|
[1] Alagappan, G., X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A, vol. 23, pp. 2002–2013, 2006. [2] Anderson, C. M. and K. P. Giapis, “Larger tw-dimensional photonic band gaps,” Phys. Rev. Lett., vol. 77, pp. 2949V-2952, 1996. [3] Andronova, I. A., and G. B. Malykin, “Physical problems of fiber gyroscopy based on the Sagnac effect,” Phys.-Usp., vol. 45, pp. 793–817, 2002. [4] Barkou, T., J. Broeng and A. Bjarklev, “Silica photonic crystal fiber design that permit waveguiding by a true photonic bandgap effect,” Opt. Lett., vol. 24, pp. 46–48, 1999. [5] Barnes, W. L., A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, pp. 824–830, 2003. [6] Bellini, B., and R. Beccherelli, “Modeling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D: Appl. Phys., vol. 42, 045111, 2009. [7] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectan- gular dielectric waveguides by a new finite diRerence method,” J. Lightwave Technol., vol. 34, pp. 1104–1113, 1986. [8] Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, ”Full 2-D photonic band gaps in silica/ air structures,” Electron. Lett., vol. 31, pp. 1941–1943, 1995. [9] Biswas, R., M. M. Sigalas, and K.-M. Ho, and S.-Y. Lin, “Three-dimensional photonic band gaps in modified simple cubic lattices,” Phys. Rev. B., vol. 65, pp. 205121 ,2002. [11] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett., vol. 95, 046802, 2005. [11] Bozhevolnyi, S. I. , V. S. Volkov, E. Devaux, J. Y. Laluet, and T.W. Ebbesen,“Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, vol. 440, pp. 508–511, 2006. [12] Burden, R. L., and J. D. Faires, Numerical Analysis. Boston, MA: PWSKENT, 1989. [13] Catrysse, P. B., G. Veronis, H. Shin, J. T. Shen and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett., vol. 88, 031101, 2006. [14] Chigrin, D. N., A. V. Lavvrinenko, D. A. Yarotsky, and S. V. Gaponenko,“All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission contro,” J. Ligtwave Technol., vol. 17, pp. 2018–2024, 1999. [15] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, pp. 1537–1539, 1999. [16] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,” IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124–1131, 1970. [17] Chiang, P. J., C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E., vol. 75, 026702, 2007. [18] Coccioli, R., M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron., vol. 145, pp. 391–397, 1998. [19] d’Alessandro A., B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Qunatum Electron, vol. 42, pp. 1084-1090, 2006. [20] Dickson, R. M., and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B., vol. 104 , pp. 6095–6098, 2000. [21] Fallahkhair, A. B., K. S. Li, and T. E. Murphy, “Vector finite difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol., vol. 26, pp. 1423–1431, 2008. [22] Ferrando, A., L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleriand, “Fullvector analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24, pp. 276–278, 1999. [23] Fink, Y., J. N. Winn, S. H. Fan, C.P. Chen, J. Michel, J. D. Joannpoulos, and E. L. Tomas, “A dielectric ominidirectional reflector,” Science, vol. 282, pp. 1679–1682, 1998. [24] Gennaro, E. Di, P. Parimi, W. Lu, S. Sridhar, J. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B, vol. 72, 033110, 2005. [25] Ghaemi, H.F., T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B, vol. 58, pp. 6779–6782, 1998. [26] Gur’yanov, A. N., D. D. Gusovskii, G. G. Devyatykh, E. M. Dianov, V. B. Neustruev and A. M. Prokhorov, “Multichannel anisotropic single-mode fiber waveguide for fiber-optic sensors,” J. Quantum Electron., vol. 17, pp. 377-378, 1987. [27] Hadley, G. R., “High-accuracy finite-diRerence equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol., vol. 20, pp. 1219-1231, 2002. [28] Hsu, S. M., M. M. Chen, and H. C. Chang, “Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm,” Opt. Express, vol. 15, pp. 5416–5430, 2007. [29] Hsu, S. M., H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,”Opt. Express, vol. 15, pp. 15797–15811, 2007. [30] K. P. Hwang, K. P. and A. C. Cangellaris, “Effective permittivities for secondorder accurate FDTD equations at dielectric interfaces,” IEEE Microwave Wirel. Compon. Lett., vol. 11, pp. 158–160, 2001. [31] Itoh, T. ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structure. New York: Wiley, 1989. [32] Ito, T., and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,”Phys. Rev. B, vol, 64, pp. 045117-045124, 2001. [33] Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light. Princeton University Press, Princeton, NJ, 1995. [34] John, S., “Strong localization of photons in certain disordered dielectric superlattices dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987. [37] Johnson, S. G., P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B, vol. 60, pp. 5751–5758, 1999. [36] Johnsona, S. G. and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett., vol. 77, 3490, 2000. [37] Johnson, S. G., and J. D. oannopoulos, “Block-iterative frequency domain methods for Maxwell’s equations in a planewave basis,” Opt. Express, vol.8, pp. 173–190, 2001. [38] Kaneda, N., B. Houshmand, and T. Itoh, “FDTD nalysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1645–1649, 1997. [39] Konesen, A., M. G. Moharam, and T. K. Gaylord, “Electromagnetic propagation at interfaces and in waveguides in uniaxial crystals: Surface impedance/admittance approach,” App. Phys. B., vol. 38, pp. 171–178, 1985. [40] Knoesen, A., T. K. Gaylord, and M. G. Moharam, Hybrid guided modes in unaxial dielectric planar waveguides,” J. Lightwave Technol., vol. 6, pp. 1083–1104, 1988. [41] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielec- tricwaveguides using tangential vector finite elememts,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [45] Li, Y. F., K. Iizuka, and J. W. Y. Lit, ”Equivalent-layer method for optical waveguides with a multiple quantum well structure,” Opt. Lett., vol. 17, pp. 273–275, 1992. [45] Li, Z. Y., B. Y. Gu, and G. Z. Yang, “Large absolute band gap in two-dimensional anisotropic photonic crystals,” Phys. Rev. Lett., vol. 81, pp. 2574–2577, 1998a. [45] Li, Z. Y., J. Wang, and B. Y. Gu, “Creation of artial band gaps in anisotropic photonic-band-gap structures,” Phys. Rev. B, vol. 58, pp. 3721–3729, 1998b. [45] Li, Z. Y., and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E, vol. 67, 046607, 2003. [47] Lin, S. Y., J. G. Fleming, R. Lin, M. M. Sigalas, R. Biswas, and K. M. Ho,“Complete three-dimensional photonic bandgap in a simple cubic structure,”J. Opt. Soc. Amer. B, vol. 18, pp. 32–35, 2001. [47] Lin, Y., D. Rivera, and K. P. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,”Opt. Express, vol. 114, pp. 887–892, 2006. [48] L‥usse P., K. Ramm, and H.-G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett., vol. 32, pp. 38–39, 1996. [49] Maradudin, A. A., and A. R. McGurn, “Out of plane propagation of electro-magnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt., vol. 41, pp. 275–284, 1994. [50] Mekis, R. D., A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith,and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” Appl. Phys. Lett., vol. 75, pp. 4753–4755, 1994. [51] Mitchell, A. R., and D. F. Griffiths, The Finite Difference Method in Partical Differential Equations. New York: Wiley, 1987. [52] Mittra, R., and U. Pekel, “A new look an the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave Guid Wave Lett., vol. 5, pp. 84–86, 1995. [53] Mohammadi, A., and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express, vol. 13, pp. 10367–10381, 2005. [54] Moreno, E., D. Erni, and C. Hafner, “Band structure computations of metallic photonic crystals with the multiple multipole method,” Phys. Rev. B, vol. 65, pp. 155120–155130, 2002. [55] Ohke, S., T. Umeda, and Y. Cho, ”Equivalent-layer method for optical waveguides with a multiple quantum well structure: comment,” Opt. Lett., vol. 18, pp. 1870–1872, 1993. [57] Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000. [57] Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimiching surface plasmons with structured surface,” Science, vol. 305 , pp. 847–848, 2004. [58] Petrov, D. V., and E. A. Kolosovsky, “Radiation modes of an anisotropic optical waveguide with arbitrary refractive index profile,” Optics Communications, vol. 124, pp. 240–243, 1996. [60] Qiu, M. and S. He, “Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap,” J. Opt. Soc. Am. B., vol. 17, pp. 1027–1030, 2000a. [60] Qui, M., and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys., vol. 87, pp. 8268–8275, 2000b. [61] Quinten, M., A. Leitner, J.R. Krenn, F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett., vol. 23, pp. 1331– 1333, 1998. [62] Rahman, B. M. A., and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE. Trans. Microwvae Theory Tech., vol. 32, pp. 20–28, 1984. [63] Ruan, Z., and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett., vol. 90, 201906, 2007. [64] Russel, P. S. J., S. Tredwell, and P. J. Roberts, “Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun., vol. 16, pp. 66–71, 1999. [65] Saini, M., and E. K. Sharma, ”Equivalent refractive index of MQW waveguides,” IEEE J. Quntum Electron., vol. 32, pp. 1383–1390, 1996. [66] Saitoh, K., and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 405–413, 2001. [67] S‥o4‥uer, H. S., and J. W. “Haus, Photonic bands: simple-cubic lattic,” J. Opt. Soc. Amer. B, vol. 10, pp. 296–302, 1993. [68] Taflove, A., and S. C. Hagness, Computational Electromagnetics: The Finite Difference Time Domain Method, Second Edition., Boston, MA: Artech House, 2000. [69] Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett., vol. 22, pp. 475–477, 1997. [70] Teixeira, F. L. and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 223–225, 1998. [71] Thylen, L., and D. Yevick, “Beam propagation method in anisotropic media,”Appl. Opt., vol. 21, pp. 2751–2754, 1982. [72] Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B, vol. 60, pp. 9061–9068, 1999. [73] Vallee, R., and G. He, “Polarizing properties of a high index birefringent waveguide on topof a polished fiber coupler,” J. Lightwave Technol., vol. 11, pp. 1196–1203, 1993. [74] Veronis, G., and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett., vol. 87, pp. 131102, 2005. [75] Villeneuve, P., S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three dimensional photon confinement in photonic crystals of low-dimensional periodicity,”IEEE Proc. Optoelectron., vol. 145, pp. 384–390, 1998. [76] Xiao, S., and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express, vol. 14, pp. 2932–2937, 2006. [77] Xu, C. L., W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol., vol. 12, pp. 1926–1931, 1994. [78] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987. [79] Yee, K. S., “Numerical solution of initial boundary value problems involing Maxwell’s equations on isotropic media,” IEEE Trans. Antenna Propagat., vol. 14, pp. 302–307, 1966. [80] Yeh, P., and C. Gu, Optics of Liquid Crystal Displays. New York: Wiley, 1999. [81] Yu, C. P., and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express, vol. 12, pp. 1397–1408, 2004. [82] Yu, C. P., and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express, vol. 12, pp. 6165V-6177, 2004. [83] Zabel, I. H., and D. Stroud, “Photonic band strusture of optically anisotropic periodic arrays,” Phy. Rev. B., vol. 48, pp. 5004–5012, 1993. [84] Zhao, Y. and Y. Hao, “Finite-difference time-domain study of guided modes in nano-plasmonic waveguides,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 3070–3077, 2007.
|