跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志倫
研究生(外文):Chih-Lun Huang
論文名稱:高效能有機電激發光元件之研究
論文名稱(外文):Research on High Performance Organic Light-Emitting Devices
指導教授:李君浩
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:有機白光
外文關鍵詞:Organicwhite emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文之目的係設計及製作高效率有機電激發光元件,藉由摻雜紅光 (4-(dicyanomethylene)-2-tert-butyl-6-1,1,7,7- tetramethyljulolidyl-9-enyl)-4H-pyran) 與藍光(4,4′-bis-[2-[4-(N,N-diphenylamino)-phenyl-1-yl]-vinyl-1-yl]-1,1′-biphenyl, (DPAVBi) and N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine, N-BDAVBi)螢光材料以及綠光(tris-(phenylpyridine)iridium)磷光材料,並且調變有機材料發光層之厚度與濃度,製造出高效率的白光有機電激發光元件。在紅綠光發光層中,找出最適合摻雜紅光材料位置,利用綠光材料之載子複合區的能量轉移,使得綠光能量部分轉移至紅光,但效率卻不會因此而大幅度降低。實驗的結果顯示此白光結構在輸入電壓為5V之下其效率分別為12.7 (DPAVBi) 與14 (N-BDAVBi) cd/A,在 100 mA/cm2電流密度下之驅動電壓分別為7.54與8.94V,其色座標分別為(0.416, 0.485)與(0.386, 0.492)。
此外,我們也研發出具備電子傳輸能力之2,2''-bis[5-phenyl-2-(1,3,4)oxadazolyl]biphenyl (OXD) 作為發光層之主體材料,並製作出單發光層及雙發光層之高效率藍光及藍綠光有機電激發光元件。在此實驗中藉由一高電子傳輸效率材料 (OXD) 並搭配電洞傳輸特性的主體材料 (N,N’-dicarbazolyl-3,5-benzene)作為藍光磷光材料 (iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate) 之主體以達到雙重發光層元件,藉由雙發光層而達到延展載子複合區的特性,可確實的降低因為介面載子濃度過高,而造成的三重態載子能量焠熄。實驗的結果顯示,藉由導入雙發光層後,藍光及藍綠光磷光元件之最高效率可達 11.8及 12.4 cd/A。
In this thesis, we researched in high efficiency organic light-emitting devices (OLEDs). With introducing red, 4-(dicyanomethylene)-2-tert-butyl-6-1,1,7,7- tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and blue, 4,4′-bis-[2-[4-(N,N-diphenylamino)-phenyl-1-yl]-vinyl-1-yl]-1,1′-biphenyl (DPAVBi) and N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine (N-BDAVBi), fluorescent materials and green, tris-(phenylpyridine)iridium (Ir(ppy)3), phosphorescent material and modifying the layer structures to manufacture high efficiency white OLEDs. Among green/red emission zone, the suitable position with doping the red fluorescent material, DCJTB, was founded to serve the energy transfer by phosphorescent sensitization with green phosphorescent emitter, Ir(ppy)3, and red fluorescent emitter. As the results of experiments, the current efficiencies of our white OLEDs attended to 12.7 and 14 cd/A at applied voltage was 5 V with DPAVBi and N-BDAVBi, respectively. Besides, the driving voltage and color coordinates were 7.54, 8.94 V and (0.416, 0.485), (0.386, 0.492) at 100 mA/cm2, respectively.
Furthermore, a new electron transport material, 2,2''-bis[5-phenyl-2-(1,3,4)oxadazolyl]biphenyl (OXD), was used as the host of the green-blue and blue phosphorescent OLEDs. With introducing the hole-transporting material, N,N’-dicarbazolyl-3,5-benzene (mCP), as the host of the blue dopant, iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N,C2’) picolinate (FIrpic), the double emitting layer (EML) blue phosphorescent OLED was fabricated. From the expansion of recombination zone with double EML blue phosphorescent OLEDs, the exciton concentration in unit area decreased efficiently and reduced the triplet-triplet annihilation. Thus, the maximum current efficiencies of blue and blue-green phosphorescent OLEDs with double EML were 11.8 and 12.4 cd/A, respectively.
Figure and Table Indices 7

Chapter 1 Introduction 11
1.1 Introduction of OLED 12
1.2 Introduction of White OLED 14
1.3 Efficiency improvement of phosphorescent OLED 18
1.4 Experiments 23
1.5 Motivation 24
1.6 Thesis organization 25

Chapter 2 Three-band White Organic Light-emitting Device 27
2.1 Blue Fluorescent OLED in CBP Host 28
2.2 Layer Structure Optimization of Green-blue OLED 32
2.3 Layer Structure Optimization of White OLED 40
2.4 White OLED with Different Spacer Materials 48
2.5 White OLED with Different Host Materials 52
2.6 Improvement of Blue Emitter in White OLED 57

Chapter 3 Double EML Blue OLED 67
3.1 Blue Phosphorescent OLED in OXD Host 68
3.2 Optimization of Blue Phosphorescent OLED 70
3.3 Optimization of Blue-green Phosphorescent OLED 76
3.4 Double EML Blue OLED with Different Host Materials 80
3.5 Layer Structure Optimization of Double EML Blue OLED 84

Chapter 4 Summary and Future Works 93
4.1 Summary 93
4.2 Future Works 94

References: 95
[1] J. Kido, M. Kimura, K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device”, Science, 267, 1332 (1995).
[2] B. W. D''Andrade, M. E. Thompson, and S. R. Forrest, “Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices”, Adv. Mater., 14, 147 (2002).
[3] B. W. D''Andrade, J. Brooks, V. Adamovich, M. E. Thompson, and S. R. Forrest, “White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices”, Adv. Mater., 14, 1032 (2002).
[4] M. Mazzeo, D. Pisignano, F. D. Sala, J. Thompson, R. I. R. Blyth, G. Gigli, and R. Cingolani, “Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules”, Appl. Phys. Lett., 82, 334 (2003).
[5] G. Cheng, Y. Zhao, Y. Zhang, and S. Liu, F. He, H. Zhang, and Y. Ma, “White organic light-emitting devices using 2,5,2’,5’-tetrakis(4’-biphenylenevinyl)-biphenyl as blue light-emitting layer”, Appl. Phys. Lett., 84, 4457 (2004).
[6] T. Liu, Y.-S. Wu, M.-T. Lee, H.-H. Chen, and C.-H. Liao, “Highly efficient yellow and white organic electroluminescent devices doped with 2,8-di(t-butyl)-5,11-di[4-(t-butyl)phenyl]-6,12-diphenylnaphthacene”, Appl. Phys. Lett., 85, 4304 (2004).
[7] G. He, O. Schneider, D. Qin, X. Zhou, M. Pfeiffer, and K. Leo, “Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction”, J. Appl. Phys., 95, 5773 (2004).
[8] M. Mazzeo, V. Vitale, F. D. Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani, and G. Gigli, “Bright White Organic Light-Emitting Devices from a Single Active Molecular Material”, Adv. Mater., 17, 34 (2005).
[9] Y. Zhang, G. Cheng, Y. Zhao, J. Hou, and S. Liu, “White organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl and phosphorescence sensitized 5,6,11,12-tetraphenylnaphthacene”, Appl. Phys. Lett., 86, 011112 (2005).
[10] I. Tanaka and S. Tokito, “Phosphorescent-sensitized triplet-triplet annihilation in tris(8-hydroxyquinoline) aluminum”, J. Appl. Phys., 91, 113532 (2005).
[11] H. Kanno, Y. Sun, and S. R. Forrest, “White organic light-emitting device based on a compound fluorescentphosphor-sensitized-fluorescent emission layer”, Appl. Phys. Lett., 89, 143516 (2006).
[12] Y.-S. Huang, J.-H. Jou, W.-K. Weng, and J.-M. Liu, “High-efficiency white organic light-emitting devices with dual doped structure”, Appl. Phys. Lett., 80, 2782 (2000).
[13] S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, “High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers”, Appl. Phys. Lett., 83, 24596 (2003).
[14] S. H. Kim, J. Jang, and J. Y. Lee, “Improved color stability in white phosphorescent organic light-emitting diodes using charge confining structure without interlayer”, Appl. Phys. Lett., 91, 123509 (2007).
[15] Y. S. and S. R. Forrest, “High-efficiency white organic light emitting devices with three separate phosphorescent emission layers”, Appl. Phys. Lett., 91, 263503 (2007).
[16] J. H. Seo, J. H. Seo, J. H. Park, Y. K. Kim, J. H. Kim, G. W. Hyung, K. H. Lee, and S. S. Yoon, “Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors (red, green, and blue)”, Appl. Phys. Lett., 90, 203507 (2007).
[17] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices”, Nature, 440, 908 (2006).
[18] J. Lee, J.-I. Lee, K.-I. Song, S. J. Lee, and H. Y. Chu, “Effects of interlayers on phosphorescent blue organic light-emitting diodes”, Appl. Phys. Lett., 92, 203305 (2008).
[19] G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers”, Appl. Phys. Lett., 85, 3911 (2004).
[20] M. B. Khalifa, M. Mazzeo, V. Maiorano, F. Mariano, S. Carallo, A. Melcarne, R. Cingolani, and G. Gigli, “Efficient red phosphorescent organic light emitting diodes with double emission layers”, J. Phys. D., 41, 155111 (2008).
[21] J.-H. Lee, Y.-H. Ho, T.-C. Lin, C.-F. Wu, “Reliability Study of a Fluorescent Blue Organic Light-emitting Device”, MRS, 0965-S03-11 (2006).
[22] J.-H. Lee, Y.-H. Ho, T.-C. Lin, C.-F. Wu, “High-Efficiency Fluorescent Blue Organic Light-Emitting Device with Balanced Carrier Transport”, J. Electrochem. Soc., 154, J226 (2007).
[23] C.-H. Hsiao, C.-F. Lin, and J.-H. Lee, “Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer”, J. Appl. Phys., 102, 094508 (2007).
[24] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, “Efficient, deep-blue organic electrophosphorescence by guest charge trapping”, Appl. Phys. Lett., 83, 3818 (2003).
[25] M. Uchida, C. Adachi, T. Koyama, and Y. Taniguchi, “Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes”, J. Appl. Phys., 86, 1680 (1999).
[26] Y.-M. Wang, F. Teng, Z. Xu, Y.-B. Hou, S.-Y. Yang, and X.-R. Xu, “Trap effect of an ultrathin DCJTB layer in organic light-emitting diodes”, Science, 92, 291 (2005).
[27] J. Chen and D. Ma, “Improved color purity and efficiency by a coguest emitter system in doped red light-emitting devices”, J. Luminescence, 636 (2007).
[28] X.-Y. Jiang, Z.-L. Zhang, W.-Q. Zhu, and S.-H. Xu, “Study of blue organic light emitting diode by inserting a red dye ultra thin layer at the emitting layer”, J. Phys. D., 38, 4153 (2005).
[29] M.-K. Leung, C.-C. Yang, J.-H. Lee, H.-H. Tsai, C.-F. Lin, C.-Y. Huang, Y. O. Su, and C.-F. Chiu, “The Unusual Electrochemical and Photophysical Behavior of 2,2’-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes”, Org. Lett., 9, 235 (2007).
[30] Y. Wang, Y. Hua, X. Wu, L. Zhang, Q. Hou, F. Guan, N. Zhang, S. Yin, and X. Cheng, “High-efficiency and multi-function blue fluorescent material for organic electroluminescent devices”, Org. Electron., 9, 692 (2008).
[31] Y. Wang, Y. Hua, X. Wu, L. Zhang, Q. Hou, S. Yin, and M. C. Petty, “Performance enhancement of white-electrophosphorescent devices incorporating a mixed-transition layer”, Appl. Phys. Lett., 92, 123504 (2008).
[32] J.-H. Lee and H.-H. Tsai, “Phosphorescent organic light-emitting device with an ambipolar oxadiazole host”, Appl. Phys. Lett., 90, 243501 (2007).
[33] S. H. Kim, J. Jang, and J. Y. Lee, “Relationship between host energy levels and device performances of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure”, Appl. Phys. Lett., 91, 083511 (2007).
[34] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, “Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer”, Appl. Phys. Lett., 79, 156 (2001).
[35] S.-F. Hsu, I. R. Laskar, T.-M. Chen, J.-W. Ma, S.-W. Hwang, and C. H. Chen, “Highly Efficient Yellowish-White Phosphorescent Organic Light-Emitting Devices”, J. J. Appl. Phys., 45, 951 (2006).
[36] Y. Kawamura, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, “Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir(III) Complexes in a Solid Film”, Phys. Rev. Lett., 96, 017404 (2006).
[37] D. R. Whang, Y. You, S. H. Kim, W.-I. Jeong, Y.-S. Park, J.-J. Kim, and S. Y. Park, “A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices”, Appl. Phys. Lett., 91, 233501 (2007).
[38] B. W. D''Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting”, Adv. Mater., 16, 1585 (2004).
[39] J.-W. Kang, S.-H. Lee, H.-D. Park, W.-I. Jeong, K.-M. Yoo, Y.-S. Park, and J.-J. Kim, “Low roll-off of efciency at high current density in phosphorescent organic light emitting diodes”, Appl. Phys. Lett., 90, 223508 (2007).
[40] S. H. Kim, J. Jang, and J. Y. Lee, “High efciency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer”, Appl. Phys. Lett., 90, 223505 (2007).
[41] V. I. Adamovich, S. R. Cordero, P. I. Djurovich, A. Tamayo, M. E. Thompson, B. W. D Andrade, S. R. Forrest, “New charge-carrier blocking materials for high eciency OLEDs”, Org. Electron., 4, 77 (2003).
[42] N. Matsusue, S. Ikame, Y. Suzuki, and H. Naito, “Charge-carrier transport and triplet exciton diffusion in a blue electrophosphorescent emitting layer”, J. Appl. Phys., 97, 123512 (2005).
[43] V. Bulović, V. B. Khaln, G. Gu, and P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, “Weak microcavity effects in organic light-emitting devices”, Pysc. Rev. B, 58, 3730 (1998).
[44] S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, “Interference effects in bilayer organic light-emitting diodes”, Appl. Phys. Lett., 74, 1939 (1999).
[45] C. H. Cheung, A. B. Djurisic, C. Y. Kwong, H. L. Tam, K. W. Cheah, Z. T. Liu, W. K. Chan, P. C. Chui, J. Chan, and A. D. Rakic, “Change of the emission spectra in organic light-emitting diodes by layer thickness modication”, Appl. Phys. Lett., 85, 2944 (2004).
[46] C.-H. Hsiao, Y.-H. Chen, T.-C. Lin, C.-C. Hsiao, and J.-H. Lee, “Recombination zone in mixed-host organic light-emitting devices”, Appl. Phys. Lett., 89, 163511 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top