferation was found between platform-treated group and controls. But SD for 12 h did not have any effect on cell survival between these three groups at 21 days after BrdU injection.
Furthermore, spatial learning in Morris water maze (MWM) was tested after 4 times of SD for 12 h at an interval of a week. Following the last MWM test, blood was collected and stored until analyzed by enzyme immunoassay for corticosterone. The escape latencies in MWM (the time taken to reach the platform) in all three groups were significantly decreased during 3 days of acquisition training, but no difference was seen between these groups on the same day, suggesting that the acquisition of memory in MWM training was not affected by SD. The performance of probe test (the time spent in target quadrant) in animals treated with handling was significantly enhanced when compared with control group 1 h after the last training test, On the contrary, there was no difference between small platform-treated rats and those of the control group. Taken together, 12 h of SD did not influence memory acquisition but memory retrieval in MWM task. However, no significant difference in the serum corticosterone concentrations was found between groups after MWM training.
In summary, short-term (12 h) sleep deprivation by handling facilitates not only spatial memory but also cell proliferation in the DG. It has been documented that MWM tasks can enhance cell survival of newborn cells which are 6 - 10 days of age. These cells exhibit enhanced long-term potential with increased potential amplitude and decreased induction threshold, and start to extend neural fibers rapidly and thus facilitate synaptic plasticity, which may contribute to the enhancement of spatial tasks. Our results, therefore, indicated that the improvement of hippocampal-dependent learning and memory might be due to the enhancement of survival of 7-day-old newborn cells resulted from MWM tasks in the hippocampal dentate gyrus of adult rats. However, the enhanced spatial learning did not correlate with the serum corticosterone levels.
表次 .........................................................................Ⅲ
圖次 .........................................................................Ⅳ
中文摘要 ..................................................................1
英文摘要 ..................................................................3
第一章 緒論 ...........................................................5
1.1. 睡眠與睡眠剝奪 .............................................5
1.2. 海馬迴結構與學習記憶 ......................................8
1.3. 睡眠剝奪與學習記憶 ......................................10
1.4. 睡眠剝奪與神經新生 ......................................11
1.5. 神經新生與學習記憶 ......................................14
1.6. 壓力荷爾蒙與海馬迴 ......................................15
1.7. 研究目的與實驗設計 ......................................17
第二章 材料與方法 ....................................................19
2.1. 實驗動物與飼養 .............................................19
2.2. 睡眠剝奪與分組 .............................................19
2.3. 藥物處理 ...........................................................20
2.4. Morris水迷宮行為測試 ......................................20
2.5. 灌流 ..................................................................21
2.6. 組織處理 ...........................................................22
2.7. BrdU陽性反應細胞之量化 ...............................23
2.8. 酵素免疫分析 ....................................................24
2.9. 統計分析 ...........................................................25
第三章 結果 ...........................................................26
3.1. 睡眠剝奪期間體重的變化 ................................26
3.2. 短期睡眠剝奪對神經新生的影響 .........................26
3.3. 短期睡眠剝奪對於空間學習行為的影響 ..................28
3.4. Morris水迷宮行為測試後血清中皮質酮的含量 ....29
第四章 討論 ...........................................................30
4.1. 睡眠剝奪方式與體重變化 ................................30
4.2. 短期睡眠剝奪與神經新生 ................................34
4.3. 神經新生與空間學習 .......................................39
4.4. 空間學習與皮質酮 ..............................................43
第五章 結論 ............................................................45
參考文獻 ...................................................................60
Adam, K. (1980). Sleep as a restorative process and a theory to explain why. Prog Brain Res, 53, 289-305.
Adrien, J. (2002). Neurobiological bases for the relation between sleep and depression. Sleep Med Rev, 6, 341-351.
Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., Darsaud, A., Ruby, P., Luppi, P. H., Degueldre, C., Peigneux, P., Luxen, A., & Maquet, P. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261-272.
Allen, Y. S., Adrian, T. E., Allen, J. M., Tatemoto, K., Crow, T. J., Bloom, S. R., & Polak, J. M. (1983). Neuropeptide Y distribution in the rat brain. Science, 221, 877-879.
Altman, J., & Das, G. D. (1965). Post-natal origin of microneurones in the rat brain. Nature, 207, 953-956.
Ambrogini, P., Cuppini, R., Cuppini, C., Ciaroni, S., Cecchini, T., Ferri, P., Sartini, S., & Del Grande, P. (2000). Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 286, 21-24.
Anagnostaras, S. G., Gale, G. D., & Fanselow, M. S. (2001). Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus, 11, 8-17.
Atkinson, R. C., & Shiffrin, R. M. (1968). Human Memory: A Proposed System and Its Control Processes. In K. W. Spence, & J. T. Spence (Eds.), The Psychology of Learning and Motivation (pp. 89-195). New York: Academic Press Inc.
Barnea, A., & Nottebohm, F. (1996). Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc Natl Acad Sci USA, 93, 714-718.
Bayer, S. A., Yackel, J. W., & Puri, P. S. (1982). Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science, 216, 890-892.
Beaulieu, I., & Godbout, R. (2000). Spatial learning on the Morris Water Maze Test after a short-term paradoxical sleep deprivation in the rat. Brain Cogn, 43, 27-31.
Ben-Ari, Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci, 3, 728-739.
Bergmann, B. M., Kushida, C. A., Everson, C. A., Gilliland, M. A., Obermeyer, W., & Rechtschaffen, A. (1989). Sleep deprivation in the rat: II. Methodology. Sleep, 12, 5-12.
Born, J., Rasch, B., & Gais, S. (2006). Sleep to remember. Neuroscientist, 12, 410-424.
Brezun, J. M., & Daszuta, A. (1999). Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience, 89, 999-1002.
Brown, J. P., Couillard-Despres, S., Cooper-Kuhn, C. M., Winkler, J., Aigner, L., & Kuhn, H. G. (2003). Transient expression of doublecortin during adult neurogenesis. J Comp Neurol, 467, 1-10.
Bruel-Jungerman, E., Davis, S., Rampon, C., & Laroche, S. (2006). Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci, 26, 5888-5893.
Burwell, R. D., Saddoris, M. P., Bucci, D. J., & Wiig, K. A. (2004). Corticohippocampal contributions to spatial and contextual learning. J Neurosci, 24, 3826-3836.
Butz, M., Lehmann, K., Dammasch, I. E., & Teuchert-Noodt, G. (2006). A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus. Neural Netw, 19, 1490-1505.
Cameron, H. A., & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435, 406-417.
Cameron, H. A., Woolley, C. S., McEwen, B. S., & Gould, E. (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56, 337-344.
Cirelli, C. (2006). Cellular consequences of sleep deprivation in the brain. Sleep Med Rev, 10, 307-321.
Clark, C. P., & Golshan, S. (2007). Polysomnography and criteria for the antidepressant response to sleep deprivation. J Affect Disord, 101, 195-200.
Connolly, E., Dilernia, B., Lupash, E., & Williams, P. C. (2007). Wiring the Brain. In M. F. Bear, B. W.Connors, & M. A. Paradiso (Eds.), NEUROSCIENCE Exploring the Brain (pp. 690-722): Lippincott Williams & Wilkins.
Conrad, C. D., & Roy, E. J. (1993). Selective loss of hippocampal granule cells following adrenalectomy: implications for spatial memory. J Neurosci, 13, 2582-2590.
Couillard-Despres, S., Winner, B., Schaubeck, S., Aigner, R., Vroemen, M., Weidner, N., Bogdahn, U., Winkler, J., Kuhn, H. G., & Aigner, L. (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci, 21, 1-14.
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Prog Brain Res, 169, 323-338.
Dahlstroem, A., & Fuxe, K. (1964). Evidence for the Existence of Monoamine-Containing Neurons in the Central Nervous System. I. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons. Acta Physiol Scand Suppl, SUPPL 232:231-255.
Dalla, C., Bangasser, D. A., Edgecomb, C., & Shors, T. J. (2007). Neurogenesis and learning: acquisition and asymptotic performance predict how many new cells survive in the hippocampus. Neurobiol Learn Mem, 88, 143-148.
Datta, S., & Hobson, J. A. (2000). The rat as an experimental model for sleep neurophysiology. Behav Neurosci, 114, 1239-1244.
Dayer, A. G., Ford, A. A., Cleaver, K. M., Yassaee, M., & Cameron, H. A. (2003). Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol, 460, 563-572.
De Kloet, E. R., & Reul, J. M. (1987). Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 12, 83-105.
De Kloet, E. R., Rots, N. Y., van den Berg, D. T., & Oitzl, M. S. (1994). Brain mineralocorticoid receptor function. Ann N Y Acad Sci, 746, 8-20; discussion 20-21, 64-27.
DeCoteau, W. E., Thorn, C., Gibson, D. J., Courtemanche, R., Mitra, P., Kubota, Y., & Graybiel, A. M. (2007). Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc Natl Acad Sci USA, 104, 5644-5649.
Djavadian, R. L. (2004). Serotonin and neurogenesis in the hippocampal dentate gyrus of adult mammals. Acta Neurobiol Exp (Wars), 64, 189-200.
Dupret, D., Fabre, A., Dobrossy, M. D., Panatier, A., Rodriguez, J. J., Lamarque, S., Lemaire, V., Oliet, S. H., Piazza, P. V., & Abrous, D. N. (2007). Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol, 5, e214.
Ellenbroek, B. A., & Cools, A. R. (2002). Apomorphine susceptibility and animal models for psychopathology: genes and environment. Behav Genet, 32, 349-361.
Epp, J. R., Spritzer, M. D., & Galea, L. A. (2007). Hippocampus-dependent learning promotes survival of new neurons in the dentate gyrus at a specific time during cell maturation. Neuroscience, 149, 273-285.
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4, 1313-1317.
Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., & Schinder, A. F. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25, 10074-10086.
Everson, C. A., & Crowley, W. R. (2004). Reductions in circulating anabolic hormones induced by sustained sleep deprivation in rats. Am J Physiol Endocrinol Metab, 286, E1060-1070.
Everson, C. A., Gilliland, M. A., Kushida, C. A., Pilcher, J. J., Fang, V. S., Refetoff, S., Bergmann, B. M., & Rechtschaffen, A. (1989). Sleep deprivation in the rat: IX. Recovery. Sleep, 12, 60-67.
Falconer, E. M., & Galea, L. A. (2003). Sex differences in cell proliferation, cell death and defensive behavior following acute predator odor stress in adult rats. Brain Res, 975, 22-36.
Ferrara, M., & De Gennaro, L. (2001). How much sleep do we need? Sleep Med Rev, 5, 155-179.
Fontvieille, A. M., Rising, R., Spraul, M., Larson, D. E., & Ravussin, E. (1994). Relationship between sleep stages and metabolic rate in humans. Am J Physiol, 267, E732-737.
Gabrieli, J. D., Brewer, J. B., & Poldrack, R. A. (1998). Images of medial temporal lobe functions in human learning and memory. Neurobiol Learn Mem, 70, 275-283.
Gaillard, J. M., & Tuglular, I. (1976). The orthodox-paradoxical sleep cycle in the rat. Experientia, 32, 718-719.
Garcia, A., Steiner, B., Kronenberg, G., Bick-Sander, A., & Kempermann, G. (2004). Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell, 3, 363-371.
Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589-593.
Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54, 559-566.
Gerlai, R. (2001). Behavioral tests of hippocampal function: simple paradigms complex problems. Behav Brain Res, 125, 269-277.
Gerlai, R., & Roder, J. (1996). Spatial and nonspatial learning in mice: effects of S100 beta overexpression and age. Neurobiol Learn Mem, 66, 143-154.
Giedke, H., & Schwarzler, F. (2002). Therapeutic use of sleep deprivation in depression. Sleep Med Rev, 6, 361-377.
Gilbert, M. E., Kelly, M. E., Samsam, T. E., & Goodman, J. H. (2005). Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning. Toxicol Sci, 86, 365-374.
Gould, E. (1999). Serotonin and hippocampal neurogenesis. Neuropsychopharmacology, 21, 46S-51S.
Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 2, 260-265.
Gould, E., & Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biol Psychiatry, 46, 1472-1479.
Gould, E., Tanapat, P., & Cameron, H. A. (1997). Adrenal steroids suppress granule cell death in the developing dentate gyrus through an NMDA receptor-dependent mechanism. Brain Res Dev Brain Res, 103, 91-93.
Grassi Zucconi, G., Cipriani, S., Balgkouranidou, I., & Scattoni, R. (2006). ''One night'' sleep deprivation stimulates hippocampal neurogenesis. Brain Res Bull, 69, 375-381.
Gratzner, H. G. (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science, 218, 474-475.
Graves, L. A., Heller, E. A., Pack, A. I., & Abel, T. (2003). Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem, 10, 168-176.
Guan, Z., Peng, X., & Fang, J. (2004). Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res, 1018, 38-47.
Guidi, S., Ciani, E., Severi, S., Contestabile, A., & Bartesaghi, R. (2005). Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus, 15, 285-301.
Guzman-Marin, R., Bashir, T., Suntsova, N., Szymusiak, R., & McGinty, D. (2007). Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat. Neuroscience, 148, 325-333.
Guzman-Marin, R., Suntsova, N., Bashir, T., Nienhuis, R., Szymusiak, R., & McGinty, D. (2008). Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep, 31, 167-175.
Guzman-Marin, R., Suntsova, N., Methippara, M., Greiffenstein, R., Szymusiak, R., & McGinty, D. (2005). Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur J Neurosci, 22, 2111-2116.
Hairston, I. S., Little, M. T., Scanlon, M. D., Barakat, M. T., Palmer, T. D., Sapolsky, R. M., & Heller, H. C. (2005). Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. J Neurophysiol, 94, 4224-4233.
Hastings, N. B., & Gould, E. (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol, 413, 146-154.
He, J., Nixon, K., Shetty, A. K., & Crews, F. T. (2005). Chronic alcohol exposure reduces hippocampal neurogenesis and dendritic growth of newborn neurons. Eur J Neurosci, 21, 2711-2720.
Hipolide, D. C., Suchecki, D., Pimentel de Carvalho Pinto, A., Chiconelli Faria, E., Tufik, S., & Luz, J. (2006). Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-pituitary-adrenal axis activity, energy balance and body composition of rats. J Neuroendocrinol, 18, 231-238.
Hoffman, J. R., Donato, A., & Robbins, S. J. (2004). Ginkgo biloba promotes short-term retention of spatial memory in rats. Pharmacol Biochem Behav, 77, 533-539.
Hori, T., Sugita, Y., Koga, E., Shirakawa, S., Inoue, K., Uchida, S., Kuwahara, H., Kousaka, M., Kobayashi, T., Tsuji, Y., Terashima, M., Fukuda, K., & Fukuda, N. (2001). Proposed supplements and amendments to ''A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects'', the Rechtschaffen & Kales (1968) standard. Psychiatry Clin Neurosci, 55, 305-310.
Itoh, S., Katsuura, G., Hirota, R., & Botan, Y. (1981). Circadian rhythm of plasma corticosterone in vagotomized rats. Experientia, 37, 380-381.
Jacobs, B. L., Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry, 5, 262-269.
Kandel, E. R., Kupfermann, I., & Iversen, S. (2000). Learning and Memory. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of Neural Science (pp. 1227-1246): McGraw-Hill.
Keith, J. R., Priester, C., Ferguson, M., Salling, M., & Hancock, A. (2008). Persistent increases in the pool of doublecortin-expressing neurons in the hippocampus following spatial navigation training. Behav Brain Res, 188, 391-397.
Kempermann, G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci, 22, 635-638.
Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., & Gage, F. H. (2003). Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development, 130, 391-399.
Knight, D. C., Nguyen, H. T., & Bandettini, P. A. (2005). The role of the human amygdala in the production of conditioned fear responses. Neuroimage, 26, 1193-1200.
Knutson, K. L., Spiegel, K., Penev, P., & Van Cauter, E. (2007). The metabolic consequences of sleep deprivation. Sleep Med Rev, 11, 163-178.
Koban, M., Le, W. W., & Hoffman, G. E. (2006). Changes in hypothalamic corticotropin-releasing hormone, neuropeptide Y, and proopiomelanocortin gene expression during chronic rapid eye movement sleep deprivation of rats. Endocrinology, 147, 421-431.
Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16, 2027-2033.
Kushida, C. A., Bergmann, B. M., & Rechtschaffen, A. (1989a). Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep, 12, 22-30.
Kushida, C. A., Everson, C. A., Suthipinittharm, P., Sloan, J., Soltani, K., Bartnicke, B., Bergmann, B. M., & Rechtschaffen, A. (1989b). Sleep deprivation in the rat: VI. Skin changes. Sleep, 12, 42-46.
Leuner, B., Gould, E., & Shors, T. J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216-224.
Liu, Y. B., Lio, P. A., Pasternak, J. F., & Trommer, B. L. (1996). Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus. J Neurophysiol, 76, 1074-1088.
Llorens-Martin, M. V., Rueda, N., Martinez-Cue, C., Torres-Aleman, I., Florez, J., & Trejo, J. L. (2007). Both increases in immature dentate neuron number and decreases of immobility time in the forced swim test occurred in parallel after environmental enrichment of mice. Neuroscience, 147, 631-638.
Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264, 1145-1148.
Lopez-Rodriguez, F., Wilson, C. L., Maidment, N. T., Poland, R. E., & Engel, J. (2003). Total sleep deprivation increases extracellular serotonin in the rat hippocampus. Neuroscience, 121, 523-530.
Lustberg, L., & Reynolds, C. F. (2000). Depression and insomnia: questions of cause and effect. Sleep Med Rev, 4, 253-262.
Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20, 9104-9110.
Markowska, A. L., Long, J. M., Johnson, C. T., & Olton, D. S. (1993). Variable-interval probe test as a tool for repeated measurements of spatial memory in the water maze. Behav Neurosci, 107, 627-632.
Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci, 11, 442-450.
Martins, P. J., D''Almeida, V., Nobrega, J. N., & Tufik, S. (2006). A reassessment of the hyperphagia/weight-loss paradox during sleep deprivation. Sleep, 29, 1233-1238.
Martins, P. J., Nobrega, J. N., Tufik, S., & D''Almeida, V. (2008). Sleep deprivation-induced gnawing-relationship to changes in feeding behavior in rats. Physiol Behav, 93, 229-234.
McDermott, C. M., LaHoste, G. J., Chen, C., Musto, A., Bazan, N. G., & Magee, J. C. (2003). Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci, 23, 9687-9695.
McDonald, R. J., & Hong, N. S. (2000). Rats with hippocampal damage are impaired on place learning in the water task when overtrained under constrained conditions. Hippocampus, 10, 153-161.
McEwen, B. S. (2006). Sleep deprivation as a neurobiologic and physiologic stressor: Allostasis and allostatic load. Metabolism, 55, S20-23.
Meltzer, L. A., Yabaluri, R., & Deisseroth, K. (2005). A role for circuit homeostasis in adult neurogenesis. Trends Neurosci, 28, 653-660.
Miller, M. R., Heyneman, C., Walker, S., & Ulrich, R. G. (1986). Interaction of monoclonal antibodies directed against bromodeoxyuridine with pyrimidine bases, nucleosides, and DNA. J Immunol, 136, 1791-1795.
Mirescu, C., Peters, J. D., Noiman, L., & Gould, E. (2006). Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci USA, 103, 19170-19175.
Morris, B. J. (1989). Neuronal localisation of neuropeptide Y gene expression in rat brain. J Comp Neurol, 290, 358-368.
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods, 11, 47-60.
Morris, R. G., Garrud, P., Rawlins, J. N., & O''Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681-683.
Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239-260.
Mueller, A. D., Pollock, M. S., Lieblich, S. E., Epp, J. R., Galea, L. A., & Mistlberger, R. E. (2008). Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol Regul Integr Comp Physiol, 294, R1693-1703.
Nixon, K., & Crews, F. T. (2002). Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem, 83, 1087-1093.
Oitzl, M. S., & de Kloet, E. R. (1992). Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav Neurosci, 106, 62-71.
Oitzl, M. S., de Kloet, E. R., Joels, M., Schmid, W., & Cole, T. J. (1997). Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. Eur J Neurosci, 9, 2284-2296.
Olton, D. S. (1979). Mazes, maps, and memory. Am Psychol, 34, 583-596.
Pellegrini, A. D., Dupuis, D., & Smith, P. K. (2007). Play in evolution and development. Developmental Review, 27, 261-276.
Penalva, R. G., Lancel, M., Flachskamm, C., Reul, J. M., Holsboer, F., & Linthorst, A. C. (2003). Effect of sleep and sleep deprivation on serotonergic neurotransmission in the hippocampus: a combined in vivo microdialysis/EEG study in rats. Eur J Neurosci, 17, 1896-1906.
Peretto, P., Merighi, A., Fasolo, A., & Bonfanti, L. (1999). The subependymal layer in rodents: a site of structural plasticity and cell migration in the adult mammalian brain. Brain Res Bull, 49, 221-243.
Portas, C. M., Bjorvatn, B., & Ursin, R. (2000). Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol, 60, 13-35.
Post, R. M., Uhde, T. W., Rubinow, D. R., & Huggins, T. (1987). Differential time course of antidepressant effects after sleep deprivation, ECT, and carbamazepine: clinical and theoretical implications. Psychiatry Res, 22, 11-19.
Purves, D., & Lichtman, J. W. (1985). principles of neural development. Sunderland, Mass: Sinauer Associates Inc.
Pyter, L. M., Adelson, J. D., & Nelson, R. J. (2007). Short days increase hypothalamic-pituitary-adrenal axis responsiveness. Endocrinology, 148, 3402-3409.
Rakic, P. (1985). Limits of neurogenesis in primates. Science, 227, 1054-1056.
Rechtschaffen, A., & Siegel, J. (2000). Sleep and Dreaming. In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of Neural Science (pp. 936-947): McGraw-Hill.
Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117, 2505-2511.
Rossato, J. I., Zinn, C. G., Furini, C., Bevilaqua, L. R., Medina, J. H., Cammarota, M., & Izquierdo, I. (2006). A link between the hippocampal and the striatal memory systems of the brain. An Acad Bras Cienc, 78, 515-523.
Rueter, L. E., & Jacobs, B. L. (1996). A microdialysis examination of serotonin release in the rat forebrain induced by behavioral/environmental manipulations. Brain Res, 739, 57-69.
Ruskin, D. N., Dunn, K. E., Billiot, I., Bazan, N. G., & LaHoste, G. J. (2006). Eliminating the adrenal stress response does not affect sleep deprivation-induced acquisition deficits in the water maze. Life Sci, 78, 2833-2838.
Sainio, E. L., Lehtola, T., & Roininen, P. (1988). Radioimmunoassay of total and free corticosterone in rat plasma: measurement of the effect of different doses of corticosterone. Steroids, 51, 609-622.
Sandi, C. (1998). The role and mechanisms of action of glucocorticoid involvement in memory storage. Neural Plast, 6, 41-52.
Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., & Hen, R. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805-809.
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev, 7, 284-301.
Saxe, M. D., Battaglia, F., Wang, J. W., Malleret, G., David, D. J., Monckton, J. E., Garcia, A. D., Sofroniew, M. V., Kandel, E. R., Santarelli, L., Hen, R., & Drew, M. R. (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103, 17501-17506.
Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184-187.
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry, 20, 11-21.
Segovia, G., Yague, A. G., Garcia-Verdugo, J. M., & Mora, F. (2006). Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull, 70, 8-14.
Shors, T. J., Miesegaes, G., Beylin, A., Zhao, M., Rydel, T., & Gould, E. (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410, 372-376.
Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y., & Gould, E. (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12, 578-584.
Sigurdsson, T., Doyere, V., Cain, C. K., & LeDoux, J. E. (2007). Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology, 52, 215-227.
Sloviter, R. S., Valiquette, G., Abrams, G. M., Ronk, E. C., Sollas, A. L., Paul, L. A., & Neubort, S. (1989). Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science, 243, 535-538.
Smith, C., & Rose, G. M. (1997). Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci, 111, 1197-1204.
Snyder, J. S., Kee, N., & Wojtowicz, J. M. (2001). Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol, 85, 2423-2431.
Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annu Rev Neurosci, 27, 279-306.
Stickgold, R., & Walker, M. P. (2007). Sleep-dependent memory consolidation and reconsolidation. Sleep Med, 8, 331-343.
Suchecki, D., Lobo, L. L., Hipolide, D. C., & Tufik, S. (1998). Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. J Sleep Res, 7, 276-281.
Suchecki, D., & Tufik, S. (2000). Social stability attenuates the stress in the modified multiple platform method for paradoxical sleep deprivation in the rat. Physiol Behav, 68, 309-316.
Tartar, J. L., Ward, C. P., McKenna, J. T., Thakkar, M., Arrigoni, E., McCarley, R. W., Brown, R. E., & Strecker, R. E. (2006). Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci, 23, 2739-2748.
Thanos, P. K., Cavigelli, S. A., Michaelides, M., Olvet, D. M., Patel, U., Diep, M. N., & Volkow, N. D. (2008). A non-invasive method for detecting the metabolic stress response in rodents: Characterization and disruption of the circadian corticosterone rhythm. Physiol Res.
Thompson, K. V. (1996). Play-partner preferences and the function of social play in infant sable antelope, Hippotragus niger. Animal Behaviour, 52, 1143-1155.
Tsai, K. J., Chen, S. K., Ma, Y. L., Hsu, W. L., & Lee, E. H. (2002). sgk, a primary glucocorticoid-induced gene, facilitates memory consolidation of spatial learning in rats. Proc Natl Acad Sci USA, 99, 3990-3995.
Tulving, E. (1984). Precis of Elements of episodic memory, The Behavioral and Brain Sciences (pp. 223-268): Cambridge University Press.
Tung, A., Takase, L., Fornal, C., & Jacobs, B. (2005). Effects of sleep deprivation and recovery sleep upon cell proliferation in adult rat dentate gyrus. Neuroscience, 134, 721-723.
van der Borght, K., Ferrari, F., Klauke, K., Roman, V., Havekes, R., Sgoifo, A., van der Zee, E. A., & Meerlo, P. (2006). Hippocampal cell proliferation across the day: increase by running wheel activity, but no effect of sleep and wakefulness. Behav Brain Res, 167, 36-41.
van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030-1034.
Velazquez-Moctezuma, J., Salazar, E. D., & Retana-Marquez, S. (1996). Effects of short- and long-term REM sleep deprivation on sexual behavior in male rats. Physiol Behav, 59, 277-281.
Vertes, R. P. (1982). Brain stem generation of the hippocampal EEG. Prog Neurobiol, 19, 159-186.
Waddell, J., & Shors, T. J. (2008). Neurogenesis, learning and associative strength. Eur J Neurosci, 27, 3020-3028.
Wang, S., Scott, B. W., & Wojtowicz, J. M. (2000). Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol, 42, 248-257.
Wang, Y., Wang, L., Wu, J., & Cai, J. (2006). The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats. Br J Pharmacol, 148, 147-153.
Weiss, T., & Rokdan, E. (1964). Comparative study of sleep cycles in rodents. Experientia, 20, 280-281.
Wingard, D. L., & Berkman, L. F. (1983). Mortality risk associated with sleeping patterns among adults. Sleep, 6, 102-107.
Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res, 531, 225-231.
Wurbel, H., & Stauffacher, M. (1996). Prevention of stereotypy in laboratory mice: effects on stress physiology and behaviour. Physiol Behav, 59, 1163-1170.
Youngblood, B. D., Zhou, J., Smagin, G. N., Ryan, D. H., & Harris, R. B. (1997). Sleep deprivation by the "flower pot" technique and spatial reference memory. Physiol Behav, 61, 249-256.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊