跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/27 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱垂珉
研究生(外文):Chui-Min Chiu
論文名稱:光纖掃瞄式兆赫波近場顯微術
論文名稱(外文):THz Fiber-Scanning Near-Field Microscopy
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:102
中文關鍵詞:單模光纖兆赫波影像表面電漿波近場顯微術乳癌
外文關鍵詞:Single-Mode FiberTHz ImagingSurface Plasmon PolaritonsNear-Field MicroscopyBreast Cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,兆赫波在生醫方面的相關研究日益受到重視,利用兆赫波來做生物分子的頻譜分析、影像以及感測,則是目前兆赫波科技發展的主要重點。由於兆赫波具有低能量、非游離性輻射以及直接辨認生物分子的能力,這些特性使得兆赫波可以在不需外加染劑的情況下對樣品做非侵入式的生醫影像分析。
在過去的研究中,大多是利用金屬反射鏡來改變兆赫波在空氣中的傳播路徑,由於缺乏可以長距離且低損耗地傳導兆赫波的波導,至今大部分的兆赫波影像都是利用在焦平面上移動樣品來完成影像的掃描,這種移動樣品的成像方式大大限制了兆赫波在生醫影像上的應用。有鑑於此,前年本實驗室發展出一種極低損耗的次波長兆赫波光纖,可以用來長距離的傳導兆赫波並且具有成本低廉、實作容易、低傳輸損耗、低彎曲損耗和高入射耦合效率…等優點。利用此兆赫波光纖,我們成功建立一套全室溫操作的小體積兆赫波光纖掃描影像系統,並且完成大面積的掃描固定不動的生物樣品,同時得到的影像具有高雜訊比與合理解析度。
然而,兆赫波影像的空間解析度受限於其波長,為了突破繞射極限的限制,我們利用通過次波長的金屬孔洞在近場範圍下來實現小於一個波長的空間解析度,此法就類似於光學中的掃描式近場光學顯微術(SNOM)。我們設計了一個由數個週期性溝槽環繞一個次波長圓孔組成的金屬空間濾波器,用以增強穿透效率同時達到次波長的空間解析度,並將之與先前建立的兆赫波光纖掃描影像系統整合,成功的建立了第一個全室溫操作的直立式小體積全兆赫波光纖掃描式近場顯微鏡,並且可輕易的與一般的光學顯微鏡作結合。在未經染色標定的人體乳癌樣品上所作的兆赫波近場顯微影像中,經由與事後染色標定的病理分析作比對,發現兆赫波近場顯微影像對人體乳癌有極高的靈敏度與特異度。希望未來在臨床應用上,能夠幫助醫生確認病患的乳癌是否已經全部切除乾淨,減少二次手術發生。
Within the last several years, terahertz (THz) science and technology has been attracting much attention for various biomedical applications, such as THz spectroscopy, sensing and imaging of biological molecules and tissues, because different bio-molecules have their distinctive absorption spectra in the THz frequency range. In addition, THz radiation is non-ionizing, and the power levels are many orders of magnitude less than the recommended safety guidelines. Therefore, compared with conventional imaging techniques such as X-ray imaging, THz imaging is believed to be a safe and non-invasive technique.
To date, most of the THz imaging systems has been constructed by many metal reflectors fixed on optical tabletop, and thus THz waves could propagate between these mirrors in free space. THz imaging is performed by moving the sample in front of the focused THz beam by means of a computer-controlled two-dimensional translation stage. This imaging system (sample-scanning) may restrict the future development and the practicability into living tissue, because samples are not always movable in most biomedical imaging applications. Moving the objects, especially in the form of powder or liquid or live biological specimens, sometimes will also disturb the sample frequently. A beam scanning THz imaging system is thus extremely needed.
Recently, we proposed an alternative method which was based on our demonstrated low-loss sub-wavelength polyethylene (PE) fiber to construct a fiber-scanning THz imaging system which has advantages of compact size, all room-temperature operation, high SNR, reasonable spatial resolution, and without moving the imaged objects. The demonstrated THz sub-wavelength PE fiber has advantages including: ease of fabrication, low attenuation constant (< 0.01cm-1), low bending loss, and with a high free space coupling efficiency (typically about 50%). THz waves could be long-distance guided along the sub-wavelength fiber to the sample region and THz images would be acquired by directly 2D scanning of the THz fiber output end.
However, the spatial resolution of THz imaging is limited by the wavelength (0.3mm at 1THz). To improve the spatial resolution, a near-field technology is required, similar to the scanning near-field optical microscopy (SNOM). Hence, based on a fiber-scanning THz imaging system with an optimally designed plasmon-resonance bull’s-eye metallic spatial filter, which is consisted of a single sub-wavelength aperture surrounded by the concentric periodic grooves, we report the first ever demonstration of the transmission-illumination mode of an upright-type all-THz fiber-scanning near-field microscope with a compact size operating at room-temperature, which is capable to be integrated with a common optical microscope. Samples can be observed by the optical microscope immediately without moving after fiber scanning for a THz near-field image. By applying this trans-illumination imaging system to the examination of human breast sections, our preliminary results show that this near-field imaging system could clearly and accurately distinguish between breast cancerous tissues from normal tissues in the same section without any pathologic staining. The distribution regions of breast cancer are also in excellent agreement with pathologic diagnosis by using H&E staining.
In the clinical applications, the demonstrated THz near-field imaging system could help to more accurately define the margins of cancer, minimize the size of normal tissues excised in the breast-conserving surgery (BCS), and reduce the need for any additional surgery procedures.
誌謝………………………………………………………………………Ⅰ
摘要………………………………………………………………………Ⅱ
Abstract…………………………………………………………………Ⅲ
Contents…………………………………………………………………Ⅵ
Figure Contents ………………………………………………………Ⅷ
Chapter 1 Introduction ………………………………………………1
1.1 Background of Terahertz Technology……………………………4
1.2 An Introduction of Terahertz Near-Field Microscopy…………6
1.2.1 THz Near-Field Imaging with a Subwavelength Aperture…6
1.2.2 THz Near-Field Imaging with a Dynamic Aperture………8
1.2.3 Apertureless THz Near-Field Imaging……………………8
1.3 An Overview of Our Research…………………………………9
Reference……………………………………………………………11

Chapter 2 Construction of a THz Fiber-Scanning Transmission
Imaging System……………………………………………18
2.1 Review of the Low-Loss Subwavelength THz Fiber…………20
2.1.1 Basic Model of the Subwavelength PE Fiber……………20
2.1.2 Characteristics of the Subwavelength PE Fiber…………23
2.2 Transmission-Type THz Fiber-Scanning Imaging System……26
2.2.1 Experimental Setup………………………………………27
2.2.2 Experimental Results and Discussion……………………30
Reference……………………………………………………………34

Chapter 3 Design of the Metallic Bull’s-Eye Structure for
Transmission Enhancement in the THz Regime………39
3.1 Design of the Metallic Bull’s-Eye Structure……………………41
3.2 Fabrication Process of the Metallic Bull’s-Eye Structure………46
3.3 Experimental Setup……………………………………………47
3.4 Experimental Results and Discussion…………………………49
Reference……………………………………………………………54

Chapter 4 THz Fiber-Scanning Near-Field Microscope of Human
Breast Tissues……………………………………………59
4.1 Construction of the Transmission-Illumination Mode of an
All-THz Fiber-Scanning Near-Field Imaging System…………61
4.2 Examination of Breast Cancer Biopsy Sections .………………66
4.2.1 Frozen Section Biopsy Procedure………………………66
4.2.2 Preparation for Frozen Sections of Breast Tissues………67
4.2.3 System Setup……………………………………………68
4.3 Experimental Results and Discussion…………………………72
Reference……………………………………………………………91

Chapter 5 Summary and Future Works……………………………98
Reference…………………………………………………………101
Chapter1
[1.1]D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Applied Physics B: Lasers and Optics 68, 1085-1094 (1999).
[1.2]A. G. Davies, E. H. Linfield, and M. B. Johnston, "The development of terahertz sources and their applications," Physics in Medicine and Biology 47, 3679-3689 (2002).
[1.3]D. Dragoman, and M. Dragoman, "Terahertz fields and applications," Progress in Quantum Electronics 28, 1-66 (2004).
[1.4]A. Redo-Sanchez, and X.-C. Zhang, "Terahertz science and technology trends," IEEE Journal of Selected Topics in Quantum Electronics 14, 260-269 (2008).
[1.5]K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Optics Express 11, 2549-2554 (2003).
[1.6]M.-H. Lu, J.-L. Shen, N. Li, Y. Zhang, C.-L. Zhang, L.-S. Liang, and X.-Y. Xu, "Detection and identification of illicit drugs using terahertz imaging," Journal of Applied Physics 100, 103104 (2006).
[1.7]S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, "The interaction between Terahertz radiation and biological tissue," Physics in Medicine and Biology 46, R101-R112 (2001).
[1.8]P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques 52, 2438-2447 (2004).
[1.9]E. Pickwell, and V. P. Wallace, "Biomedical applications of terahertz technology," Journal of Physics D: Applied Physics 39, R301-R310 (2006).
[1.10]M. Pepper, "Medical applications of terahertz imaging and spectroscopy," Medical Physics 30, 1540-1540 (2003).
[1.11]B. B. Hu, and M. C. Nuss, "Imaging with terahertz waves," Optics Letters 20, 1716-1718 (1995).
[1.12]D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, "T-ray imaging," IEEE Journal of Selected Topics in Quantum Electronics 2, 679-692 (1996).
[1.13]D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. Arnone, and M. Pepper, "Three-dimensional terahertz pulse imaging of dental tissue," Journal of Biomedical Optics 8, 303-307 (2003).
[1.14]M. R. Stringer, D. N. Lund, A. P. Foulds, A. Uddin, E. Berry, R. E. Miles, and A. G. Davies, "The analysis of human cortical bone by terahertz time-domain spectroscopy," Physics in Medicine and Biology 50, 3211-3219 (2005).
[1.15]L. Thrane, R. H. Jacobsen, P. U. Jepsen, and S. R. Keiding, "THz Reflection Spectroscopy of Liquid Water," Chemical Physics Letters 240, 330-333 (1995).
[1.16]R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue," Physics in Medicine and Biology 47, 3853-3863 (2002).
[1.17]R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging of ex vivo basal cell carcinoma," Journal of Investigative Dermatology 120, 72-78 (2003).
[1.18]E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, "In vivo study of human skin using pulsed terahertz radiation," Physics in Medicine and Biology 49, 1595-1607 (2004).
[1.19]T. Enatsu, H. Kitahara, K. Takano, T. Nagashima, M. Tani, M. Hangyo, Y. Miura, and T. Sawai, "Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples," 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Vols 1 and 2, 549-550 (2007).
[1.20]A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, "Terahertz pulsed imaging of human breast tumors," Radiology 239, 533-540 (2006).
[1.21]V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, "Terahertz pulsed spectroscopy of human basal cell carcinoma," Applied Spectroscopy 60, 1127-1133 (2006).
[1.22]V. P. Wallace, P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, "Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications," Faraday Discussions 126, 255-263 (2004).
[1.23]P. C. Ashworth, E. Pickwell-MacPherson, S. E. Pinder, E. Provenzano, A. D. Purushotham, M. Pepper, and V. P. Wallace, "Terahertz spectroscopy of breast tumors," 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Vols 1 and 2, 590-592 (2007).
[1.24]J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Applied Physics Letters 92, 084102 (2008).
[1.25]E. Betzig, and J. K. Trautman, "Near-field optics - microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[1.26]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[1.27] C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[1.28]D. M. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin Heidelberg, 2003)
[1.29]N. Karpowicz, H. Zhong, C.-L. Zhang, K.-I. Lin, J.-S. Hwang, J.-Z. Xu, and X.-C. Zhang, "Compact continuous-wave subterahertz system for inspection applications," Applied Physics Letters 86, 054105 (2005).
[1.30]E. Berry, G. C. Walker, A. J. Fitzgerald, N. N. Zinov''ev, M. Chamberlain, S. W. Smye, R. E. Miles, and M. A. Smith, "Do in vivo terahertz imaging systems comply with safety guidelines?," Journal of Laser Applications 15, 192-198 (2003).
[1.31]S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, "THz near-field imaging," Optics Communications 150, 22-26 (1998).
[1.32]O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. F. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, "Collection-mode near-field imaging with 0.5-THz pulses," IEEE Journal of Selected Topics in Quantum Electronics 7, 600-607 (2001).
[1.33]H. A. Bethe, "Theory of diffraction by small holes," Physical Review 66, 163-182 (1944).
[1.34]X. L. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Optics Letters 28, 1320-1322 (2003).
[1.35]E. X. Jin, and X. F. Xu, "Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film," Japanese Journal of Applied Physics Part 1: Regular Papers Short Notes & Review Papers 43, 407-417 (2004).
[1.36]G. C. des Francs, D. Molenda, U. C. Fischer, and A. Naber, "Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations," Physical Review B 72, 165111 (2005).
[1.37]E. X. Jin, and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Applied Physics Letters 88, 153110 (2006).
[1.38]H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Optics Express 13, 763-769 (2005).
[1.39]K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Japanese Journal of Applied Physics Part 2: Letters & Express Letters 44, L929-L931 (2005).
[1.40]K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, "Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture," Applied Physics Letters 89, 201120 (2006).
[1.41]Q. Chen, Z. P. Jiang, G. X. Xu, and X.-C. Zhang, "Near-field terahertz imaging with a dynamic aperture," Optics Letters 25, 1122-1124 (2000).
[1.42]Q. Chen, and X.-C. Zhang, "Semiconductor dynamic aperture for near-field terahertz wave imaging," IEEE Journal of Selected Topics in Quantum Electronics 7, 608-614 (2001).
[1.43]H.-T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Applied Physics Letters 83, 3009-3011 (2003).
[1.44]N. C. J. van der Valk, and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Applied Physics Letters 81, 1558-1560 (2002).

Chapter2
[2.1]R. Mendis, and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Optics Letters 26, 846-848 (2001).
[2.2]R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultra- wideband short pulses of terahertz radiation through submillimeter diameter circular waveguides,” Optics Express 24, 1431–1433 (1999).
[2.3]G. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” Journal of the Optical Society of America B: Optical Physics 17, 851–863 (2000).
[2.4]K.-L. Wang, and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
[2.5]M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Applied Physics Letters 90, 061111 (2007).
[2.6]T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Applied Physics Letters 85, 6092–6094 (2004).
[2.7]S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Applied
Physics Letters 76, 1987-1989 (2000).
[2.8]C. Yeh, F. Shimabukuro, and P. H. Siegel, "Low-loss terahertz ribbon waveguides," Applied Optics 44, 5937-5946 (2005).
[2.9]H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Applied Physics Letters 80, 2634-2636 (2002).
[2.10]S. Kim, C.-S. Kee, and J. Lee, "Single-mode condition and dispersion of terahertz photonic crystal fiber," Journal of the Optical Society of Japan 11, 97-100 (2007).
[2.11]M. Nagel, A.Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Optics Express 14, 9944–9954 (2006).
[2.12]A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Optics Express 16, 6340-6351 (2008).
[2.13]S. Atakaramians, A. V. Shahraam, B. M. Fischer, D. Abbott, and T. M. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Optics Express 16, 8845-8854 (2008).
[2.14]C. Themistos, B.M.A. Rahman, M. Rajarajan, K.T.V. Grattan, B. Bowden, J. A. Harrington, ”Characterization of silver/polystyrene (PS)-coated hollow glass waveguides at THz frequency,” Journal of Lightwave Technology 25, 2456-2462 (2007)
[2.15]J. A. Harrington, R. George, P. Pedersen, E. Mueller, ”Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Optics Express 12, 5263-5268 (2004).
[2.16]L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Optics Letters 31, 308-310 (2006).
[2.17]H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Optics Letters 32, 1017-1019 (2007).
[2.18]D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Applied Physics B: Lasers and Optics 68, 1085-1094 (1999).
[2.19]X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Physics in Medicine and Biology 47, 3667-3677 (2002).
[2.20]L.-J. Chen, Terahertz subwavelength fiber, M. D. Thesis, Institute of Electro- Optical Engineering, National Taiwan University, Taipei, Taiwan (2005).
[2.21]A. Yariv, Photonics:Optical Electronics in Modern Communications (Oxford University Press, New York, USA 2007).

[2.22]L.-M. Tong, J.-Y. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Optics Express 12, 1025-1035 (2004).
[2.23]J.-W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” International Journal of Infrared and Millimeter Waves 17, 1997-2034 (1996).
[2.24]H.-W. Chen, Single mode fiber-based terahertz directional coupler, M. D. Thesis, Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan (2006).
[2.25]C. D. Han, and R. R. Lamonte, “Studies on melting spinning. I. Effect of molecular structure and molecular weight distribution on elongation viscosity,” Journal of Rheology 16, 447-472 (1972).
[2.26]J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously tunable 65-115 GHz Gunn oscillator," IEEE Transactions on Microwave Theory and Techniques 33, 610-619 (1985).
[2.27]H. Eisele, A. Rydberg, and G. I. Haddad, "Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above," Transactions on Microwave Theory and Techniques 48, 626-631 (2000).
[2.28]Golay Cell, Microtech Instruments, Inc., Eugene, Oregon, USA (http://www.mtin -struments.com).
[2.29]J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Applied Physics Letters 92, 084102 (2008).
[2.30]J.-Y. Lu, Terahertz molecular imaging and sensing applications, Ph. D. Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (2007).

Chapter3
[3.1]S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, "The interaction between Terahertz radiation and biological tissue," Physics in Medicine and Biology 46, R101-R112 (2001).
[3.2]P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques 52, 2438-2447 (2004).
[3.3]E. Pickwell, and V. P. Wallace, "Biomedical applications of terahertz technology," Journal of Physics D: Applied Physics 39, R301-R310 (2006).
[3.4]E. Betzig, and J. K. Trautman, "Near-field optics - microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[3.5]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[3.6] C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[3.7]H. A. Bethe, "Theory of diffraction by small holes," Physical Review 66, 163-182 (1944).
[3.8]X. L. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Optics Letters 28, 1320-1322 (2003).
[3.9]X. L. Shi, and L. Hesselink, "Design of a C aperture to achieve lambda/10 resolution and resonant transmission," Journal of the Optical Society of America B: Optical Physics 21, 1305-1317 (2004).
[3.10]E. X. Jin, and X. F. Xu, "Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film," Japanese Journal of Applied Physics Part 1: Regular Papers Short Notes & Review Papers 43, 407-417 (2004).
[3.11]K. Tanaka, and M. Tanaka, "Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size," Optics Communications 233, 231-244 (2004).
[3.12]G. C. des Francs, D. Molenda, U. C. Fischer, and A. Naber, "Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations," Physical Review B 72, 165111 (2005).
[3.13]E. Bortchagovsky, G. C. D. Francs, A. Naber, and U. C. Fischer, "On the optimum form of an aperture for a confinement of the optically excited electric near fieldl," Journal of Microscopy-Oxford 229, 223-227 (2008).
[3.14]E. X. Jin, and X. F. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Applied Physics Letters 86, 111106 (2005).
[3.15]E. X. Jin, and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Applied Physics Letters 88, 153110 (2006).
[3.16]H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Optics Express 13, 763-769 (2005).
[3.17]H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
[3.18]K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, "Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture," Japanese Journal of Applied Physics Part 2: Letters & Express Letters 44, L929-L931 (2005).
[3.19]A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Optics Express 13, 3535-3542 (2005).
[3.20]A. Agrawal, and A. Nahata, "Time-domain radiative properties of a single subwavelength aperture surrounded by an exit side surface corrugation," Optics Express 14, 1973-1981 (2006).
[3.21]J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously tunable 65-115 GHz Gunn oscillator," IEEE Transactions on Microwave Theory and Techniques 33, 610-619 (1985).
[3.22]H. Eisele, A. Rydberg, and G. I. Haddad, "Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above," IEEE Transactions on Microwave Theory and Techniques 48, 626-631 (2000).
[3.23]Golay Cell, Microtech Instruments, Inc., Eugene, Oregon, USA (http://www.mtin -struments.com).
[3.24]L. Bachmann, D. M. Zezell, and E. P. Maldonado, "Determination of beam width and quality for pulsed lasers using the knife-edge method," Instrumentation Science & Technology 31, 47-52 (2003).
[3.25]D. Wright, P. Greve, J. Fleischer, and L. Austin, "Laser-beam width, divergence and beam propagation factor - an international standardization approach," Optical and Quantum Electronics 24, S993-S1000 (1992).

Chapter4
[4.1]S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, "The interaction between Terahertz radiation and biological tissue," Physics in Medicine and Biology 46, R101-R112 (2001).
[4.2]P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Transactions on Microwave Theory and Techniques 52, 2438-2447 (2004).
[4.3]E. Pickwell, and V. P. Wallace, "Biomedical applications of terahertz technology," Journal of Physics D: Applied Physics 39, R301-R310 (2006).
[4.4]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[4.5]S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, "THz near-field imaging," Optics Communications 150, 22-26 (1998).
[4.6]J. B. Masson, M. P. Sauviat, and G. Gallot, "Ionic contrast terahertz time resolved imaging of frog auricular heart muscle electrical activity," Applied Physics Letters 89, 153904 (2006).
[4.7]J. B. Masson, M. P. Sauviat, J. L. Martin, and G. Gallot, "Ionic contrast terahertz near-field imaging of axonal water fluxes," Proceedings of the National Academy of Sciences of the United States of America 104, 4808-4812 (2007).
[4.8]U. Schade, K. Holldack, P. Kuske, G. Wustefeld, and H. W. Hubers, "THz near-field imaging employing synchrotron radiation," Applied Physics Letters 84, 1422-1424 (2004).
[4.9]U. Schade, K. Holldack, M. C. Martin, and D. Fried, "THz near-field imaging of biological tissues employing synchrotron radiation," Ultrafast Phenomena in Semiconductors and Nanostructure Materials IX 5725, 46-52 (2005).
[4.10]J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, "Terahertz scanning imaging with a subwavelength plastic fiber," Applied Physics Letters 92, 084102 (2008).
[4.11]L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Optics Letters 31, 308-310 (2006).
[4.12]H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, "Investigation on spectral loss characteristics of subwavelength terahertz fibers," Optics Letters 32, 1017-1019 (2007).
[4.13]J. E. Carlstrom, R. L. Plambeck, and D. D. Thornton, "A continuously tunable 65-115 GHz Gunn oscillator," IEEE Transactions on Microwave Theory and Techniques 33, 610-619 (1985).
[4.14]H. Eisele, A. Rydberg, and G. I. Haddad, "Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above," IEEE Transactions on Microwave Theory and Techniques 48, 626-631 (2000).
[4.15]L. B. Wilson, "A method for the rapid preparation of fresh tissues for the microscope," The Journal of the American Medical Association 45, 1737 (1905).
[4.16]E. Mueller-Holzner, T. Frede, M. Daniaux, M. Ban, S. Taucher, A. Schneitter, A. G. Zeimet, and C. Marth, "Ultrasound-guided core needle biopsy of the breast: Does frozen section give an accurate diagnosis?," Breast Cancer Research and Treatment 106, 399-406 (2007).
[4.17]T. P. Olson, J. Harter, A. Munoz, D. M. Mahvi, and T. M. Breslin, "Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence," Annals of Surgical Oncology 14, 2953-2960 (2007).
[4.18]S. D. Loken, and D. J. Demetrick, "A novel method for freezing and storing research tissue bank specimens," Human Pathology 36, 977-980 (2005).
[4.19]P. C. Ashworth, E. Pickwell-MacPherson, S. E. Pinder, E. Provenzano, A. D. Purushotham, M. Pepper, and V. P. Wallace, "Terahertz spectroscopy of breast tumors," 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Vols 1 and 2, 590-592 (2007).
[4.20]V. P. Wallace, E. MacPherson, A. J. Fitzgerald, T. Lo, E. Provenzano, S. Pinder, and A. Purushotham, "Terahertz pulsed imaging and spectroscopy of breast tumors," Optical Methods in the Life Sciences 6386 ,585 (2006).
[4.21]A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, "Terahertz pulsed imaging of human breast tumors," Radiology 239, 533-540 (2006).
[4.22]S. Webb, The Physics of Medical Imaging (Academic Press, Bristol, 1988).
[4.23]D. G. Altman, and J. M. Bland, "Statistics Notes - Diagnostic-tests-1 - Sensitivity and Specificity," British Medical Journal 308, 1552-1552 (1994).
[4.24]J. C. Cendan, D. Coco, and E. M. Copeland, "Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins," Journal of the American College of Surgeons 201, 194-198 (2005).

Chapter5
[5.1]T. P. Olson, J. Harter, A. Munoz, D. M. Mahvi, and T. M. Breslin, "Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence," Annals of Surgical Oncology 14, 2953-2960 (2007).
[5.2]J. C. Cendan, D. Coco, and E. M. Copeland, "Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins," Journal of the American College of Surgeons 201, 194-198 (2005).
[5.3]Schottky Diode Detector, Virginia Diodes, Inc., Charlottesville, Virginia (http://www.VADiodes.com).
[5.4]G. Galzerano, C. Svelto, E. Bava, G. Carelli, M. Finotti, A. Moretti, and N. Beverini, "High-stability 72-GHz Gunn Oscillator for the characterization of ultra-high-speed optical receivers based on InP and InSb Schottky Diodes," IEEE Transactions on Instrumentation and Measurement 52, 1190-1194 (2003).
[5.5]Golay Cell, Microtech Instruments, Inc., Eugene, Oregon, USA (http://www.mtinstru -ments.com).
[5.6]V. P. Wallace, "Terahertz methods show promise for breast cancer," Laser Focus World 42, 83-85 (2006).
[5.7]A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, "Terahertz pulsed imaging of human breast tumors," Radiology 239, 533-540 (2006).
[5.8]V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, "Terahertz pulsed spectroscopy of human basal cell carcinoma," Applied Spectroscopy 60, 1127-1133 (2006).
[5.9]V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, "Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo," British Journal of Dermatology 151, 424-432 (2004).
[5.10]R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging of ex vivo basal cell carcinoma," Journal of Investigative Dermatology 120, 72-78 (2003).
[5.11]T. Enatsu, H. Kitahara, K. Takano, T. Nagashima, M. Tani, M. Hangyo, Y. Miura, and T. Sawai, "Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples," 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, Vols 1 and 2, 549-550 (2007).
[5.12]S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, "Terahertz imaging diagnostics of cancer tissues with a chemometrics technique," Applied Physics Letters 90, 041102 (2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top