跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱天隆
研究生(外文):Tien-Lung Chiu
論文名稱:高度比度顯示元件之研究
論文名稱(外文):The Study of High Contrast Display Devices
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:178
中文關鍵詞:有機發光二極體低反射吸光性
外文關鍵詞:organic light emitted diodelow reflectionabsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中將介紹兩種高對比度顯示元件。其一為內含黑色陰電極的有機發光元件(OLED),另一種為利用反射式液晶顯示元件(RLCD)與透明OLED元件垂直整合並封裝成一個單一混成元件。
創新的黑色陰極的OLED內含有破壞性干涉的共振腔結構,共振腔中所填充的介電層為一具有高吸收特性與高導電特性。介電層的材料是利用銀粒子摻雜有機材料MPPDI而來。有機材料吸收的增強與導電性的增加主要分別來自奈米銀離子的摻雜所造成的表面電漿共振所引發的吸收增強與銀本身電性較佳的結果。未做表面抗反射處理的黑色陰電極的OLED所導致的反射超低大約只有4%,這個值很接近空氣與玻璃介面的反射;在人眼最敏感的波長550 nm部份,也只有5.5%。此元件在廣視角的影像表現很好,反射率也很低,在斜視角60o時有反射率12.3%在550 nm,因此有利於當成手持顯示裝置在戶外使用。再者,此元件的電性與壽命表現也與一般傳統元件相當。
製造中結合兩種不同元件RLCD與透明OLED具有相當困難度,我們發展了一套適當的製造流程設計以使得OLED的光電特性不受製程影響。在元件的儲存狀態下壽命測試中,可發現透明OLED在此混成元件中可以保有比傳統封裝方式的元件還久的特性,原因來自於液晶也形成另一型式的保護層保護著OLED。
In this thesis, two kinds of high contrast display devices were demonstrated. One is an organic light-emitting device (OLED) with absorptive and destructive interference black cathode (ADIBC) structure. The other is a hybrid device vertically integrated with a reflective liquid crystal display (RLCD) and a transparent OLED in one unit cell.
The novel ADIBC-OLED constructed with a destructive interference cavity filled with a highly absorptive and conductively thin-film which was fabricated by doping Ag into N,N''-Bis (2,6-diisopropylphenyl)-1,7-bis (4-methoxy-phenyl) perylene-3,4,9,10 -tetracarboxydiimide (MPPDI). Strong absorption and high conduction of thin-film resulted from plasmon-enhanced absorption and electrical properties improvement of Ag nanoparticles. Reflection from the ADIBC-OLED is as low as 4% at 800 nm, and 5.5% at 550 nm. Besides, low reflection was also achieved at oblique viewing angles (12.3% at 550 nm with 60o) with good image quality under outdoor environments. Such a ADIBC-OLED exhibited a nearly identical J-V and lifetime performances to the control device.
Fabrication and integration issues of the transflective (TR-) hybrid device consisting of a reflective LCD and an OLED were addressed and solved. With suitable design of the process flow, electrical and optical characteristics of the OLED were not affected by the following LCD processes. Storage lifetime of this TR-hybrid device was even longer than that of the control one because of the passivation effect of the LC materials.
Contents
摘要 i
Abstract ii
Contents iv
Table captions: vii
Figure captions: viii
Chapter 1 1
1.1 Contrast ratio (CR) and ambient contrast ratio (A-CR) of a display 3
1.2 Introduction to OLED and LCD 5
1.2.1 Organic light-emitting device 6
1.2.2 Liquid crystal display 8
1.3 High ambient contrast OLED 11
1.4 Hybrid Emi-flective device (OLED combined with LCD) 15
1.5 Thesis organization 18
Reference 23
Chapter 2 27
2.1 Introduction 27
2.2 Fabrication of OLED 28
2.2.1 Evaporator 28
2.2.2 OLED and monolayer device 29
2.3 Measurement of organic thin film and OLED 31
2.3.1 B-J-V characteristics of OLED, J-V of organic thin film, and photocurrent measurements 31
2.3.2 Optical measurements: PL, Transmittance and Reflectance 33
2.3.3 Morphological measurements (FE-SEM, AFM, SOPRA) 35
2.4 LCD fabrication and measurements 36
References 45
Chapter 3 46
3.1 Introduction 46
3.2 Ag Dopant 49
3.2.1 Appearance of thin-films 49
3.2.2 Morphology: FE-SEM and AFM 50
3.2.3 Optical properties: refractive index n(λ) and absorption coefficient k(λ) 52
3.2.4 Optical analysis: transmittance, reflectance and absorptance 53
3.2.5 Photoluminescence characteristics 56
3.2.6 Electrical characteristics of mono-layer device 58
3.2.7 Photosensitivity 60
Reference 74
Chapter 4 76
4.1 Introduction 76
4.2 Results of A series 77
4.2.1 Architecture of ADIBC-OLED 77
4.2.2 Results and discussions 78
4.3.1 Architecture and fabrication 82
4.3.2 Results and discussions 83
4.3.3 Results and discussion for A-CR and wide view angle reflectance 87
Reference 110
Chapter 5 111
5.1 Introduction 111
5.2 Experimental details (fabrication for transparent OLED and the TR-hybrid device) 113
5.2.1 Transparent OLED fabrication 113
5.2.2 Fabrication process for TR-hybrid device 113
5.3 Results and discussions 116
5.3.1 Characteristics of DML for transparent OLED 116
5.3.2 Variation of transparent OLED characteristics during fabrication 116
5.3.3 Optical characteristics of TR-hybrid device 118
5.4 Operational mechanism and Storage lifetime for hybrid device 121
Reference 132
Chapter 6 133
6.1 Summary 133
6.2 Further works 135
Reference 138
Appendix A 139
A.1 Introduction: 139
A.2 Organic material: 141
A.2.1 Chemical structure 141
A.2.2 Absorptance spectrum 143
A.3.1 Absorption characterizations 144
A.3.2 Photoluminescence 144
A.3.3 Photocurrent measurement 146
Reference 152
Appendix B 153
Reference 158
Appendix C 159
Reference 165
Appendix D 166
D.1. High transparent OLED structure and characterization 167
D.2. Conceptual structure of tandem device 168
D.3 Simulated A-CR results 169
D.4 Operational mechanisms and white light A-CR 172
References 178
ch.1
1 T. L. Chiu, K. H. Chuang, C. F. Lin, Y. H. Ho, J. H. Lee, C. C. Chao, M. K. Leung, D. H. Wan, C. Y. Li, and H. L. Chen, “Low reflection and photo-sensitive organic
light-emitting device with perylene diimide and double-metal structure,” Thin Solid Films, 2009 (publishing).
2 T. L. Chiu, W. F. Xu, C. F. Lin, J. H. Lee, C. C. Chao, and M. K. Leung, “Optical and Electrical Characteristics of Ag-doped Perylene Diimide Derivative,” Appl. Phys. Lett. (2009).
3 J. H. Lee, X. Zhu, Y. H. Lin, W. K. Choi, T. C. Lin, S. C. Hsu, H. Y. Lin, and S. T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal
display and organic light-emitting device,” Opt. Express 13, 9431 (2005).
4 C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
5 H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. V. Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an
Al/LiF electrode”, J. Appl. Phys., 89, 420 (2001)
6 X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, h. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M.
Ding, W. Huang, and X. Y. Hou, “Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode,” J. Appl. Phys. 95, 3828 (2004).
7 F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V. E. Choong, “Recent progress in solution processable organic light emitting devices,” J. Appl. Phys. 102 091101 (2007).
8 S. T. Wu and D. K. Yang, “Relective liquid crystal display,” New York: Wiley (2001).
9 T. L. Chiu, C. F. Lin, J. H. Lee, H. Xianyu, Z. Ge, X. Zhu, Y. H. Lu, C. W. Teng, K. C. Liu, and S. T. Wu, “Storage lifetime of a hybrid transflective display using OLED and polarizer-free RLCD,” Soc. Inf. Display Tech. Digest, 1585 (2008).
10 (a) D. Poitras, C. C. Kuo, and C. Py, “Design of high-contrast OLEDs with microcavity effect”, Opt. Express 16, 8003 (2008). (b) C. Py, D. Poitras, C. C. Kuo, and H. Fukutani, “High-contrast organic light emitting diodes with a partially absorbing anode”, Opt. Lett. 33, 1126 (2008).
11 J. A. Castellano, “Liquid gold: the story of liquid crystal displays and the creation of an industry”, World Scientific (2005).
12 (a) A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 50, 64 (1953). (b) A. Bernanose, P. Vouaux, J. Chim. Phys., 50, 261 (1953). (c) A. Bernanose, J. Chim.
Phys., 52, 396 (1955). (d) A. Bernanose, P. Vouaux, J. Chim. Phys. 52, 509 (1955).
(e) A. Bernanose, Brit. J. Appl. Phys Suppl. 4, S54 (1955).
13 M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
14 W. Helfrich, and W. G. Schneider, “Recombination radiation in anthracene crystals”, Phys. Rev. Lett. 14, 229 (1965).
15 P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, ” Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films”, Thin solid films 94, 171 (1982).
16 F. Reinitzer, “ Beiträge zur Kenntniss des Cholesterins,” Monatsb. 9, 421 (1888).
17 O. Lehmann, “Über tropfbarflüssige Krystalle“Ann Phys Chem NF. 18, 464 (1890).
18 C. Mauguin, “Sur les cristaux liquids de Lehmann,” Bull. Soc. Fr. Min. 34, 71 (1911) ; C. Mauguin, Physique 18, 1011 (1911).
19 H. Kelker, B. Scheurle, “A liquid-crystalline (nematic) phase with a particularly low solidification point,” Angew. Chem. Int. Ed. 8, 884 (1969).
20 G. W. Gray, K. J. Harrison, J. A. Nash, “New family of nematic liquid crystals for displays,” Electronics Lett. 9 130 (1973).
21 P. E. Burrow, S. R. Forrest and M. E. Thompson, “Prospects and applications for organic light-emitting devices,”Cur. Opin. Solid State and Mater. Sci. 2, 236 (1997).
22 C. Adachi, M. A. Baldo, and S. R. Forrest, “Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy
gap bipolar conducting host,” J. Appl. Phys. 87, 8049 (2000).
23 H. Riel, S. Karg, T. Beierlein, B. Ruhstaller and W. RieB, “ Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling“ Appl.
Phys. Lett. 82, 466 (2003).
24 G. Parthasarathy, C. Shen, A. Kahn, and S. R. Forrest, “ Lithium doping of semiconducting organic charge transport materials,” J. Appl. Phys. 89, 4986 (2001).
25 Y. Yuan, D. Grozea, S. Han, and Z. H. Lu, “Interaction between organic semiconductors and LiF dopant”, Appl. Phys. Lett. 85, 4959 (2004).
26 X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H.
J. Ding, G. Y. Zhong, h. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M.
Ding, W. Huang, and X. Y. Hou, “Enhancement of electron injection in organic
light-emitting devices using an Ag/LiF cathode,” J. Appl. Phys. 95, 3828 (2004).
27 X. Z. Wang, Z.T. Xie, X. J. Wang, Y. C. Zhou, W. H. Zhang, X. M. Ding, and X. T.
Hou, “Blocking of interfacial diffusion at Ag/Alq3 by LiF,” Appl. Sur. Sci. 253,
3930 (2007).
28 H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. V. Seggern, and M. Sto¨ßel,
“Mechanisms of injection enhancement in organic light-emitting diodes through an
Al/LiF electrode”, J. Appl. Phys., 89, 420 (2001)
29 T. M. Brown and R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes,
and F. Cacialli, “Electronic line-up in light-emitting diodes with alkali-halide/metal
cathodes”, J. Appl. Phys., 93, 6159 (2003)
30 L. S. Hung, J. Mandathil, “Reduction of ambient light reflection in organic
light-emitting diodes,” Adv. Mater. 13 1787 (2001).
31 S. G. Kim, Y. S. Kim, A. K. Srivastava, S. T. Oh, G. D. Lee, and S. H. Lee,
“Improvement of voltage-dependent dynamics through an oblique electric field in
vertically aligned liquid crystal director surrounded by patterned polymer walls,”
Curr. Appl. Phys. 8, 142 (2008).
32 C. H.Gooch and H. A Tarry, “The optical properties of twisted nematic liquid crystal
structures with twisted angles 90o”, J. Phys. D 8, 1575. (1975)
33 M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic
liquid crystal,” Appl. Phys. Lett. 18, 127 (1971).
34 B. Jeong, S. W. Kim, and Y. J. Lee, “An assembly scheduler for TFT LCD
manufacturing,” Computers & Industrial Engineering 41, 37 (2001).
35 X. Zhu, Z. Ge, T. X. Wu, and S. T. Wu, “Tansflective liquid crystal displays,”
IEEE/OSA J. Dis. Tech. 1, 15 (2005).
36 T. H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid crystal cell for
a high-contrast reflective display,” Opt. Lett. 25, 1547-1549 (2000).
37 J. E. Bigelow, “Transflective liquid crystal display,” U.S. patent 4093356 (1978).
38 S. T. Wu and C. S.Wu, “Mixed-mode twisted nematic liquid crystal cells for
re.ective displays,” Appl. Phys. Lett. 68, 1455 (1996).
39 Z. Wu, L. Wang, Y. Qiu, “Contrast-enhancement in organic light-emitting diodes,”
Opt. Express 13, 1406 (2005).
40 C. C. Wu, C. W. Chen, C. L. Lin, C. J. Yang, “Advanced organic light-emitting
devices for enhancing display performances,” IEEE/OSA J. Dis. Tech. 1, 248
(2005).
41 R. S Cok, “OLED displays having improved contrast”, US patent 6936960 (2005).
42 H. Aziz, “Reduced reflectance cathode for organic light-emitting devices using
metalorganic mixture”, Appl. Phys. Lett. 83, 186 (2003).
43 Z. Y. Xie and L. S. “Hung, High-contrast organic light-emitting diodes”, Appl. Phys.
Lett. 84, 1207 (2004).
44 J. H. Lee, C. C. Liao, P. J. Hu, and Y. Chang, “High contrast ratio organic
light-emitting devices based on CuPc as electron transport material”, Synthetic
Metals 144, 279 (2004).
45 J. F. Li, S. H. Su, K. S. Hwang, and M. Yokoyama, ”Enhancing the contrast and
power efficiency of organic light-emitting diodes using CuPc/TiOPc as an
anti-reflection layer”, J. Phys. D: Appl. Phys. 40, 2435 (2007).
46 C. J. Yang, C. L. Lin, C. C. Wu, Y. H. Yeh, C. C. Cheng, Y. H. Kuo, and T. H. Chen,
“High-contrast top-emitting organic light-emitting devices for active-matrix
displays”, Appl. Phys. Lett. 87, 143507 (2005)
47 S. M. Chen, Y. B. Yuan, J. R. Lian, and X. Zhou, “High-efficiency and high-contrast
phosphorescent top-emitting organic light-emitting devices with p-type Si anodes”,
Opt. Express 15, 14644 (2007).
48 (a) K. C. Lau, W. F. Xie, H. Y. Sun, C. S. Lee, and S. T. Lee, “Contrast improvement
of organic light-emitting devices with Sm:Ag cathode”, Appl. Phys. Lett. 88,
083507 (2006). (b) W. F. Xie, L. T. Zhang, and S. Y. Liu, “White organic
light-emitting devices with Sm:Ag black cathode”, Opt. Express 14, 10819 (2006).
49 (a) C. J. Yang, T. Y. Cho, C. L. Lin, and C. C. Wu, “Organic light-emitting devices
integrated with solar cells: high contrast and energy recycling”, Appl. Phys. Lett. 90,
173507 (2007). (b) C. Y. Yang, T. Y. Cho, Y. Y. Chen, C. J. Yang, C. Y. Meng, C. H.
Yang, P. C. Yang, H. Y. Chang, C. Y. Hsueh, C. C. Wu, and S. C. Lee,
“Engery-recycling pixel for active-matrix organic light-emitting diode display”,
Appl. Phys. Lett. 90, 233512 (2007). (c) C. C. Wu, “Organic light-emitting devices
and displays offer high contrast and energy recycling”, SPIE newsroom (2007). (d)
C. J. Yang, T. Y. Cho, C. L. Lin, and C. C. Wu, “Energy-recycling high-contrast
organic light-emitting devices”, J. SID 16/6, 691 (2008).
50 A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates”,
Appl. Phys. Lett. 80, 3853 (2002).
51 F.L. Wong , M.K. Fung , X. Jiang , C.S Lee , and S.T. Lee, “Non-reflective black
cathode in organic light-emitting diodes”, Thin Solid Films 446, 143 (2004).
52 X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for
high-contrast organic light-emitting diodes”, Appl. Phys. Lett. 85, 497 (2004)
53 S.H. Li, H. Liem, C.W. Chen, E.H. Wu, Z. Xu, Y. Yang, “Stacked metal cathode for
high-contrast-ratio polymeric light-emitting devices”, Appl. Phys. Lett. 86, 143514
(2005).
54 Y. C. Zhou, L. L. Ma, J. Zhou, X. D. Gao, H. R. Wu, X. M. Ding, X. Y. Hou, “High
contrast organic light-emitting devices with improved electrical characteristics”,
Appl. Phys. Lett. 88, 233505 (2006).
55 H. Y. Liu, R. G. Sun., K. X. Yang, J. B. Peng, Y. Gao, and S. K. Joo, “ Improved
contrast polymer light-emitting diode with optical interference layers”, J. Luminescence 126, 207 (2007).
56 J. E. Bigelow, “Transflective liquid crystal display,” U.S. patent 4093356 (1978).
57 E. Lueder, M. Randler, H. Schenk, and E. Klidge, “ The combination of a
transflective FLCD for daytime use with an OLED for darkness,” Soc. Inf. Display
Tech. Digest, 1025(2000)
58 J. H. Lee, H. Xianyu, Z Ge, Y. H. Lu, C. W. Teng, K. C. Liu, and S. T. Wu, “Hybrid
transflective displays using vertically integrated transparent OLED and reflective
LCD,” Soc. Inf. Display Tech. Digest, 1810 (2007)
59 B. R. Yang, C. W. Hsu, and H. P. Shieh, “Emi-flective display device with attribute
of high glare-free-ambient-contrast-ratio,” Jpn. J. Appl. Phys. 46, 7418 (2007).
60 B. R. Yang, K. H. Liu, and H. P. Shieh, “Emiflective display device with integration
of reflective liquid crystal display and organic light emitting diode,” Jpn. J. Appl.
Phys. 46, 182 (2007).
61 B. R. Yang, K. Y. Lin, H. P. Shieh, S. N. Lee, and C. H. Chen, “High contrast ratio
emi-flective LCD with nano-particle transflector,” Soc. Inf. Display Tech. Digest,
1813 (2007).
62 K. Y. Lin, B. R. Yang, and H. P. Shieh, “A novel pixel circuit compensating for
poly-Si threshold-voltage shift and degradation of OLED for emi-flective display,”
IDMC 201 (2007).
63 B. R. Yang, K. H. Liu, S. N. Lee, and H. P. Shieh, “Volumetric scattering layer for
flexible transflective display,” Jpn. J. Appl. Phys. 47, 1016 (2008).

ch.2
1 P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts,” Electrical conduction
and low voltage blue electroluminescence in vacuum-deposited organic films” Thin
Solid Films 94, 171 (1982).
2 S. A. Choulis, V. E. Choong, A. P. Patwardhan, M. K. Mathai, and F. So, “Interface
medication to improve hole-injection properties in organic electronic devices”, Adv.
Funct. Mater. 16, 1075 (2006).
3 W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting
diodes based on molecular materials”, Organic Electronics 2, 1 (2001).
4 L. C. Palilis, M. Uchida, and Z. H. Kafafi, “Electron injection in Electron-Only
devices based on sysmmetic metal/silole/metal structure”, IEEE J. Sel. Top. Quant.
Elec. 10, 79 (2004).
5 P. Peumans, A. Yakimov, S. R. Forrest, “Small molecular weight organic thin-film
photodetectors and solar cells,” J. Appl. Phys. 93, 3693 (2003).
6 H. Spanggaard and F. C. Krebs, “A brief history of the development of organic and
polymeric photovoltaics,” Solar Energy Materials & Solar Cells, 83, 125–146
(2004).
7 K. Petritsch and R. H. Friend,”Ultrathin organic photovoltaic device,“ Synth. Metal
102, 976 (1999).
8 M. Hiramoto, T. Imahigashi, and M. Yokoyama, ”Photocurrent multiplication in
organic pigment films,” Appl. Phys. Lett. 64, 187 (1994).
9 I. M. Dharmadasa, G. G. Roberts, and M. C. Petty, “Cadmium telluride/Langmuir
film photovoltaic structures,” Electronics Lett. 16, 201 (1980).
10 T. L. Chiu, W. F. Xu, C. F. Lin, J. H. Lee, C. C. Chao, and M. K. Leung, “Optical
and Electrical Characteristics of Ag-doped Perylene Diimide Derivative,” Appl.
Phys. Lett. (2009).
11 B. Jeong, S. W. Kim, and Y. J. Lee, “An assembly scheduler for TFT LCD
manufacturing,” Computers & Industrial Engineering 41, 37 (2001).
12 K. Usami, K. Sakamoto, J. Yokota, Y. Uehara, and S. Ushioda, “Polyimide
photo-alignment layers for inclined homeotropic alignment of liquid crystal
molecules,” Thin Solid Films 516, 2652 (2008).
13 K. H. Liu, C. Y. Lee, C. T. Ho, H. L. Cheng, S. T. Lin, H. C. Tang, C. W. Kuo, C. C.
Liao, H. P. Shieh, and W. Y. Chou, “Innovative plasma alignment method in flexible
liquid cystal display films,” Electrochem. Solid-State Lett. 10, J132 (2007).
14 Y. H. Fan,Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and
scattering-free polymer network liquid crystals for infrared light modulators,” Appl.
Phys. Lett. 84, 1233 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top