跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明昀
研究生(外文):Ming-yun Chen
論文名稱:各向異性光波導及光子晶體與週期性電漿子結構之有限差分頻域特徵模態分析方法之發展
論文名稱(外文):Development of Finite-Difference Frequency-Domain Eigenmode Analysis Algorithms for Anisotropic Optical Waveguides/Photonic Crystals and Periodic Plasmonic Structures
指導教授:張宏鈞
指導教授(外文):Hung-chun Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:132
中文關鍵詞:有限差分頻域法各向異性材料表面電漿子波導
外文關鍵詞:finite-difference frequency-domain methodanisotropic materialssurface plasmonic waveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以全向量有限差分頻域法推得標準特徵方程式,以之分析具各向異性材料的光波導及光子晶體。利用全向量式有限差分頻域法之波導模態求解模型,得以簡單而有效率地計算出含任意導電率張量的各向異性光波導的導波模態,例如鈮酸鋰光波導和液晶光波導。本研究引入適用各向異性材料的完美匹配吸收層於計算區域的外圍,因此得以分析計算洩漏式光波導。
針對於含各向同性或平面各向異性材料的二維光子晶體的能帶分析,在波傳播方向為平行於週期性平面而橫向電場與橫向磁場波模不互相耦合的情況下,本研究以純量有限差分頻域法推導特徵方程式做有效率的計算。本研究進而推導同時考慮電場與磁場分量的全向量特徵方程式以分析具任意三維各向異性的二維光子晶體,此時橫向電場與橫向磁場波模通常呈耦合狀態。此全向量特徵方程式可進一步推展以分析具任意導電率張量的三維光子晶體,本研究以之計算探討三維各向同性簡單立方光子晶體及具各向同性或各向異性材料的光子晶體平板結構的能帶特性。
除了各向異性波導模態與光子晶體能帶的計算外,本研究亦推導標準特徵方程式以分析計算具一維週期與忽略損耗的實際金屬的二維三維表面電漿子波導,得以有效率地獲得二維及三維週期性波導的色散能帶特性與導波模態。
We propose full-vectorial finite-difference frequency-domain (FDFD) method based
standard eigenvalue algorithms for analyzing anisotropic optical waveguides and
photonic crystals (PCs). Using the established full-vectorial waveguide mode solver,
we can easily and efficiently calculate allowed guided modes on anisotropic optical
waveguides with an arbitrary permittivity tensor, such as lithium niobate and liq-
uid crystal (LC) optical waveguides. We also incorporate perfectly matched layers
(PMLs) for anisotropic media into our formulation as the absorbing boundary condi-
tion at the outer boundaries of the computational domain so that leaky waveguides
can be treated.
For band diagram analysis of 2-D PCs with isotropic or in-plane anisotropic ma-
terials under the in-plane wave propagation for which the waves can be decoupled
into transverse-electric (TE) and transverse-magnetic (TM) modes, we formulate the
scalar FDFD method based eigenvalue algorithm. We then develop a full-vectorial
FDFD based eigenvalue algorithm to analyze band diagrams of 2-D PCs with ar-
bitrary 3-D anisotropy, in which the TE and TM modes are coupled. The band
diagram analysis algorithm is further generalized to investigate 3-D PCs with an
arbitrary permittivity tensor. The band diagrams of 3-D simple cubic PCs or PC
slab structures with isotopic and anisotropic media are examined and investigated.
In addition to the algorithms for anisotropic waveguide modes and PC band
diagrams, we derive a standard eigenvalue algorithm for analyzing 2-D and 3-D
surface plasmonic waveguides with 1-D periodicity and involving real metals ignoring
the losses. We are able to efficiently obtain dispersion band characteristics and
guided mode patterns for 2-D and 3-D periodic waveguides.
1 Introduction 1
1.1 Photonic Crystals and Surface Plasmon Nanophotonics . . . . . . . . 1
1.2 Numerical Schemes for the Analysis of Optical Waveguides and Pho-
tonic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview and Organization of the Dissertation . . . . . . . . . . . . . 4
1.4 Contributions of the Present Work . . . . . . . . . . . . . . . . . . . 5
2 The Finite-Difference Frequency-Domain Method 8
2.1 Full-Vectroial Waveguide Mode Solver Considering Arbitrary Permit-
tivity Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Scalar Analysis Method for 2-D Photonic Crystals Involving In-Plane
Non-Diagonal Permittivity Tensor . . . . . . . . . . . . . . . . . . . . 14
2.2.1 The FDFD Formulation . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Periodic Boundary Conditions for the 2-D PC . . . . . . . . . 16
2.2.3 Dielectric-Interface Treatment . . . . . . . . . . . . . . . . . . 17
2.3 Full-Vectorial Analysis Method for 2-D Photonic Crystals Involving
Arbitrary Permittivity Tensor . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Formulation for Band Diagram Analysis of 3-D PCs with Non-Diagonal
Permittivity Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Formulation for Band Diagram Analysis of 1-D Periodic Arrays of
Metallic Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 2-D Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 3-D Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Numerical Results of Anisotropic Waveguides with an Arbitrary
Permittivity Tensor 36
3.1 Proton-Exchanged LiNbO3 (PE-LN) Optical Waveguides . . . . . . . 37
3.2 Liquid Crystal Optical Waveguides . . . . . . . . . . . . . . . . . . . 39
3.3 Analysis of Nematic Liquid Crystal Optical Waveguides in Silicon
V-Grooves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Numerical Results for Band Diagram Analysis of 2-D and 3-D Pho-
tonic Crystals 57
4.1 Band Diagrams for 2D Isotropic Photonic Crystals . . . . . . . . . . 58
4.1.1 Square Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Triangular Lattice . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Band Diagrams for 2-D Photonic Crystals with In-Plane Anisotropy . 60
4.2.1 Square Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Triangular Lattice . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Band Diagrams Analysis for 2-D Photonic Crystals with Arbitrary
3-D Anisotropy Under In-Plane and Out-of-Plane Wave Propagation 63
4.4 Band diagrams for 3D Photonic Crystals . . . . . . . . . . . . . . . . 65
4.4.1 3-D Simple Cubic Photonic Crystal: Sphere Structures . . . . 65
4.4.2 3-D Photonic Crystal Slabs with Isotropic Materials . . . . . . 66
4.4.3 3-D Photonic-Crystal Slabs with Anisotropic Materials . . . . 68
5 Analysis of Surface Plasmonic Waveguides 97
5.1 Circular-Nanorod Plasmonic Waveguides . . . . . . . . . . . . . . . . 98
5.2 Periodic Arrangement of 2-D Subwavelength Slits . . . . . . . . . . . 99
5.3 Periodic Arrangement of 3-D Subwavelength Slits – PEC Case . . . . 101
5.4 Periodic Arrangement of 3-D Subwavelength Slits – Real Metal Case 102
6 Conclusion 121
[1] Alagappan, G., X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A, vol. 23, pp. 2002–2013, 2006.
[2] Anderson, C. M. and K. P. Giapis, “Larger tw-dimensional photonic band gaps,” Phys. Rev. Lett., vol. 77, pp. 2949V-2952, 1996.
[3] Andronova, I. A., and G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys.-Usp., vol. 45, pp. 793–817, 2002.
[4] Barkou, T., J. Broeng and A. Bjarklev, “Silica photonic crystal fiber design that permit waveguiding by a true photonic bandgap effect,” Opt. Lett., vol. 24, pp. 46–48, 1999.
[5] Barnes, W. L., A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824–830, 2003.
[6] Bellini, B., and R. Beccherelli, “Modeling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys., vol. 42, 045111, 2009.
[7] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectan-
gular dielectric waveguides by a new finite diRerence method,” J. Lightwave Technol., vol. 34, pp. 1104–1113, 1986.
[8] Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, ”Full 2-D photonic band gaps in silica/ air structures,” Electron. Lett., vol. 31, pp. 1941–1943, 1995.
[9] Biswas, R., M. M. Sigalas, and K.-M. Ho, and S.-Y. Lin, “Three-dimensional photonic band gaps in modified simple cubic lattices,” Phys. Rev. B., vol. 65, pp. 205121 ,2002.
[11] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett., vol. 95, 046802, 2005.
[11] Bozhevolnyi, S. I. , V. S. Volkov, E. Devaux, J. Y. Laluet, and T.W. Ebbesen,“Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, vol. 440, pp. 508–511, 2006.
[12] Burden, R. L., and J. D. Faires, Numerical Analysis. Boston, MA: PWSKENT, 1989.
[13] Catrysse, P. B., G. Veronis, H. Shin, J. T. Shen and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett., vol. 88, 031101, 2006.
[14] Chigrin, D. N., A. V. Lavvrinenko, D. A. Yarotsky, and S. V. Gaponenko,“All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission contro,” J. Ligtwave Technol., vol. 17, pp. 2018–2024, 1999.
[15] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537–1539, 1999.
[16] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,” IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124–1131, 1970.
[17] Chiang, P. J., C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E., vol. 75, 026702, 2007.
[18] Coccioli, R., M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron., vol. 145, pp. 391–397, 1998.
[19] d’Alessandro A., B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Qunatum
Electron, vol. 42, pp. 1084-1090, 2006.
[20] Dickson, R. M., and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B., vol. 104 , pp. 6095–6098, 2000.
[21] Fallahkhair, A. B., K. S. Li, and T. E. Murphy, “Vector finite difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol., vol. 26, pp. 1423–1431, 2008.
[22] Ferrando, A., L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleriand, “Fullvector analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24, pp. 276–278, 1999.
[23] Fink, Y., J. N. Winn, S. H. Fan, C.P. Chen, J. Michel, J. D. Joannpoulos, and E. L. Tomas, “A dielectric ominidirectional reflector,” Science, vol. 282, pp. 1679–1682, 1998.
[24] Gennaro, E. Di, P. Parimi, W. Lu, S. Sridhar, J. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B, vol. 72, 033110, 2005.
[25] Ghaemi, H.F., T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B, vol. 58, pp. 6779–6782, 1998.
[26] Gur’yanov, A. N., D. D. Gusovskii, G. G. Devyatykh, E. M. Dianov, V. B. Neustruev and A. M. Prokhorov, “Multichannel anisotropic single-mode fiber waveguide for fiber-optic sensors,” J. Quantum Electron., vol. 17, pp. 377-378, 1987.
[27] Hadley, G. R., “High-accuracy finite-diRerence equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol., vol. 20, pp. 1219-1231, 2002.
[28] Hsu, S. M., M. M. Chen, and H. C. Chang, “Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method
based eigenvalue algorithm,” Opt. Express, vol. 15, pp. 5416–5430, 2007.
[29] Hsu, S. M., H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,”Opt. Express, vol. 15, pp. 15797–15811, 2007.
[30] K. P. Hwang, K. P. and A. C. Cangellaris, “Effective permittivities for secondorder accurate FDTD equations at dielectric interfaces,” IEEE Microwave Wirel. Compon. Lett., vol. 11, pp. 158–160, 2001.
[31] Itoh, T. ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structure. New York: Wiley, 1989.
[32] Ito, T., and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,”Phys. Rev. B, vol, 64, pp. 045117-045124, 2001.
[33] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light. Princeton University Press, Princeton, NJ, 1995.
[34] John, S., “Strong localization of photons in certain disordered dielectric superlattices dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489,
1987.
[37] Johnson, S. G., P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B, vol. 60, pp. 5751–5758, 1999.
[36] Johnsona, S. G. and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett., vol. 77, 3490, 2000.
[37] Johnson, S. G., and J. D. oannopoulos, “Block-iterative frequency domain methods for Maxwell’s equations in a planewave basis,” Opt. Express, vol.8, pp. 173–190, 2001.
[38] Kaneda, N., B. Houshmand, and T. Itoh, “FDTD nalysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1645–1649, 1997.
[39] Konesen, A., M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals: Surface impedance/admittance approach,” App. Phys. B., vol. 38, pp. 171–178, 1985.
[40] Knoesen, A., T. K. Gaylord, and M. G. Moharam, Hybrid guided modes in unaxial dielectric planar waveguides,” J. Lightwave Technol., vol. 6, pp. 1083–1104, 1988.
[41] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielec- tricwaveguides using tangential vector finite elememts,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991.
[45] Li, Y. F., K. Iizuka, and J. W. Y. Lit, ”Equivalent-layer method for optical waveguides with a multiple quantum well structure,” Opt. Lett., vol. 17, pp. 273–275, 1992.
[45] Li, Z. Y., B. Y. Gu, and G. Z. Yang, “Large absolute band gap in two-dimensional anisotropic photonic crystals,” Phys. Rev. Lett., vol. 81, pp. 2574–2577, 1998a.
[45] Li, Z. Y., J. Wang, and B. Y. Gu, “Creation of artial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B, vol. 58, pp. 3721–3729, 1998b.
[45] Li, Z. Y., and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E, vol. 67, 046607, 2003.
[47] Lin, S. Y., J. G. Fleming, R. Lin, M. M. Sigalas, R. Biswas, and K. M. Ho,“Complete three-dimensional photonic bandgap in a simple cubic structure,”J. Opt. Soc. Amer. B, vol. 18, pp. 32–35, 2001.
[47] Lin, Y., D. Rivera, and K. P. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,”Opt. Express, vol. 114, pp. 887–892, 2006.
[48] L‥usse P., K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett., vol. 32, pp. 38–39, 1996.
[49] Maradudin, A. A., and A. R. McGurn, “Out of plane propagation of electro-magnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt., vol. 41, pp. 275–284, 1994.
[50] Mekis, R. D., A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith,and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” Appl. Phys. Lett., vol. 75, pp. 4753–4755, 1994.
[51] Mitchell, A. R., and D. F. Griffiths, The Finite Difference Method in Partical Differential Equations. New York: Wiley, 1987.
[52] Mittra, R., and U. Pekel, “A new look an the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid Wave Lett., vol. 5, pp. 84–86, 1995.
[53] Mohammadi, A., and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express, vol. 13, pp. 10367–10381, 2005.
[54] Moreno, E., D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B, vol. 65, pp. 155120–155130, 2002.
[55] Ohke, S., T. Umeda, and Y. Cho, ”Equivalent-layer method for optical waveguides with a multiple quantum well structure: comment,” Opt. Lett., vol. 18, pp. 1870–1872, 1993.
[57] Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000.
[57] Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimiching surface plasmons with structured surface,” Science, vol. 305 , pp. 847–848, 2004.
[58] Petrov, D. V., and E. A. Kolosovsky, “Radiation modes of an anisotropic optical waveguide with arbitrary refractive index profile,” Optics Communications, vol.
124, pp. 240–243, 1996.
[60] Qiu, M. and S. He, “Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap,” J. Opt. Soc.
Am. B., vol. 17, pp. 1027–1030, 2000a.
[60] Qui, M., and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys., vol. 87, pp. 8268–8275, 2000b.
[61] Quinten, M., A. Leitner, J.R. Krenn, F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett., vol. 23, pp. 1331–
1333, 1998.
[62] Rahman, B. M. A., and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE. Trans. Microwvae Theory Tech., vol. 32, pp. 20–28, 1984.
[63] Ruan, Z., and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett., vol. 90, 201906, 2007.
[64] Russel, P. S. J., S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun., vol. 16, pp. 66–71, 1999.
[65] Saini, M., and E. K. Sharma, ”Equivalent refractive index of MQW waveguides,” IEEE J. Quntum Electron., vol. 32, pp. 1383–1390, 1996.
[66] Saitoh, K., and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 405–413, 2001.
[67] S‥o4‥uer, H. S., and J. W. “Haus, Photonic bands: simple-cubic lattic,” J. Opt. Soc. Amer. B, vol. 10, pp. 296–302, 1993.
[68] Taflove, A., and S. C. Hagness, Computational Electromagnetics: The Finite Difference Time Domain Method, Second Edition., Boston, MA: Artech House, 2000.
[69] Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett., vol. 22, pp. 475–477, 1997.
[70] Teixeira, F. L. and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 223–225, 1998.
[71] Thylen, L., and D. Yevick, “Beam propagation method in anisotropic media,”Appl. Opt., vol. 21, pp. 2751–2754, 1982.
[72] Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B, vol. 60, pp. 9061–9068, 1999.
[73] Vallee, R., and G. He, “Polarizing properties of a high index birefringent waveguide on topof a polished fiber coupler,” J. Lightwave Technol., vol. 11, pp.
1196–1203, 1993.
[74] Veronis, G., and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, pp. 131102, 2005.
[75] Villeneuve, P., S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three dimensional photon confinement in photonic crystals of low-dimensional periodicity,”IEEE Proc. Optoelectron., vol. 145, pp. 384–390, 1998.
[76] Xiao, S., and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express, vol. 14, pp. 2932–2937, 2006.
[77] Xu, C. L., W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol., vol. 12, pp. 1926–1931, 1994.
[78] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[79] Yee, K. S., “Numerical solution of initial boundary value problems involing Maxwell’s equations on isotropic media,” IEEE Trans. Antenna Propagat., vol. 14, pp. 302–307, 1966.
[80] Yeh, P., and C. Gu, Optics of Liquid Crystal Displays. New York: Wiley, 1999.
[81] Yu, C. P., and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express, vol. 12, pp. 1397–1408, 2004.
[82] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, vol. 12, pp. 6165V-6177, 2004.
[83] Zabel, I. H., and D. Stroud, “Photonic band strusture of optically anisotropic periodic arrays,” Phy. Rev. B., vol. 48, pp. 5004–5012, 1993.
[84] Zhao, Y. and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Microwave Theory Tech., vol. 55,
pp. 3070–3077, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top