跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳乙賢
研究生(外文):Yi-Hsien Chen
論文名稱:自由曲面在光學系統之設計與應用
論文名稱(外文):Design and Application of Freeform Surface in Optical System
指導教授:蘇國棟
指導教授(外文):Guo-Dung Su
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:80
中文關鍵詞:自由曲面紅外線漸進多焦式鏡片光束整形器微透鏡陣列
外文關鍵詞:freeform surfaceinfraredprogressive addition lensbeam shapermicrolens array
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學系統是由許多不同的光學元件所組成,而透鏡是其中一種最具代表性的光學元件。在光學系統中,透鏡的主要用途是將光線會聚或者發散。絕大部分的透鏡都是球面透鏡。然而對於某些特殊目的,例如減少光學像差、光束的再成形、在單一透鏡上組合不同的屈光率等,球面透鏡並不適用。為此我們必須設計特定的透鏡來改變光線方向,而這些透鏡的鏡面往往是屬於非球面或是自由曲面。以往,受限於電腦運算能力與加工技術的限制,非球面與自由曲面的設計與製作是非常困難的。不過,隨著現代電腦運算能力與超精密加工技術的發展,非球面與自由曲面透鏡的設計與製造是可行且值得發展的。
在本文中,我們探討了非球面與自由曲面在光學系統中幾種不同的設計與應用,內容主要可分為四大主題。一、使用比較式紅外線量測法偵測高真空度玻璃面板中的有機氣體殘留:介紹一個標準的光學系統,此光學系統目的是偵測高真空度玻璃面板中可能殘留的氣體。二、漸進多焦式鏡片:漸進多焦式鏡片是種眼鏡鏡片,用途是矯正老花眼,其鏡面設計是種典型的自由曲面設計,我們利用有限差分法分析鏡面參數與使用直接設計法設計漸進多焦式鏡片。三、雷射光束整形器:本主題探討一個高效率光學系統,此光學系統的用途是將雷射光束重新成形,我們探討了典型的光束成形器並發展新的設計方法用以設計應用於雷射水平儀的一維光束整形器。四、發光二極體光束整形器:在最後這主題中我們探討針對發光二極體的光束整形器,在此整形系統中的主要元件是微透鏡陣列,我們探討了單一陣列與雙陣列的整形系統,並提出一個全新的複合式光束整形器。
An optical system means a system consisting of many different optical elements for handling light. Lenses are typical optical elements in optical systems. Most lenses are spherical lenses. However, for some purposes, such as decreasing optical aberrations, reshaping beam profiles, combining different optical power in a single lens, and etc, spherical lenses are not appropriate. We have to design a specific lens to bend rays into the directions we set, and then the surfaces of the lens are usually aspherical surfaces and even freeform surfaces. Along with the progress of computers and technology of manufacture, it is feasible to design specific lenses with freeform surfaces.
In this thesis, there are four topics. The first topic is about an infrared optical system used to detect the gases inside the high-vacuum glass panels. The second topic: progressive addition lens (PAL) is a significant example of freeform surface design. Progressive addition lenses are used to treat presbyopia. We use the finite difference method to analyze PALs and the direct method to design PALs. In the third topic, we discuss an optical system used to reshape the laser beam effectively. In the final topic, we introduce an optical system which can homogenize the LED light.
誌謝 III
摘要 IV
Abstract V
Contents VI
List of Figures IX
List of Tables XIII
Chapter 1 Introduction 1
Chapter 2 Measuring Hydrogen-Carbon Gas inside High-Vacuum Glass Panels by the Comparative Infrared-Light Method 3
2.1. Introduction 3
2.2. Principles of the Comparative Infrared Light Method 5
2.3. Experimental Results and Discussion 9
2.4. Summary 15
Reference 16
Chapter 3 Progressive Addition Lens 18
3.1. Introduction 18
3.2. Characteristics of Progressive Addition Lens 20
3.3. Analysis of Progressive Addition Lens 22
3.4. Design of Progressive Addition Lens 26
3.5. Summary and Future Work 31
Reference 32
Chapter 4 Laser Beam Shaping Systems 35
4.1. Introduction 35
4.2. Theory of Laser Beam Shaping 36
4.3. Two-Lens Laser Beam Shaping System 38
4.3.1. Optical Design Method 39
4.3.2. Optical Simulation Results 41
4.4. One-Plano-Concave-Lens Laser Beam Shaping System 47
4.4.1. Optical Design Method 47
4.4.2. Optical Simulation Results 48
4.5. One-Concave-Convex-Lens Laser Beam Shaping System 50
4.5.1. Optical Design Method 51
4.5.2. Optical Simulation Results 53
4.5.3. Experimental Results and Application 55
4.6. Summary 61
Reference 63
Chapter 5 LED Beam Shaping Systems with Microlens Arrays 65
5.1. Introduction 65
5.2. Beam Shaping Using One Microlens Array 66
5.3. Beam Shaping Using Two Microlens Arrays 71
5.4. Beam Shaping Using A Complex Collector Lens 73
5.5. Summary 76
Reference 77
Chapter 6 Conclusion 79
Chapter 2
1.S. Kwona, T. Kima, B. Shona, E. Chob, J. Leeb, H. Uhc*, S. Chod, and C. Leed, “Vacuum In-line Sealing Technology for the Screen-printed CNT-FEA,” Journal of Information Display , vol. 4, no. 3, pp. 6-11 (2003).
2.G. Reich, “Spinning rotor viscosity gauge: A transfer standard for the laboratory or an accurate gauge for vacuum process control,” Journal of Vacuum Science and Technology, vol. 20, issue 4, pp. 1148-1152 (1982).
3.D. Hovde, “Filtering to Measure Gas Concentrations from Spectral Features,” U. S. Patent 6,615,142 (2003).
4.J. Nielsen, V. Thornton, and E. Dale, “The Absorption Laws for Gases in the Infra-Red,” Reviews of Modern Physics, vol. 16, no.3&4, pp. 307-324 (1944).
5.A. Fong and G. Hieftje, “Simple Near-Infrared Spectrometric Sorption-Based Vapor Sensor,” Applied Spectroscopy, vol. 49, no. 9, pp. 1261-1267 (1995).
6.G. Lammel, S. Schweizer, and P. Renaud, “MEMS infrared gas spectrometer based on a porous silicon tunablefilter,” Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on, pp. 578 – 581 (2001).
7.Yi-Hsien Chen, Yu-Han Chien, Chuan-Hsu Fu, Wee-Yee Lin and Guo-Dung John Su, “Measuring Hydrogen-Carbon Gas inside High-Vacuum Glass Panels by the Comparative Infrared-Light Method,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 25, issue 2, pp. 611-614 (2007).

Chapter 3
1.D. R. Pope, “Progressive Addition Lenses: History, Design, Wearer Satisfaction and Trends,” Vision Science and its Applications, OSA Technical Digest (2000).
2.J. Loos, G. Greiner and H. P. Seidel, “A variational approach to progressive lens design,” Comput. Aided Design, 30, 595-602 (1998).
3.J Wang and F Santosa , “A numerical method for progressive lens design,” Mathematical Models And Methods In Applied Sciences, 14(4), 619-640 (2004).
4.P. Allione, F. Ahsbahs and G. L. Saux, “Application of optimization in computer-aided ophthalmic lens design,” EUROPTO Conference on Design and Engineering of Optical System, Berlin, Germany, 37, 138-148 (1999).
5.J. Wang, R. Gulliver and F. Santosa, “Analysis of a variational approach to the progressive lens designs,” SIAM J. Appl. Math., 64, 277-296 (2003).
6.R. H. Wang, Multivariate Spline Functions and Their Applications, Kluwer (2001).
7.P. B. Zwart, “Multivariate splines with nondegenerate partitions,” SIAM J. Numer. Anal., 10, 665-673 (1973).
8.E.A. Villegas and P Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthal. Physiol. Opt., 24 ,419-426 (2004).
9.M.J. Kris, “Practitioner trial of SOLA Percepta progressive lenses,” Clinical and Experimental Optometry, 82, 187-190 (1999).
10.J. E. Sheedy, C. Campbell, E. King-Smith and J. R. Hayes, “Progressive powered lenses: the Minkwitz theorem,” Optometry & Vision Science, 82(10), 916-922 (2005).
11.J. E. Sheedy, “Correlation analysis of the optics of progressive addition lenses,” Optometry & Vision Science, 81(5), 350-361 (2004).
12.J. E. Sheedy, R. F. Hardy, “The optics of occupational progressive lenses,” Optometry, 76(8), 432-441 (2005).
13.J. E. Sheedy, “Progressive addition lenses--matching the specific lens to patient needs,” Optometry, 75(2), 83-102 (2004).
14.J. Sheedy, R. F. Hardy, J. R. Hayes, “Progressive addition lenses - measurements and ratings,” Optometry, 77(1), 23-39 (2006).
15.T. Baudart, F. Ahsbahs and C. Miege, “Multifocal Ophthalmic Lens,” U.S. Patent No. 6,102,544 (2000).
16.C. Harsigny, C. Miege, J. P. Chauveau and F. Ahsbahs “Progressive multifocal ophthalmic lens,” U.S. Patent No. 5,488,442 (1996).
17.G. Guilino and R. Barth, “Progressive ophthalmic lens,” U.S. Patent No. 4,240,719 (1980).
18.G. Guilino and R. Barth, “Progressive power ophthalmic lens,” U.S. Patent No. 4,315,673 (1982).
19.A. Kitani, “Progressive power multifocal lens,” U.S. Patent No. 5,708,492 (1998).
20.J. T. Winthrop, “Progressive Addition Spectacle Lens”, U.S. Patent No. 4,861,153 (1989).

Chapter 4
1.W. T. Silfvast, Laser Fundamentals, Cambridge University Press, New York (1996).
2.D. F. Cornwell, “Nonprojective transformations in optics,” Proc. SPIE 294, 62–72 (1981).
3.D. L. Shealy and Shao-hua Chao, “Geometric Optics-based design of laser beam shapers,” Opt. Eng., 42, 3123-3138 (2003).
4.J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” U.S. Patent No. 3,476,463 (1969).
5.P. W. Rhodes and D. L. Shealy, “Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis,” Appl. Opt. 19, 3545–3553 (1980).
6.W. Jiang, D. L. Shealy, and J. C. Martin, “Design and testing of a refractive reshaping system,” Proc. SPIE 2000, 64–75 (1993).
7.F. M. Dickey and S. C. Holswade, Editors, Laser Beam Shaping: Theory and Techniques, Marcel Dekker, Inc., New York (2000).
8.F. M. Dickey and S. C. Holswade, Editors, Laser Beam Shaping, Proc. SPIE 4095, 1–216 (2000).
9.Jyh-Rou Sze, Yi-Hsien Chen, Guo-Dung John Su and Fong-Zhi Chen, “Design of a single Lens as laser beam shaper,” Frontiers in Optics (FiO), Rochester, New York, USA (2008).

Chapter 5
1.A. Buttner, U. D Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393-2401 (2002).
2.A. Bagdasarov, “Size calculation of lens-array illumination systems,” Sov. J. Opt. Technol. 44(7), 65–66 (1977).
3.I Harder, M Lano, N Lindlein, J Schwider, “Homogenization and beam shaping with microlens arrays,” Proc. SPIE 5456, 99-107 (2004).
4.N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1-9 (2002).
5.Z. C. X. Deng, X. Liang, and W. Y. R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986).
6.N. Nishi, T. Jitsuno, K. Tsubakimoto, M. Murakami, M. Nakatsuka, K. Nishihara, and S. Nakai, “Aspherical multi lens array for uniform target irradiation,” Proc. SPIE 1870, 105–111 (1993).
7.J. W. Goodman, Introduction to Fourier Optics, 3rd ed., McGraw-Hill, New York (2005).
8.S. Glockner and R. Goring, “Investigation of statistical variations between lenslets of microlens arrays,” Appl. Opt. 36, 4438–4445 (1997).
9.J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector.” Opt. Express 15, 10483-10491 (2007).
10.F. Wippermann, U. Zeitner, P. Dannberg, A. Brauer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15, 6218-6231 (2007).
11.L. Erdmann, M. Burkhardt, and R. Brunner, “Coherence management for microlens laser beam homogenizers,” Proc. SPIE 4775, 145-154 (2002).
12.F. M. Dickey and S. C. Holswade, Editors, Laser Beam Shaping: Theory and Techniques, Marcel Dekker, Inc., New York (2000).
13.J. H. Jung and Y. J. Choi, “Aspheric lens for simultaneously collimating and shaping a laser diode beam,” U.S. Patent No. 5,572,367 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top