跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖盈傑
研究生(外文):Ying-Chieh Liao
論文名稱:氮化銦薄膜之分子束磊晶成長及其光學和電特性
論文名稱(外文):InN Thin Film Grown by MBE andIt’s Optical and Electrical Properties
指導教授:馮哲川
指導教授(外文):Zhe Chuan Feng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:99
中文關鍵詞:氮化銦分子束磊晶X-ray光電子譜X-ray吸收譜光學吸收譜拉曼
外文關鍵詞:InNMBEXPSPLRamanNEXAFS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化銦是現今的三五族半導體材料中最具吸引力的化合物.由於它的能隙為0.7eV,使的三五族材料在太陽能應用上能囊括從紫外光波段區到紅外光波段區的光.這對於太陽能的效能有很大的改善.我們利用分子束磊晶來成長氮化銦.其中,電漿槍的瓦數對氮化銦的電性(如:載子濃度,遷移速度)有極大的影響.這部份的原因來自於氮離子,我們能從電漿槍的放射光譜發現氮離子會跟隨瓦數而作相對應的變化.而從X-ray光電子譜也能看出氮離子所造成的點缺陷.另外,從光激發螢光實驗,氮化銦的能隙會隨著五三比的不同而有變化.這部份原因來自於銦的群聚現象.我們同時也用X-ray吸收譜,光學吸收譜,拉曼來量測.
InN is the most promising material of nitride-based semiconductors. In this thesis, we use the molecular beam epitaxy(MBE) system to grow InN. The InN’s electrical and optical properties is improved by the plasma gun power variation. The possible reason is due to the nitrogen ion which is confirmed by the optical spectrum and X-ray photoelectron spectroscopy (XPS). Besides, the photoluminescence(PL) is different by the V/III ratio which is due to the In cluster. The near edge X-ray absorption fine spectroscopy (NEXAFS), absorption ,and Raman has been used to measure.
目 錄
口試委員會審定書……………………………………………………………………..II
誌謝.……………………………………………………………………………………III
中文摘要……………………………………………………………………………….IV
英文摘要………………………………………………………………………………..V

Chapter 1 Introduction 9
1-1 III-nitrides materials 9
1-2 InN (InN, latest development and a review of the band-gap controversy) 10
1-3 InN physical properties 13
1-4 Spontaneous and piezoelectric polarizations 19
1-5 Moss–Burstein effect[InN, latest development and a review of the band-gap controversy] 20
1-6 The different InN growth method compare with MBE 24
Chapter 2 Experiment detail 26
2-1 Molecular beam epitaxy(MBE) system: 26
2-2 X-ray diffraction (XRD): 30
2-3 Hall-effect measurement: 32
2-3-1The Hall Effect and the Lorentz Force 32
2-3-2 The van der Pauw Technique 35
2-4 X-ray photoelectron spectroscopy 38
2-4-1 The photoelectric effect: 38
2-5 Optical absorption 41
2-6 The procedure of InN growth by MBE: 46
Chapter 3 Result & Discussion: 50
3-1 Temperature versus InN morphology and crystal quality 50
3-1-1 SEM and Hall measurement of temperature dependent InN 51
3-1-2 X-ray Diffraction (XRD) rocking curve of temperature dependent InN 54
3-2 N2-plasma gun power versus InN morphology and crystal quality 55
3-2-1 The optical spectra of nitrogen plasma 56
3-2-2 Hall measurement of plasma power dependent InN 61
3-3 Bias voltage versus InN crystal quality 62
3-3-1 The modification of RF-plasma gun 62
3-3-2 Mean free path of nitrogen in vacuum environment 64
3-3-3 XRC and Hall of bias voltage dependent InN 66
3-3-4 The point defects of InN 70
3-4 Photoluminescence and optical absorption of InN thin film 74
3-5 X-ray absorption near edge spectroscopy of InN thin film 87

參考文獻………………………………………………93
[1]O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, J. Appl. Phys. Vol. 85. no. 6, pp. 3222-3233, 1999
[2]See, for example, the recent reviews and also the references in S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, J. Appl. Phys. 87, 965(2000); S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, ibid. 86, 1(1999).
[3] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).
[4]S. N. Mohammad and H. Morkoc, Prog. Quantum Electron. 20, 361(1996).
[5]For a recent review, see, O. Ambacher, J. Phys. D 31, 2653 (1998).
[6]I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, Physica B 185, 428 (1993).
[7]S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 32, L8 (1993).
[8]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74 (1996).
[9]V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
[10]S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, J. Appl. Phys. 83, 826 (1998).
[11]E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys. 85, 916 (1999).
[12]B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).
[13]A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35, 53 (1994).
[14]Z. G. Qian, W. Z. Shen, H. Ogawa, and Q. X. Guo, J. Appl. Phys. 92, 3683 (2002).
[15]R. Juza, H. Hahn, Z. Anorg. Alleg. Chem. 239 (1938) 282.
[16]K.S.A. Butcher, InN, an Historic review — from obscurity to controversy, in: Q. Guo (Ed.), Advanced Material in Electronics, Research Signpost, 2004, p. 1.
[17]H.J. Hovel, J.J. Cuomo, Appl. Phys. Lett. 20 (1972) 71.
[18]T.L. Tansley, C.P. Foley, Electron. Lett. 20 (1984) 1066.
[19]T.L. Tansley, C.P. Foley, J. Appl. Phys. 59 (1986) 3241.
[20]T. Inushima, V.V.Mamutin, V.A. Vekshin, S.V. Ivanov, T. Sakon, M. Motokawa, S. Ohoya, J. Cryst. Growth 227–228 (2001) 481.
[21]V.Yu Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Status Solidi b 229 (2002) R1.
[22]Y. Nanishi, Y. Saito, T. Yamaguchi, Japan. J. Appl. Phys. 42 (2003) 2549.
[23]V. Yu Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov, V.V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, A. Hashimoto, A. Yamamoto, A.J. Aderhold, J. Graul, E.E. Haller, Phys. Status Solidi b 230 (2002) R4.
[24]J.Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80 (2002) 3967.
[25]M. Higashiwaki, T. Matsui, J. Cryst. Growth 269 (2004) 162.
[26]D.B. Haddad, H. Dai, R. Naik, C. Morgan, V.M. Naik, J.S. Thakur, G.W. Auner, L.E. Wenger, H. Lu, W.J. Schaff, Mater. Res. Soc. Symp. Proc. 798 (2004) Y12.7.1.
[27]K.S.A. Butcher, M. Wintrebert-Fouquet, P.P.-T. Chen, K.E. Prince, H. Timmers, S.K. Shrestha, T.V. Shubina, S.V. Ivanov, R. Wuhrer, M.R. Phillips, B. Monemar, Non-stoichiometry and nonhomogeneity in InN, in: 2004 International Workshop on Nitride Semiconductors, Pittsburgh, Phys. Status Solidi C 2 (2005) 2263.
[28]J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu, W.J. Schaff, Phys. Rev. B 66 (2002) 201403.
[29]D.B. Haddad, J.S. Takur, V.M. Naik, G.W. Auner, R. Naik, L.E.Wenger, Mater Res. Soc. Symp. Proc. 743 (2003) 701.
[30]Motlan, E.M. Goldys, T.L. Tansley, J. Cryst. Growth 241 (2002) 165.
[31]V.A. Tyagai, A.M. Evstigneev, A.N. Krasiko, A.F. Andreeva, V.Ya. Malakhov, Sov. Phys. Semicond. 11 (1977) 1257.
[32]B.R. Natarajan, A.H. Eltoukhy, J.E. Greene, T.L. Barr, Thin Solid Films 69 (1980) 201.
[33]K.L.Westra, R.P.W. Lawson, M.J. Brett, J. Vac. Sci. Technol. A 6 (1988) 1730.
[34]B.T. Sullivan, R.R. Parsons, K.L.Westra, M.J. Brett, J. Appl. Phys 64 (1988) 144.
[35]K.S.A. Butcher, M. Wintrebert-Fouquet, P.P.-T. Chen, T.L. Tansley, S. Srikeaw, Mater. Res. Symp. Proc. 693 (2002) 341.
[36]K. Sugita, H. Takatsuka, A. Hashimoto, A. Yamamoto, Phys. Status Solidi b 240 (2003) 421.
[37]O. Briot, B. Maleyre, S. Ruffenach, B. Gil, C. Pinquier, F. Demangeot, J. Frandon, J. Cryst. Growth 269 (2004) 22.
[38]I. Grzegory, S. Porowski, High pressure solution growth of GaN and related compounds, in: J.H. Edgar, S. Strite, I. Akasaki, H. Amano, C. Wetzel (Eds.), Gallium Nitride and Related Semiconductors, Publ. INSPEC, London, 1999, p. 359.
[39]I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60 (1986) R123.
[40]I. Hamberg, C.G. Granqvist, K.-F. Berrgren, B.E. Sernelius, L. Engstrom, Phys. Rev. B 30 (1984) 3240.
[41]A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94 (2003) 2779.
[42]J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangeleiter, Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells, Phys. Rev. B vol. 57, no. 16, pp. R9435-R9438, 1998
[43]P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove, and J. Redwing, Piezoelectric charge densities in AlGaN/GaN HFETs, vol. 33, no. 14, pp. 1230-1231, 1997
[44]S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, J. Appl. Phys., vil. 85, no. 11, pp. 7682-7689, 1999.
[45]Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin,M. C. Lee, and W. K. Chen, Jpn. J. Appl. Phys., vol. 38, part. 1, no. 3A, pp. 645-648,1999.
[46]A. Yamamoto, K. Koide, T. Tanaka, and A. Hashimoto, Improvement of electrical properties of MOVPE InN by NH3 decomposition enhancement, the 2002 International Conference on Nitrides, Conference digest, pp. 49-53,1998
[47]J.W. Trainor, K. Rose, J. Electron. Mater. 3 (1974) 821.
[48]B.R. Natarajan, A.H. Eltoukhy, J.E. Greene, T.L. Barr, Thin Solid Films 69 (1980) 201.
[49]T.L. Tansley, C.P. Foley, J. Appl. Phys. 59 (1986) 3241.
[50]W.Walukiewicz, S.X. Li, J.Wu, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu,W.J. Schaff, J. Cryst. Growth 269 (2004) 119.
[51]K.S.A. Butcher, M. Wintrebert-Fouquet, P.P.-T. Chen, K.E. Prince, H. Timmers, S.K. Shrestha, T.V. Shubina, S.V. Ivanov, R. Wuhrer, M.R. Phillips, B. Monemar, Non-stoichiometry and nonhomogeneity in InN, in: 2004 International Workshop on Nitride Semiconductors, Pittsburgh, Phys. Status Solidi C 2 (2005) 2263.
[52]K. Sugita, H. Takatsuka, A. Hashimoto, A. Yamamoto, Phys. Status Solidi b 240 (2003) 421.
[53]D.C. Look, H. Lu, W.J. Schaff, J. Jasinski, Z. Liliental-Weber, Appl. Phys. Lett. 80 (2002) 258.
[54]Takeo Kageyama, Tomoyuki Miyamoto, Shigeki Makino, Fumio Koyama, Kenichi Iga, Journal of Crystal Growth 209 (2000) 350}354
[55]R.P. Vaudo, J.W. Cook Jr., J.F. Schetzina, J. Cryst. Growth 138 (1994) 430.
[56]K. S. A. Butcher, in InN, an Historic Review: From Obscurity to Controversy, Advanced Material in Electronics, edited by Q. Guo _Research Signpost, Kerala, India, 2004_, p. 1.
[57]6K. S. A. Butcher and T. L. Tansley, Superlattices Microstruct. 38, 1 (2005).
[58]B. R. Nag, J. Cryst. Growth 269, 35 (2004).
[59]V. M. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
[60]Y. M. Chiang, D. Birnie III, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering (Wiley, New York, 1997), Chap. 2.
[61]K. S. A. Butcher and T. L. Tansley, Superlattices Microstruct. 38, 1 (2005).
[62]D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, Appl.Phys. Lett. 80, 258 (2002).
[63]C. Stampfl, C. G. Van de Walle, D. Vogel, P. Kruger, and J. Pollmann,Phys. Rev. B 61, R7846 (2000).
[64]T.V. Shubina,* S.V. Ivanov,V. N. Jmerik, D. D. Solnyshkov,V. A. Vekshin, and P. S. Kop’ev, PhysRevLett.92.117407(2004)
[65]Alexander V. Soldatova,_, Alexander Gudaa, Antonina Kravtsovaa, M. Petravicb, P.N.K. Deenapanrayc, M.D. Fraserb, Y.-W. Yangd, P.A. Andersone, S.M. Durbine Radiation Physics and Chemistry 75 (2006) 1635–1637
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊