跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹明哲
研究生(外文):Ming-Che Chan
論文名稱:光纖傳輸飛秒脈衝光源及其在工程與生醫光電上的應用
論文名稱(外文):Fiber-Delivered Femtosecond Light Sources and Their Industrial and Biophotonic Applications
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:168
中文關鍵詞:生醫光電鉻貴橄欖石雷射光纖可調雷射光孤子自我頻率位移
外文關鍵詞:BiophotonicsCr:Forsterite LaserOptical FibersWavelength-Tunable LaserSoliton-Self-Frequency Shift
相關次數:
  • 被引用被引用:0
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,吾人展示了數種不同的光纖傳輸超短脈衝雷射光源以及其相關的光電系統,這些展示的成果使得光纖傳輸的脈衝光源在生醫光電以及工程中之種種應用更為實際。本論文的目標主要分為幾個部分:首先是建造在非線性光學顯微術以及在非線性內視鏡系統中所需要用的光纖傳輸脈衝光源;其次是建立光纖輸出極寬頻可調雷射;最後是基於此種光纖輸出極寬頻可調雷射提出並且展示一種在射頻/微波時間延遲上的新穎應用。
在非線性光學顯微術應用方面,吾人首先建立了一套微小化、高輸出功率並且自啟動的鉻貴橄欖石飛秒固態鎖模雷射,此鉻貴橄欖石雷射所輸出的飛秒脈衝係經由大模態面積光子晶體光纖來傳遞並且壓縮到時間上之轉換極限。藉由此光纖輸出之超短脈衝雷射光源,吾人隨後建立了一套微小以及可靠的雙光子螢光顯微鏡系統。其後,為了實際臨床上的應用,我們嘗試利用光纖集束建立了一套光束掃瞄非線性光學內視鏡。由於光纖集束在此鉻貴橄欖石飛秒雷射輸出波長的色散值很小,吾人不需經由使用任何額外的光學元件來補償超短脈衝光源在光纖中之傳遞變形。最後我們分析了系統的空間解析度並且以數張生物影像展示了此系統的可行性。
在另一方面,除了傳輸的功能,光纖還可以被用來當作寬頻的頻率轉換元件。利用高能量脈衝在非線性光纖中的光孤子自我頻率位移效應,吾人建立一可調範圍破世界紀錄之光纖輸出極寬頻可調雷射(波長輸出範圍從1.2微米到2.2微米),其可調範圍可達910奈米之多。此外,對於此種光纖輸出極寬頻可調雷射,吾人也提出並且建立一套全光纖化之連續可調射頻時間延遲系統。這個射頻/微波的超大時間延遲系統在實驗上最大延遲時間為730柰秒。與其它現有技術比較,這個延遲系統的架構比較簡單,並且具有容易操作與具有極大範圍可調延遲,深具在民用通訊以及衛星雷達上的應用潛力。
In this thesis, for different applications, various fiber-delivered femtosecond light sources and systems were built up to make the fiber-optics pulsed sources more promising and more practical in biophotonic and industrial applications. Subsequently, the purpose of this thesis is threefold. First, it is to develop different fiber-delivered femtoscond sources for nonlinear microscopy and nonlinear endoscopy. Secondly, it is to develop a widely wavelength tunable fiber-delivered femtosecond source, which is highly desirable for many different applications. Finally, the third objective is to present a new application of the demonstrated fiber-delivered wavelength tunable source on the photonic true time delays.
In the regard of practical nonlinear light microscopy, a compact, self-starting high-power femtosecond Cr:Forsterite laser was set up. Delivered by a large-mode-area photonic crystal fiber, the generated chirped laser pulses can be compressed down to be with a nearly transform limited pulsewidth. Based on this fiber-delivered and fiber-enhanced Cr:Forsterite laser source, a compact and reliable two-photon fluorescence microscopy system can thus be realized.
In regard to practical clinical applications, following the previous demonstration of nonlinear light microscopy, a beam-scanning nonlinear light endoscope based on a flexible fiber bundle was setup. Excited with a femtosecond Cr:Forsterite laser, the degradation in multi-photon multi-harmonic excitation efficiency due to the pulse broadening effect was significantly reduced without utilizing any external pulse-compression or spectral-compression devices. The system’s spatial resolution has been characterized and several image examples will be given.
Moreover, except the delivery function, optical fibers can be utilized as broadband wavelength shifters. A widely tunable femtosecond light source, based on the soliton-self-frequency-shift effect of high power Cr:Forsterite laser pulses propagating inside a highly nonlinear photonic crystal fiber, was successfully set up. A record 910nm wavelength tuning range from 1.2
誌謝 ……………………………………………………………………………………I
摘要 ……………………………………………………………………………….... Ⅲ
Abstract …………………………………………………………………………….…Ⅴ
List of Acronyms……………………………………………………………………Ⅶ
Contents ………………………………………………………………………………Ⅷ
Figure Contents ……………………………………………………………...…..…ⅩⅠ
Table Contents ………………………………………………………………..……ⅩⅤ
Chapter 1 Introduction ………………………………………………….…………1
1.1 Femtosecond Laser Sources ………………....……………….………1
1.2 Fiber Optic Systems……………………...……………………………..3
1.3 Motivation and Thesis Overview…………..…………………...………6
Chapter 2 Linear and Nonlinear Phenomena in Optical Fibers…………….15
2.1 Fiber Dispersion …………………………...………….…....…………15
2.2 Fiber Nonlinearity……………………………..…………....…………19
2.3 Femtosecond Pulse Propagation in Nonlinear Optical Fibers…...........24
2.4 Soliton Self Frequency Shift ………………………………………….31
2.5 Photonic Crystal Fibers …………………….…………………………34
Chapter 3 Compact Fiber-Delivered Pulsed Source for Nonlinear Light Microscopy…………………………………………………………….43
3.1 The Desired Excitation Sources in Nonlinear Microscopy…………43
3.2 Experimental Consideration and Setup of the Compact, Fiber-Delivered Femtosecond Source…………….………………………...…………52
3.3 Fiber Selection and the Performances of the Fiber-Output Femtosecond Source……………………………………………….…………60
3.4 Setup and Results of the Nonlinear Microscope …………...…………66
3.5 Summary……………………………………………………………....69
Chapter 4 Fiber-Bundle-Delivered Femtosecond Sources and its Applications on Nonlinear Endoscopes……………..........…………....………………..79
4.1 The Desired Fiber-Delivered Femtosecond Sources for Nonlinear Endoscopy…………………..……………………………...…………79
4.2 Structures of the Imaging Fiber Bundle, the Fiber-Delivered Femtosecond Source and the Nonlinear Endoscopes ………….……..83
4.3 Measurement and Evaluation the Output Performance of Fiber-Bundle-Delivered Femtosecond Sources……………..……..….90
4.4 System Resolution Characterization in the Endocopes and Image Examples…………………………………………………....…………96
4.5 Summary …………………………………………………...………103
Chapter 5 Fiber-Delivered Wavelength Tunable Femtosecond Sources and its Applications on Photonic True Time Delays …………….…………108
5.1 Fiber-Delivered Wavelength Tunable Sources ………………………109
5.2 Setup and Results of the Widely-Wavelength Tunable Raman Soliton Femtosecond Sources…………… ……………………………...112
5.3 Applications of SSFS-Based Femtosecond Source on Continuously Tunable Photonic True Time-Delays……………………………121
5.4 Device Results and Discussions …………………………..................129
5.5 Summary …………………………………………………………..137
Chapter 6 Summary and Outlook ……………………...……………………….148
6.1 Summary ……………………………………………..…………….148
6.2 Future Works…………………………………....................................151
Appendix 1: Publication Lists………………………………………………………..156
Appendix 2: Curriculum Vitae……………………………………………………….164
Appendix 3: Calculation of Prism Pair-induced Dispersion…………………..…….166
[1.1]T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493-494 (1960).
[1.2]J. T. Verdeyen, Laser electronics (Prentice-Hall, 1995).
[1.3]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Physical Review 127, 1918-1939 (1962).
[1.4]C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[1.5]B. D. Tapley, J. C. Ries, G. W. Davis, R. J. Eanes, B. E. Schutz, C. K. Shum, M. M. Watkins, J. A. Marshall, R. S. Nerem, B. H. Putney, S. M. Klosko, S. B. Luthcke, D. Pavlis, R. G. Williamson, and N. P. Zelensky, "Precision orbit determination for topex/poseidon," Journal of Geophysical Research-Oceans 99, 24383-24404 (1994).
[1.6]D. -K. Cheng, Field and Wave Electromagnetics (Addison Wisley, 1989)
[1.7]A. E. Siegman, Lasers ( University Science Books, 1986)
[1.8]C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, "Advanced Ti:Er:LiNbO3 waveguide lasers," IEEE Journal of Selected Topics in Quantum Electronics 6, 101-113 (2000).
[1.9]F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby”, Journal of Applied Physics 33, 828-829 (1962).
[1.10]A. A. Vuylsteke, “Theory of laser regeneration switching”, Journal of Applied Physics 34, 1615-1622 (1963)
[1.11]L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Applied Physics Letters 5, 4-6 (1964).
[1.12]U. Morgner, F. X. Kärtner, S. H. Cho, E. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow,and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:Sapphire laser,” Optics Letters 24, 411-413 (1999)
[1.13]J. –C. Diels and W. Rudolph, Ultrashort laser pulse phenomena (Academic, 1996).
[1.14]J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor nanostructures (Springer, 1996).
[1.15]S. Zhu, Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843-846 (1997).
[1.16]G.. -P. Agrawal and N. Dutta, Semiconductor lasers (Kluwer Academic, 1993)
[1.17]W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[1.18]J. A. Valdmanis and G. A. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE Journal of Quantum Electronics 22, 69-78 (1986)
[1.19]T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D. Perry, "Interaction of intense laser pulses with atomic clusters," Physical Review A 53, 3379-3402 (1996).
[1.20]A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakoviev, A. Scrinzi, T. W. Hansch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421, 611-615 (2003).
[1.21]M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology," Nature 414, 509-513 (2001).
[1.22]A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998).
[1.23]R. Slavik, Y. Park, N. Ayotte, S. Doucet, T. –J. Ahn, S. LaRochelle, and J. Azana, “ Photonic temporal integrator,” in Conference on Lasers and Electro-Optics, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CPDB3.
[1.24]T. Wilken, T. W. Hansch, Th. Udem, T. Steinmetz, R. Holzwarth, C. Araujo-Hauck, L. Pasquini, S. D’Odorico, A. Manescau, M. T. Murphy, T. Kentischer, and W. Schmidt, “ Frequency combs for Astronomy,” in Conference on Lasers and Electro-Optics, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper CPDB9.
[1.25]T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, "Ultimate low-loss single-mode fiber at 1.55
[2.1]D. -K. Cheng, Field and wave wlectromagnetics (Addison Wisley, 1989).
[2.2]G. Keiser, Optical fiber communications (McGraw-Hill, 2000).
[2.3]G. –P. Agrawal, Nonlinear fiber optics (Academic, 2007).
[2.4]D. Derickson, Fiber optic test and measurement (Prentice Hall, 1998).
[2.5]R. W. Boyd, Nonlinear optics (Academic, 1992).
[2.6]Y. R. Shen, The principles of nonlinear optics (Wiley, 1984).
[2.7]V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
[2.8]J. F. Scott and M. O. Scully, Laser applications to optics and spectroscopy (Addison-Wesley, 1975).
[2.9]H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).
[2.10]A. Yariv, Optical Electronics in Modern Communications (Oxford, 1997).
[2.11]W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti: Sapphire laser through a hollow-core photonic crystal fiber," Optic Letters 29, 1285-1287 (2004).
[2.12]S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C. K. Sun, "Two-photon fluorescence microscope with a hollow-core photonic crystal fiber," Optic Express 12, 6122-6128 (2004).
[2.13]D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Optic Letters 27, 1513-1515 (2002).
[2.14]M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, "Compact fiber-delivered Cr: Forsterite laser for nonlinear light microscopy," Journal of Biomedical Optics 10, 0504006 (2005).
[2.15]S. Moon, and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express 14, 11575-11584 (2006).
[2.16] M. C. Chan, T. M. Liu, S. P. Tai, and C. -K. Sun, “1.1-1.4µm super-continuum
generation in standard single-mode fibers for optical coherent tomography,” in
Optics and Photonics Taiwan''03, Vol. 1 of Technical Digest series, Paper
TE1-8 (2003).
[2.17] B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto,
"Self-phase-modulated Kerr-lens mode-locked Cr:Forsterite laser source for
optical coherence tomography," Optics Letters 21, 1839-1841 (1996).
[2.18] K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury,
S. A. Diddams, J. W. Nicholson, and M. E. Yan, "Stabilized frequency comb
with a self-referenced femtosecond Cr: Forsterite laser," Optics Letters 30,
40
932-934 (2005).
[2.19] H. Nakatsuka, D. Grischkowsky, and A. C. Balant, "Non-linear
picosecond-pulse propagation through optical fibers with positive group-velocity
dispersion," Physical Review Letters 47, 910-913 (1981).
[2.20] V. E. Zakharov, and A. B. Shabat, "Exact theory of two-dimensional
self-focusing and one-dimensional self-modulation of waves in nonlinear
media," Soviet Physics Jetp-Ussr 34, 62-69 (1972).
[2.21] F. M. Mitschke, and L. F. Mollenauer, "Discovery of the soliton self-frequency
shift," Optics Letters 11, 659-661 (1986).
[2.22] P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, "Ultrashort pulse-propagation,
pulse breakup, and fundamental soliton formation in a single-mode optical
fiber," IEEE Journal of Quantum Electronics 23, 1938-1946 (1987).
[2.23] J. P. Gordon, "Theory of the soliton self-frequency shift," Optics Letters 11,
662-664 (1986).
[2.24] J. K. Lucek, and K. J. Blow, "Soliton self-frequency shift in telecommunications
fiber," Physical Review A 45, 6666-6674 (1992).
[2.25] N. Akhmediev, and M. Karlsson, "Cherenkov radiation emitted by solitons in
optical fibers," Physical Review A 51, 2602-2607 (1995).
[2.26] M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M.
41
Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, "1.2- to 2.2-µm tunable Raman
soliton source based on a Cr: Forsterite laser and a photonic-crystal fiber," IEEE
Photonics Technology Letters 20, 900-902 (2008).
[2.27] J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[2.28] J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal
fibers: A new class of optical waveguides," Optical Fiber Technology 5,
305-330 (1999).
[2.29] J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica single-mode
optical fiber with photonic crystal cladding," Optics Letters 21, 1547-1549
(1996).
[2.30] M. Koshiba, and K. Saitoh, "Structural dependence of effective area and mode
field diameter for holey fibers," Optics Express 11, 1746-1756 (2003).
[2.31] K. Saitoh, and M. Koshiba, "Numerical modeling of photonic crystal fibers,"
Journal of Lightwave Technology 23, 3580-3590 (2005).
[2.32] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and
electronics," Physical Review Letters 58, 2059-2062 (1987).
[2.33] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts,
and D. C. Allan, "Single-mode photonic band gap guidance of light in air,"
Science 285, 1537-1539 (1999).
[3.1] W. Denk, J. H. Strickler, and W. W. Webb, "2-photon laser scanning
fluorescence microscopy," Science 248, 73-76 (1990).
[3.2] P. C. Cheng, S. J. Pan, A. Shih, K. S. Kim, W. S. Liou, and M. S. Park, "Highly
efficient upconverters for multiphoton fluorescence microscopy," Journal of
Microscopy-Oxford 189, 199-212 (1998).
[3.3] J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, "Long-term
two-photon fluorescence imaging of mammalian embryos without compromising
viability," Nat. Biotechnol. 17, 763-767 (1999).
[3.4] D. Bird, and M. Gu, "Compact two-photon fluorescence microscope based on a
single-mode fiber coupler," Opt. Lett. 27, 1031-1033 (2002).
[3.5] S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C. K. Sun,
"Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,"
Opt. Express 12, 6122-6128 (2004).
[3.6] M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, "Compact fiber-delivered Cr :
Forsterite laser for nonlinear light microscopy," Journal of Biomedical Optics 10,
4, 054006 (2005).
[3.7] S. Fine, and W. P. Hansen, "Optical second harmonic generation in biological
systems," Appl. Optics 10, 2350-2353 (1971).
72
[3.8] I. Freund, and M. Deutsch, "2nd-harmonic microscopy of biological tissue," Opt.
Lett. 11, 94-96 (1986).
[3.9] Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano, "Optical harmonic
generation from animal tissues by the use of picosecond and femtosecond laser
pulses," Appl. Optics 35, 6810-6813 (1996).
[3.10] Y. C. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N.
Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett.
22, 1323-1325 (1997).
[3.11] Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano,
"Subsurface tumor progression investigated by noninvasive optical second
harmonic tomography," Proceedings of the National Academy of Sciences of the
United States of America 96, 10854-10856 (1999).
[3.12] P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution
nonlinear optical imaging of live cells by second harmonic generation,"
Biophysical Journal 77, 3341-3349 (1999).
[3.13] L. Moreaux, O. Sandre, and J. Mertz, "Membrane imaging by second-harmonic
generation microscopy," J. Opt. Soc. Am. B-Opt. Phys. 17, 1685-1694 (2000).
[3.14] E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K.
Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using
73
second-harmonic generation," Nature Medicine 9, 796-800 (2003).
[3.15] Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning
laser microscopy by third harmonic generation," Applied Physics Letters 70,
922-924 (1997).
[3.16] M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D microscopy of
transparent objects using third-harmonic generation," Journal of
Microscopy-Oxford 191, 266-274 (1998).
[3.17] J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic
generation microscopy," Opt. Express 3, 315-324 (1998).
[3.18] D. Yelin, and Y. Silberberg, "Laser scanning third-harmonic-generation
microscopy in biology," Opt. Express 5, 169-175 (1999).
[3.19] L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, and P. Voisin, "Imaging of
Ca2+ intracellular dynamics with a third-harmonic generation microscope," Opt.
Lett. 26, 515-517 (2001).
[3.20] A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier,
and M. Muller, "Third-harmonic generation microscopy by use of a compact,
femtosecond fiber laser source," Appl. Optics 38, 7393-7397 (1999).
[3.21] A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix
in vivo by using second-harmonic generation and two-photon excited
74
fluorescence," Proceedings of the National Academy of Sciences of the United
States of America 99, 11014-11019 (2002).
[3.22] S. W. Chu, I. H. Chen, T. M. Liu, P. C. Chen, C. K. Sun, and B. L. Lin,
"Multimodal nonlinear spectral microscopy based on a femtosecond Cr :
Forsterite laser," Opt. Lett. 26, 1909-1911 (2001).
[3.23] S. W. Chu, I. H. Chen, T. M. Liu, C. K. Sun, S. P. Lee, B. L. Lin, P. C. Cheng,
M. X. Kuo, D. J. Lin, and H. L. Liu, "Nonlinear bio-photonic crystal effects
revealed with multimodal nonlinear microscopy," Journal of Microscopy-Oxford
208, 190-200 (2002).
[3.24] S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C.
K. Sun, "Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by
polarization harmonics optical microscopy," Biophysical Journal 86, 3914-3922
(2004).
[3.25] C. K. Sun, C. C. Chen, S. W. Chu, T. H. Tsai, Y. C. Chen, and B. L. Lin,
"Multiharmonic-generation biopsy of skin," Opt. Lett. 28, 2488-2490 (2003).
[3.26] C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J.
Tsai, "Higher harmonic generation microscopy for developmental biology," J.
Struct. Biol. 147, 19-30 (2004).
[3.27] I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, "Wavelength
75
dependent damage in biological multi-photon confocal microscopy: A
micro-spectroscopic comparison between femtosecond Ti : Sapphire and Cr :
Forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002).
[3.28] K. Konig, P. T. C. So, W. W. Mantulin, and E. Gratton, "Cellular response to
near-infrared femtosecond laser pulses in two-photon microscopes," Opt. Lett.
22, 135-136 (1997).
[3.29] U. K. Tirlapur, K. Konig, C. Peuckert, R. Krieg, and K. J. Halbhuber,
"Femtosecond near-infrared laser pulses elicit generation of reactive oxygen
species in mammalian cells leading to apoptosis-like death," Experimental Cell
Research 263, 88-97 (2001).
[3.30] S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K.
Sun, "In vivo developmental biology study using noninvasive multi-harmonic
generation microscopy," Opt. Express 11, 3093-3099 (2003).
[3.31] R. R. Anderson, and J. A. Parrish, "The optics of human-skin," Journal of
Investigative Dermatology 77, 13-19 (1981).
[3.32] T. Vo-Dinh, “Biomedical photonics handbook,” 1ST ed. CRC Press, Florida,
2003.
[3.33] J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus,
"Optical-coherence tomography of a dense tissue - statistics of attenuation and
76
backscattering," Physics in Medicine and Biology 39, 1705-1720 (1994).
[3.34] B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto,
"Self-phase-modulated Kerr-lens mode-locked Cr:Forsterite laser source for
optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996).
[3.35] T. M. Liu, S. W. Chu, C. K. Sun, B. L. Lin, P. C. Cheng, and I. Johnson,
"Multiphoton confocal microscopy using a femtosecond Cr: Forsterite laser,"
Scanning 23, 249-254 (2001).
[3.36] I. Thomann, A. Bartels, K. L. Corwin, N. R. Newbury, L. Hollberg, S. A.
Diddams, J. W. Nicholson, and M. F. Yan, "420-MHz Cr : Forsterite
femtosecond ring laser and continuum generation in the 1-2-mu m range," Opt.
Lett. 28, 1368-1370 (2003).
[3.37] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T.
Asom, "Solid-state low-loss intracavity saturable absorber for nd-ylf lasers - an
antiresonant semiconductor fabry-perot saturable absorber," Opt. Lett. 17,
505-507 (1992).
[3.38] N. Matuschek, F. X. Kartner, and U. Keller, "Theory of double-chirped
mirrors," IEEE J. Sel. Top. Quantum Electron. 4, 197-208 (1998).
[3.39] I. Thomann, L. Hollberg, S. A. Diddams, and R. Equall, "Chromium-doped
Forsterite: dispersion measurement with white-light interferometry," Appl.
77
Optics 42, 1661-1666 (2003).
[3.40] Y. Kalisky, "Cr4+-doped crystals: their use as lasers and passive Q-switches,"
Prog. Quantum Electron. 28, 249-303 (2004).
[3.41] D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A.
L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core
microstructured fibers," Opt. Lett. 27, 1513-1515 (2002).
[3.42] W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of
nanojoule femtosecond pulses from a Ti:Sapphire laser through a hollow-core
photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
[3.43]The delivery large-core fiber (part number: LMA-35) was fabricated and
distributed by Crystal Fiber Company. The detailed fiber parameters can be
downloaded from the company website: http://www.crystalfiber.com
[4.1] D. Bird, and M. Gu, "Compact two-photon fluorescence microscope based on a
single-mode fiber coupler," Optics Letters 27, 1031-1033 (2002)
[4.2] D. Bird, and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic
scanning head," Optics Letters 28, 1552-1554 (2003).
[4.3] L. Fu, X. S. Gan, and M. Gu, "Use of a single-mode fiber coupler for
second-harmonic-generation microscopy," Optics Letters 30, 385-387 (2005).
[4.4] W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized
two-photon microscope based on a flexible coherent fiber bundle and a
gradient-index lens objective," Optics Letters 29, 2521-2523 (2004).
[4.5] B. A. Flusberg, J. C. Lung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In
vivo brain imaging using a portable 3.9 gram two-photon fluorescence
microendoscope," Optics Letters 30, 2272-2274 (2005).
[4.6] M. T. Myaing, D. J. MacDonald, and X. D. Li, "Fiber-optic scanning two-photon
fluorescence endoscope," Optics Letters 31, 1076-1078 (2006).
[4.7] W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker,
H. J. Ra, D. S. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon
fluorescence imaging based on a microelectromechanical systems
105
two-dimensional scanning mirror," Optics Letters 31, 2018-2020 (2006).
[4.8] M. C. Chan, S. -W. Chu, C. H. Tseng, Y. C. Wen, Y. H Chen, G. D. Su, and C. –K.
Sun, "Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher
efficiencies ," Microscopy Research and Technique 71, 559-563 (2008)
[4.9] M. T. Myaing, J. Urayama, A. Braun, and T. B. Norris, "Nonlinear propagation
of negatively chirped pulses: Maximizing the peak intensity at the output of a
fiber probe," Optics Express 7, 210-214 (2000).
[4.10] S. W. Clark, F. O. Ilday, and F. W. Wise, "Fiber delivery of femtosecond pulses
from a Ti : Sapphire laser," Optics Letters 26, 1320-1322 (2001).
[4.11] S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, and C. K. Sun,
"Two-photon fluorescence microscope with a hollow-core photonic crystal
fiber," Optics Express 12, 6122-6128 (2004).
[4.12] G. –P. Agrawal, Nonlinear Fiber Optics(Academic, 2007).
[4.13] W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of
nanojoule femtosecond pulses from a Ti: Sapphire laser through a hollow-core
photonic crystal fiber," Optics Letters 29, 1285-1287 (2004).
[4.14] M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, "Compact fiber-delivered Cr:
Forsterite laser for nonlinear light microscopy," Journal of Biomedical Optics 10,
106
4, 054006 (2005).
[4.15] L. Fu, and M. Gu, "Double-clad photonic crystal fiber coupler for compact
nonlinear optical microscopy imaging," Optics Letters 31, 1471-1473 (2006).
[4.16] E. Hecht, Optics (Addision Wesley, 2001)
[4.17] J. W. Fleming, "Material dispersion in lightguide glasses," Electronics Letters
14, 326-328 (1978).
[4.18] P. –A. Tick and P.-L. Bocko, Optical Materials (Marcel Dekker, 1990), pp.
147-218.
[4.19] Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, 1984).
[4.20] R. –W. Boyd, Nonlinear Optics (Academic, 1992).
[4.21] A. Yariv, Optical electronics in modern communications (Oxford, 1997).
[4.22] J. -M. Geary, Introduction to Lens Design (Willmann-Bell. 2002).
[4.23] R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second-harmonic
generation images of collagen I fibrils," Biophysical Journal 88, 1377-1386
(2005).
[4.24] R. -F. Fischer and B. Tadic, Optical System Design (McGraw-Hill, 2000)
[5.1] M. C. Chan, S. H. Chia, T. M Liu, T. H. Tsai, M. C. Ho, A. Ivanov, A. Zheltikov, J.
Y. Liu, H. L. Liu and C. –K. Sun, “1.2-2.2-µm tunable Raman soliton source
based on a Cr:Forsterite-laser and a photonic-crystal fiber,” IEEE Photonics
Technology Letters 20, 900-902 (2008).
[5.2] M. C. Chan, P. C. Peng, Y. Lai, S. Chi and C. –K. Sun, “Large variable true
time-delay via a self-frequency-shifted source and a dispersive fiber,” manuscript
in preparation.
[5.3] Y. Wang, C. Y. Yu, L. S. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M.
Fejer, J. E. Sharping, and A. L. Gaeta, "44-ns Continuously tunable dispersionless
optical delay element using a PPLN waveguide with two-pump configuration,
DCF, and a dispersion compensator," IEEE Photonics Technology Letters 19,
861-863 (2007).
[5.4] A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational
imaging by coherent anti-Stokes Raman scattering," Physical Review Letters 82,
4142-4145 (1999).
[5.5] E. R. Andresen, V. Birkedal, J. Thogersen, and S. R. Keiding, "Tunable light
source for coherent anti-Stokes Raman scattering microspectroscopy based on the
soliton self-frequency shift," Optics Letters 31, 1328-1330 (2006).
140
[5.6] T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen,
and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt.
Express 12, 4080-4087 (2004).
[5.7] G. McConnell, and E. Riis, "Photonic crystal fibre enables short-wavelength
two-photon laser scanning fluorescence microscopy with fura-2," Physics in
Medicine and Biology 49, 4757-4763 (2004).
[5.8] A. A. Ivanov, M. V. Alfiniov, and A. M. Zheltikov, "Wavelength-tunable
ultrashort-pulse output of a photonic-crystal fiber designed to resolve ultrafast
molecular dynamics," Optics Letters 31, 3330-3332 (2006).
[5.9] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W.
Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically
poled LiNbO3," Journal of the Optical Society of America B-Optical Physics 12,
2102-2116 (1995).
[5.10] F. M. Mitschke, and L. F. Mollenauer, "Discovery of the soliton
self-frequency shift," Optics Letters 11, 659-661 (1986).
[5.11] J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica
single-mode optical fiber with photonic crystal cladding," Optics Letters 21,
1547-1549 (1996).
[5.12] I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell,
141
"Observation of soliton self-frequency shift in photonic crystal fibre," Electronics
Letters 38, 167-169 (2002).
[5.13] E. E. Serebryannikov, M. L. Hu, Y. F. Li, C. Y. Wang, Z. Wang, L. Chai, and
A. M. Zheltikov, "Enhanced soliton self-frequency shift of ultrashort light pulses,"
Jetp Letters 81, 487-490 (2005).
[5.14] E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T.
Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton self-frequency shift of 6-fs
pulses in photonic-crystal fibers," Applied Physics B-Lasers and Optics 81,
585-588 (2005).
[5.15] H. Lim, F. O. Ilday, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based
source of femtosecond pulses tunable from 1.0 to 1.3 microns (vol 40, pg 24,
2004)," Electronics Letters 42, 950-950 (2006).
[5.16] J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, "1.0-1.7-µm
wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber
laser and photonic crystal fiber," IEEE Photonics Technology Letters 18,
2284-2286 (2006).
[5.17] H. Lim, F. O. Ilday, J. Buckley, A. Chong, and F. W. Wise, "Fibre-based
source of femtosecond pulses tunable from 1.0 to 1.3 microns (vol 40, pg 24,
2004)," Electronics Letters 42, 950-950 (2006).
142
[5.18] X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski,
and R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica
microstructure fiber," Optics Letters 26, 358-360 (2001).
[5.19] N. Nishizawa, R. Okamura, and T. Goto, "Analysis of widely wavelength
tunable femtosecond soliton pulse generation using optical fibers," Japanese
Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers
38, 4768-4771 (1999).
[5.20] N. Nishizawa, R. Okamura, and T. Goto, "Simultaneous generation of
wavelength tunable two-colored femtosecond soliton pulses using optical fibers,"
IEEE Photonics Technology Letters 11, 421-423 (1999).
[5.21] S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, "Tunable Raman
soliton source using mode-locked Tm-Ho fiber laser," IEEE Photonics
Technology Letters 19, 934-936 (2007).
[5.22] S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker,
"Eye-safe coherent laser-radar system at 2.1-mu-m using tm,ho-yag lasers," Optics
Letters 16, 773-775 (1991).
[5.23] J. S. Harris, "Tunable long-wavelength vertical-cavity lasers: The engine of
next generation optical networks?," IEEE Journal of Selected Topics in Quantum
Electronics 6, 1145-1160 (2000).
143
[5.24] T. Miyashita, and T. Manabe, "INFRARED OPTICAL FIBERS," IEEE
Journal of Quantum Electronics 18, 1432-1450 (1982).
[5.25] G. –P. Agrawal, Nonlinear fiber optics (Academic, 2007).
[5.26] A. M. Zheltikov, "Perturbative analytical treatment of adiabatically moderated
soliton self-frequency shift," Physical Review E 75 (2007).
[5.27] J. K. Lucek, and K. J. Blow, "Soliton self-frequency shift in
telecommunications fiber," Physical Review A 45, 6666-6674 (1992).
[5.28] J. H. Lee, J. van Howe, C. Xu, and X. Liu, "Soliton self-frequency shift:
Experimental demonstrations and applications," IEEE Journal of Selected Topics
in Quantum Electronics 14, 713-723 (2008).
[5.29] S. Kingsley and S. Quegan,. Understanding radar systems (McGRAW-HILL,
1993).
[5.30] R. A. Minasian, "Photonic signal processing of microwave signals," IEEE
Transactions on Microwave Theory and Techniques 54, 832-846 (2006).
[5.31] K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W.
Goodman, and H. J. Shaw, "Optical fiber delay-line signal-processing," IEEE
Transactions on Microwave Theory and Techniques 33, 193-210 (1985).
[5.32] J. L. Corral, J. Marti, S. Regidor, J. M. Fuster, R. Laming, and M. J. Cole,
"Continuously variable true time-delay optical feeder for phased-array antenna
144
employing chirped fiber gratings," IEEE Transactions on Microwave Theory and
Techniques 45, 1531-1536 (1997).
[5.33] B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, "Variable
delay line for phased-array antenna based on a chirped fiber grating," IEEE
Transactions on Microwave Theory and Techniques 48, 1352-1360 (2000).
[5.34] N. A. Riza, M. A. Arain, and S. A. Khan, "Hybrid analog-digital variable
fiber-optic delay line," Journal of Lightwave Technology 22, 619-624 (2004).
[5.35] V. Kaman, X. Z. Zheng, R. J. Helkey, C. Pusarla, and J. E. Bowers, "A
32-element 8-bit photonic true-time-delay system based on a 288 x 288 3-D
MEMS optical switch," IEEE Photonics Technology Letters 15, 849-851 (2003).
[5.36] J. Tong, J. K. Wade, D. L. MacFarlane, H. X. Shi, S. McWilliams, G. A.
Evans, and M. P. Christensen, "Active integrated photonic true time delay device,"
IEEE Photonics Technology Letters 18, 1720-1722 (2006).
[5.37] K. Wilner, and A. P. Vandenheuvel, "Fiberoptic delay-lines for microwave
signal-processing," Proc. IEEE 64, 805-807 (1976).
[5.38] D. B. Hunter, and R. A. Minasian, "Photonic signal processing of microwave
signals using an active-fiber Bragg-grating-pair structure," IEEE Transactions on
Microwave Theory and Techniques 45, 1463-1466 (1997).
[5.39] J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform
145
generator," IEEE Photonics Technology Letters 15, 581-583 (2003).
[5.40] D. B. Hunter, and R. A. Minasian, "Programmable high-speed optical code
recognition using fibre Bragg grating arrays," Electronics Letters 35, 412-414
(1999).
[5.41] F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its
application to analog-to-digital conversion," IEEE Transactions on Microwave
Theory and Techniques 47, 1309-1314 (1999).
[5.42] V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, "Chirped fiber
Bragg gratings for electrically tunable time delay lines," IEEE Journal of Selected
Topics in Quantum Electronics 11, 408-416 (2005).
[5.43] G. Keiser, Optical fiber communications (McGraw-Hill, 2000).
[5.44] M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, "Compact fiber-delivered Cr:
Forsterite laser for nonlinear light microscopy," Journal of Biomedical Optics 10,
4, 054006 (2005).
[5.45] D. Derickson, Fiber optic test and measurement (Prentice Hall, 1998).
[5.46] E. Parra, and J. R. Lowell, "Toward applications of slow light technology,"
Optics & Photonics News 18, 40-45 (2007).
[5.47] J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner,
and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay
based on parametric wavelength conversion and dispersion," Opt. Express 13,
7872-7877 (2005).
[5.48] J. P. Gordon, "Theory of the soliton self-frequency shift," Optics Letters 11,
662-664 (1986).
[5.49] D. P. Wei, Y. C. Zhao, T. J. Li, and S. S. Jian, "A novel scheme for optical
pulse multiplication using fiber coupler loop-connecting configuration,"
Czechoslovak Journal of Physics 51, 155-162 (2001).
[5.50] K. S. Abedin, and F. Kubota, "Widely tunable femtosecond soliton pulse
generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in
photonic crystal fiber," Optics Letters 28, 1760-1762 (2003).
[5.51] A. Yariv, Optical Electronics in Modern Communications (Oxford, 1997).
[5.52] The tunable Fabry-Perot filters are commercial available. For example, see the
products of MicroOptics company.
147
M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, "Compact fiber-delivered Cr:
Forsterite laser for nonlinear light microscopy," Journal of Biomedical Optics
10:0504006 (2005).
[6.2] M. C. Chan, S. -W. Chu, C. H. Tseng, Y. C. Wen, Y. H Chen, G. D. Su, and C. –K.
Sun, "Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher
efficiencies ," Microscopy Research and Technique 71, 559-563 (2008).
[6.3] M. C. Chan, S. H. Chia, T. M. Liu, T. H. Tsai, M. C. Ho, A. A. Ivanov, A. M.
Zheltikov, J. Y. Liu, H. L. Liu, and C. K. Sun, "1.2- to 2.2-µm tunable Raman
soliton source based on a Cr : Forsterite laser and a photonic-crystal fiber," Ieee
Photonics Technology Letters 20, 900-902 (2008).
[6.4] M.C. Chan, P. C. Peng, Y. Lai, S. Chi and C. –K. Sun, “Large variable true
time-delay via a self-frequency-shifted source and a dispersive fiber,” submitted
to IEEE Photonics Technology Letters. (Manuscript ID: PTL-19614-2008)
[6.5] W. W. Hsiang, C. Y. Lin, M. F. Tien, and Y. C. Lai, "Direct generation of a
10GHz 816 fs pulse train from an erbium-fiber soliton laser with asynchronous
phase modulation," Optics Letters 30, 2493-2495 (2005).
[6.6] A. V. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, P. G.
Kryukov, A. V. Konyashchenko, and E. M. Dianov, "177 fs erbium-doped fiber
155
laser mode locked with a cellulose polymer film containing single-wall carbon
nanotubes," Applied Physics Letters 92 (2008).
[6.7] B. Ortac, A. Hideur, and M. Brunel, "Passive harmonic mode locking with a
high-power ytterbium-doped double-clad fiber laser," Optics Letters 29,
1995-1997 (2004).
[6.8] X. Y. Zhou, D. Yoshitomi, Y. H. Kobayashi, and K. J. Torizuka, "Generation of
28-fs pulses from a mode-locked ytterbium fiber oscillator," Optics Express 16,
7055-7059 (2008).
[6.9] S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg,
and F. V. Dimarcello, "Light propagation with ultralarge modal areas in optical
fibers," Optics Letters 31, 1797-1799 (2006).
[6.10] S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg,
and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber,"
Optics Letters 31, 2532-2534 (2006).
[6.11] J. van Howe, J. H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi,
and M. F. Yan, "Demonstration of soliton self-frequency shift below 1300 nm in
higher-order mode, solid silica-based fiber," Optics Letters 32, 340-342 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top