跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高楨樹
研究生(外文):Chen-Shu Kao
論文名稱:使用傳遞矩陣法模擬含有光柵的層狀結構
論文名稱(外文):Modified Transfer Matrix Method for the Modeling of Layer Structure with Grating
指導教授:邱奕鵬
指導教授(外文):Yih-Peng Chiou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:110
中文關鍵詞:傳遞矩陣法嚴格耦合波分析有機發光半導體光柵萃取發光效率遠場場形
外文關鍵詞:Transfer matrix methodRigorous couple-wave analysisorganic light emitting devicegratingextraction efficiencyfar-field pattern
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在近幾年,發光二極體 (LED) 以及 有機發光二極體 (OLED) 是非常廣泛被研究的發光元件。由於製程上的方便,通常這兩種元件會被做成層狀的,也就是發光區的部份,他們橫向的寬度會遠大於縱向的厚度。一般在研究這些發光元件時,主要用來模擬光傳播行為的數值方法有兩種:第一種是有限時域差分法 (Finite-Difference Time-Domain),此種方法可以允許結構有較大的變化彈性,但是由於需要的計算量較大,會花費大量的執行時間,通常用於模擬結構中含有較為複雜的子結構時,i.e.包含光柵(Grating)或其他特殊結構;第二種是傳遞矩陣法 (Transfer Matrix Method),跟有限時域差分法相反,此方法需要的計算量較小;然而,傳統的傳遞矩陣法只能用來模擬層狀的結構,在處理一些有特殊結構的層狀發光元件上比較困難。
在本篇論文中,我們利用古典電磁學的理論來分析並模擬光在層狀結構中的光學特性。一般層狀的發光元件,光源可以用一個週期性震盪的電偶極來表示。光源發出的光以平面波的形式展開,在層狀結構中各個介面利用傳遞矩陣法來匹配邊界條件,即可得到各層中電場強度的解析解。在含有光柵的層狀結構中,我們嘗試結合嚴格耦合波分析 (Rigorous Couple - Wave Analysis) 與傳統的傳遞矩陣法,使得傳遞矩陣法能夠模擬光柵的結構。換句話說,傳統的傳遞矩陣法在匹配邊界條件時,只會利用菲涅爾 (Fresnel) 方程式去匹配零階的模態;利用嚴格耦合波分析或是其他分析光柵的數值方法,可以幫助傳統的傳遞矩陣法匹配其他高階的模態;如此一來,傳遞矩陣法就能算出有包含光柵的層狀結構各層高階模態的電場值。由這些電場的解析解,可以得到層狀發光元件在加入光柵後的發光效率以及遠場的場形;我們發現在加入光柵後,元件整體的發光效率不一定會是提升的,發光效率與遠場的場形跟加入光柵的週期有著密切的關係。從這些分析中我們可以看出,在層狀發光元件中,加入適當設計的光柵,可以大幅的增加發光效率,或者優化遠場的場形。
關鍵字:傳遞矩陣法、嚴格耦合波分析、有機發光半導體、光柵、萃取發光效率、遠場場形
In recent years, light emitting device (LED) and organic light emitting device (OLED) are widely studied. Due to the convenience in fabrication, these device are usually made as layered structure, which represents that the lateral size is much larger than the thickness in the emission layer. Generally, there are two kinds of analytical method most popularly used in the simulation of light propagation in these devices. The first one is the finite-difference time-domain method, which allows more flexibility for the simulation structure. However, it consumes vast CPU resource and executing time, and usually be used in the cases when the simulation structure has complicate substructures, i.e. like grating. The second one is the transfer matrix method. In contrast, transfer matrix method requires lesser computation. However, traditional transfer matrix method can only be used in the simulation of layered structure, and suffers difficulty for special simulation structures.

In this thesis, we use the classical electromagnetic theory to analyze and model the optical properties of layered structure. In general, the source of layered structure can be expressed as a periodic resonating dipole source, which can be expanded as plane wave radiating to all directions. Using the transfer matrix method matching the boundary conditions at each junction, the analytical solutions of the electric fields in each layer can be obtained. In addition, we will combine the rigorous couple-wave analysis and traditional transfer matrix method to model the structures with grating. In other word, traditional transfer matrix method only uses the Fresnel''s equations to match the boundary condition of zero order mode. Using rigorous couple-wave analysis or other grating modeling methods, we can furthermore match the boundary conditions of higher modes. As a result, transfer matrix method can calculate the electric field of the high order modes. Furthermore, we can use the obtained electric fields to calculate the extraction efficiency and the far-field pattern of the device. From the simulation results, we found that the extraction efficiency will not always increase when the grating is including in the structure, and the grating period will strongly effect the extraction efficiency and the far-field pattern. A well designed grating can enhance the extraction efficiency and optimize the far-field pattern.
Contents
1 Introduction 1
1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Transfer Matrix Methods 6
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Classical Dipole Field in an In nite Medium . . . . . . . . . . . 7
2.3 Classical Dipole Field in an Layer Structure . . . . . . . . . . . 9
2.3.1 Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 PlaneWave Solution of A Dipole Source in Layered Structures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Power Calculation 19
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Power Calculation of Dipole Field in Layer Structure . . . . . . 20
3.2.1 Poynting''s Theory . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Total Radiation Power . . . . . . . . . . . . . . . . . . . 20
3.2.3 Far-Field Radiation Pattern . . . . . . . . . . . . . . . . 24
3.3 Source Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Spatial Distribution . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Orientational Distribution . . . . . . . . . . . . . . . . . 28
3.3.4 Spectral Distribution . . . . . . . . . . . . . . . . . . . . 32
3.3.5 Optical Thick Layer . . . . . . . . . . . . . . . . . . . . 33
4 Modi ed Transfer Matrix Method 36
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Wave-Vector Analysis of One-Dimensional Grating . . . . . . . 37
4.3 Modi ed Transfer Matrix Method for Modeling Layer Structure
with Grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Numerical Results and Discussions . . . . . . . . . . . . . . . . 41
5 Application and Simulation Results 52
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Bragg Re
ector . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Band Stop Phenomenon . . . . . . . . . . . . . . . . . . 53
5.2.2 Polarization Separating . . . . . . . . . . . . . . . . . . . 55
5.3 Organic Light Emitting Device . . . . . . . . . . . . . . . . . . 56
5.3.1 Total Power and Far-Field Intensity . . . . . . . . . . . . 56
5.3.2 Veri cation of Simulation Results . . . . . . . . . . . . . 61
5.4 Layered Structure with One-Dimensional Grating . . . . . . . . 61
5.4.1 Far-Field Intensity . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Analysis of Polarized Light Emitting Device . . . . . . . 63
6. Conclusion . . . . . . . . . . . . . . . . . . . . . 105
Bibliography . . . . . . . . . . . . . . . . . . . . . 106
E. F. Schubert, and J. K. Kim, ``Solid state light sources getting smart,'' emph{Science}, vol. 308, no. 5726, pp. 1274-1278, May. 2005.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, ``Illumination with solid state lighting technology,'' emph{IEEE J. Select. Topics Quantum Electron.}, vol. 8, no. 2, pp. 310-320, Mar./Apr. 2002.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, ``Electroluminescence of doped organic thin films,'' emph{J. Appl. Phys.}, vol. 65, no. 9, 36103616, May. 1989.

Y. J. Lee, S. H. Kim, G. H. Kim. Y. H. Lee, S. H. Cho, Y. W. Song, Y. C. Kim, and Y. R. Do, ``Far-field radiation of photonic crystal organic light-emitting diode,'' emph{Opt. Express}, vol. 13, no. 15, pp. 5864-5870, Jul. 2005.

A. Mejdoubi, and C. Brosseau, ``Finite-difference time-domain simulation of heterostructures with inclusion of arbitrarily complex geometry,'' emph{J. Appl. Phys.}, vol. 99, 063502, Mar. 2006.

W. J. Choi, Q-H. Park, D. Kim, H. Jeon, C. Sone and Y. Park, ``FDTD Simulation for Light Extraction in a GaN-Based LED,'' emph{J. Kor. Phys. Soc.}, vol. 49, no. 3, pp. 877-880, Sep. 2006.

K. Yee, ``Numerical solution of initial boundary value problems involving Maxwell''s equations in isotropic media,'' emph{IEEE Trans. Antennas. Propagat.}, vol. 14, pp. 304-307, 1966.

J. G. Maloney, G. S. Smith and W. R. Scott Jr, ``Accurate computation of the radiation from simple antennas usingthe finite-difference time-domain method,'' emph{IEEE Trans. Antennas. Propagat.}, vol. 38, no. 7, pp. 1059-1068, Jul. 1990.

S.-T. Chu, S. K. Chaudhuri, ``A finite-difference time-domain method for the design and analysis of guided-wave optical structures,'' emph{J. Lightwave Technol.}, vol. 7, no. 12, pp. 2033-2038, Dec. 1989.

T. Namiki, ``3-D ADI-FDTD method-unconditionally stable time-domain algorithmfor solving full vector Maxwell''s equations,'' emph{IEEE Trans. Microwave Theory Tech.}, vol. 48, no. 10, pp. 1743-1748, Oct. 2000.

J. E. Sipe, ``The dipole antenna problem in surface physics: a new approach,'' emph{Surf. Sci.}, vol. 105, pp. 489-504, 1981.

T. H. Boyer, ``Thermal effects of acceleration for a classical dipole oscillator in classical electromagnetic zero-point radiation,'' emph{Phys. Rev. D}, vol. 29, no. 6, pp. 1089-1095, Mar. 1984.

C. C. Wu, C. L. Lin, P. Y. Hsieh, and H. H. Chiang, ``Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices,'' emph{Appl. Phys. Lett.}, vol. 84, no. 20, pp. 3966-3968, May. 2004.

P. C. Yeh, A. Yariv, and C. S. Hong, ``Electromagnetic propagation in periodic stratified media. I. General theory,'' emph{J. Opt. Soc. Am.}, vol. 67, no. 4, pp. 423-438, Apr. 1977.

H. Ichikawa, and T. Baba, ``Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,'' emph{Appl. Phys. Lett.}, vol. 84, no. 4, pp. 457-459, Jan. 2004.

Y. R. Do, Y. C. Kim, Y. W. Song, and Y. H. Lee, ``Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,'' emph{J Appl. Phys.}, vol. 96, no. 12, pp. 7629-7636, Dec. 2004.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, ``Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,'' emph{Appl. Phys. Lett.}, vol. 87, 20358, Nov. 2005.

M. Agrawal, Y. Sun, S. R. Forrest and Peter Peumans, ``Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,'' emph{Appl. Phys. Lett.}, vol. 90, 241112, Jun. 2007.

A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch and H. Benisty, ``Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,'' emph{Appl. Phys. Lett.}, vol. 88, 061124, Feb. 2006.

J. M. Jarem and P. P. Banerjee, ``Rigorous coupled-wave analysis of photorefractive reflection gratings,'' emph{J. Opt. Soc. Am. B}, vol. 15, no. 7, pp. 2099-2106, Jan. 1998.

W. Lee and F. L. Degertekin, ``Rigorous coupled-wave analysis of multilayered grating structures,'' emph{J. Lightwave Technol.}, vol. 22, no. 10, pp. 2359-2363, Oct. 2004.

Q. H. Liu, ``A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,'' emph{IEEE Antennas Wireless Propagat. Lett.}, vol. 1, pp. 131-134, 2002.

Q. H. Liu, ``The PSTD algorithm: A time-domain method requiring only two cells per wavelength,'' emph{Microwave Opt. Technol. Lett.}, vol. 15, pp. 158-165, Jan. 1997.

S-D. Wu and E. N. Glytsis, ``Finite-number-of-periods holographic gratings with finite-width incident beams analysis using the finite-difference frequency-domain method,'' emph{J. Opt. Soc. Am. A}, vol. 19, no. 10, pp. 2018-2029, Oct. 2002.

H. C. Chen, J. H. Lee, C. C. Yang, and Y. W. Kiang, ``Electromagnetic Modeling of Organic Light-Emitting Devices,'' emph{J. Lightwave Technol.}, vol. 24, no. 6, pp. 2450-2457, Jun. 2006.

H. A. Haus, emph{Waves and Fields in Optoelectronics} Englewood Cliffs, NJ: Prentice-Hall, 1984.

X. W. Chen, W. C. H. Choy, and S. He, ``Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,'' emph{J. Dis. Tech.}, vol. 3, no. 2, pp. 110-117, Jun. 2007.

K. A. Neyts, ``Simulation of light emission from thin-film microcavities,'' emph{J. Opt. Soc. Am. A.}, vol. 15, no. 4, pp. 962-971, Apr. 1998.

%O. H. Crawford, ``Radiation from oscillating dipoles embedded in a layered system,'' emph{J. Chem. Phys.}, vol. 89, pp. 6017-6027, May. 1988.

T. Kawase, D. J. Pinner, R. H. Friend and T. Shimoda, ``Grazing emitted light from films of derivative polymer of polyfluorene ,'' emph{J. Synth. Met.}, vol. 111-112, pp. 583-586, 2000.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, ``Top-emitting organic light-emitting devices using surface-modified Ag anode ,'' emph{Appl. Phys. Lett.}, vol. 83, no. 25, pp. 5127-5129, Oct. 2003.

A. Hessel and A. A. Oliner, ``A new theory of Wood''s anomalies on optical gratings ,'' emph{Appl. Phys.}, vol. 4, no. 10, pp. 1275-1297, Oct. 1965.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top