跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳力綸
研究生(外文):Li-Lun Chen
論文名稱:微小化布拉格光纖光柵之製作與量測
論文名稱(外文):Fabrication and Measurement of Miniaturized Fiber Bragg Grating
指導教授:王倫
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:106
中文關鍵詞:布拉格光纖光柵抽絲微小化光纖光柵氫氟酸蝕刻纖核局限係數
外文關鍵詞:fiber Bragg gratingfiber drawingminiaturized fiber Bragg gratinghydrofluoric acid etchingcore power confinement factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
一般光纖光柵是採用直徑125微米的單模光纖製作,而若是製作縮小化光纖光柵則是採用氫氟酸對已經製作完成的125微米的光纖光柵進行蝕刻去除掉光纖外層的纖衣部分。利用此種製作方式製作出的光纖光柵,光纖纖核大小依然保持不變。
我們使用125微米的單模光纖當預型體,然後採用我們研究小組所研發的改良式抽絲系統,再將光纖抽細,並將它拿來製作光纖光柵。與傳統氫氟酸蝕刻的光纖光柵不同的地方,在於光纖纖核的直徑會在抽拉過程中,隨著外層纖衣直徑而變化。由於纖核直徑變小,而導致纖核局限係數降低。我們在製作光纖光柵時同時觀測共振波長的飄移知道纖核局限係數對光纖中等效折射率變化的影響。
在我們的研究中縮小化光纖光柵溫度靈敏度10 pm/℃比傳統125微米光纖光柵的對溫度的靈敏度為11.6 pm/℃還要低。縮小化的光纖光柵對張力靈敏度為1.2 pm/με,比125微米光纖光柵的靈敏度1.0 pm/με高。
Traditional Fiber Bragg Gratings (FBGs) are fabricated using 125 μm single-mode fibers. In order to miniaturize the size of an FBG, the common method is to use hydrofluoric acid (HF) to etch 125 μm FBG. The core size of the FBGs made by this method is therefore unchanged.
In this thesis, 125 μm fibers are used as preforms and drawn to smaller sizes by the homemade modified drawing system that our group developed. The difference between our method and traditional HF-etching approach is that in our experiment the core diameter would change linearly with the outer cladding diameter during the drawing process. The core power confinement factor would decrease due to the decrease of the core diameter. We can see the influence of core power confinement to the effective index change in the fiber core by in situ monitoring of the resonance wavelength drift during the grating writing process.
In our work, the temperature sensitivity of miniaturized FBGs is 10 pm/℃, which is lower than that of a 125 μm FBG, 11.6 pm/℃. The strain sensitivity of miniaturized FBG is 1.2 pm/με, which is higher than that of a 125 μm FBG 1 pm/με.
Abstract(Chinese)………………………………………………...I
Abstract(English)…………………………………………...........II
Statement of Contributions……………………………………..III
Contents………………………………………………………...IV
List of Symbols..……………………………………………...VIII
List of Tables…………………………………………………...XI
List of Figures……………………...………………………......XII

Chapter 1 Introduction………………………………………..….1
1.1 Introduction of Fiber Bragg Grating………………………...….1
1.2 Motivation……………………………………………………...…1
1.3 Organization of the Thesis……………………………………......3
Chapter 2 Principle of Fiber Bragg Grating.………………...…...4
2.1 Structure of Fiber Bragg Gratings and Analysis of Guided Modes………………………………………………………...….6
2.2 Mode Coupling in Uniform Fiber Bragg Gratings………….......11
2.3 Coupling Coefficient………………………………………....…16
2.4 Reflection Spectrum Analysis of Uniform Fiber Bragg Gratings…………………………………………………..…….18
2.5 Characteristics of Fiber Bragg Gratings…………….………......23
2.5.1 Strain ……………………………………………………………........23
2.5.2 Temperature ………………………………………………………….24
2.5.3 Evanescent Wave Sensors……………………………………………24
2.6 Summary……………………………...………………………...25
Chapter 3 Fabrication of Miniaturized Fiber Bragg Gratings......26
3.1 Fabrication of Microfibers………………………………………….26
3.2 Core sizes of Microfibers………………………………………......33
3.3 Photosensitivity of Microfibers : Hydrogen Loading…….42
3.3.1 Preparation and Hydrogen Loading Process…………………………......45
3.3.2 Simulation of Hydrogen Diffusion……………………………………….49
3.4 Process of Grating Printing………………………………………...54
3.5 Summary………………………………………………………..56
Chapter 4 Optical Measurement of Miniaturized Fiber Bragg Gratings………………………………………………………..57
4.1 In-situ Measurement during UV Exposure and after Exposure…...58
4.1.1 Measurement Method for Miniaturized Fiber Bragg Gratings……...….58
4.1.2 In-situ Measurement of 125 μm FBG during UV Exposure……………..60
4.1.3 In-situ Measurement of 60 μm FBG during UV Exposure………………62
4.1.4 In-situ Measurement of 50 μm FBG during UV Exposure and after Exposure…………………………………………………………………64
4.1.5 In-situ Measurement of 40 μm FBG during UV Exposure and after Exposure……………………………………………..………………......68
4.1.6 Spectrum Change by Surrounding Index Oil…………………………...70
4.1.7 Microfiber Splicing………………………………………………….......73
4-2 Temperature Measurement…………………………………….…...75
4-2.1 Temperature Measurement of 60 μm FBG………………………….......75
4-2.2 Temperature Measurement of 50 μm FBG………………………….......79
4-2.3 Temperature Measurement of 40 μm FBG………………………...83
4-3 Refractive Index Measurement……………………….....................86
4.3.1 Refractive Index Measurement of 60 μm FBG………………………......87
4.3.2 Refractive Index Measurement of 40 and 50 μm FBG……………….......89
4.4 Strain Measurement of Miniaturized FBGs………………………..91
4.5 Summary……………………………………………………….......97
Chapter 5 Conclusion and Future Work…………………….......98
5.1 Conclusion………………………………………..………………...98
5.2 Further Work……………………………………..………………...99
References………………………………………………..……101
1.K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in Optical Fiber Waveguides - Application to Reflection Filter Fabrication," Appl. Phys. Lett., Vol. 32, No. 10, 647-649, 1978.
2.I. Riant, "Fiber Bragg Gratings for Optical Telecommunications," Comptes Rendus Physique, Vol. 4, No. 1, 41-49, 2003
3.Y. J. Rao, "In-Fibre Bragg Grating Sensors," Meas. Sci. Technol., Vol. 8, No. 4, 355-375, 1997.
4.A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putna7m, and E. J. Friebele, "Fiber Grating Sensors," J. Lightwave Technol., Vol. 15, No. 8, 1442-1463, 1997.
5.R. Kashyap, “Fiber Bragg Grating ,”Academic Press, Chap. 2, 1999.
6.A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, "Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor," IEEE Photonics Technol. Lett., Vol. 16, No. 4, 1149-1151, 2004.
7.W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly Sensitive Fiber Bragg Grating Refractive Index Sensors," Appl. Phys. Lett., Vol. 86, No. 15, 1-3, 2005.
8.A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High Sensitivity Evanescent Field Fiber Bragg Grating Sensor," IEEE Photonics Technol. Lett., Vol. 17, No. 6, 1253-1255, 2005.
9.A. Gonzalez-Segura, J. L. Cruz, M. V. Andres, P. Barrios, and A. Rodriguez, "Fast Response Vibration Sensor Based on Bragg Gratings Written in Tapered Core Fibres," (Iop Publishing Ltd, 2007), 3139-3143.
10.J. Mora, J. Villatoro, A. Diez, J. L. Cruz, and M. V. Andres, "Tunable Chirp in Bragg Gratings Written in Tapered Core Fibers," Optics Communications, Vol. 210, No. 1-2, 51-55, 2002.
11.S. Kojima, S. Komatsuzaki,Y. Kurosawa, and A. Hongo, "Embedding Type Strain Sensors Using Small-Diameter Fiber Bragg Grating to Composite Laminate Structures," Hitachi Cable Review No.23,11- 15,2004
12.T. Erdogan, "Fiber Grating Spectra," J. Lightwave Technol., Vol. 15, No. 8, 1277-1294, 1997.
13.D. Marcuse, "Theory of Dielectric Optical Waveguide," New York: Academic, 1991, Ch. 2.
14.T. Erdogan, "Cladding-Mode Resonances in Short- and Long-Period Fiber Grating Filters," J. Opt. Soc. Am. A-Opt. Image Sci. Vis., Vol. 14, No. 8, 1760-1773, 1997.
15.G. Laffont and P. Ferdinand, "Tilted Short-Period Fibre-Bragg-Grating-Induced Coupling to Cladding Modes for Accurate Refractometry," Meas. Sci. Technol., Vol. 12, No. 15, 765-700, 2001.
16.S. W. James and R. P. Tatam, "Optical Fibre Long-Period Grating Sensors: Characteristics and Application," Meas. Sci. Technol., Vol. 14, No. 5, 49-61, 2003.
17.A. Cusano, A. Cutolo and M. Giordano, "Fiber Bragg Gratings Evanescent Wave Sensors: A View Back and Recent Advancements," Sensors, 113-152, Springer-Verlag Berlin Heidelberg 2008
18.L. Keigo, “Elements of Photonics Vol II: For Fiber & Integrated Optics” John Wiley & Sons Press, Chap.11, 2002.
19.張家壽, “應用改良式抽絲法實現微小分波多工器之開發與分析,”國立台灣大學光電工程學研究所碩士論文, 2007.
20.S. M. Chuo, M. H. Wan, L. A. Wang, and J. S. Wang, "Multi-Stage Modified Fiber Drawing Process and Related Diameter Measuring System," J. Lightwave Technol (accepted).
21.萬孟勳, “即時光纖直徑量測技術及折射率分佈量測技術應用於微奈米導光線製作,”國立台灣大學光電工程學研究所碩士論文, 2009.
22.A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, "Quantitative Optical Phase Microscopy," Opt. Lett., Vol. 23, No. 11, 817-819, 1998.
23.E. S. Casas and V. P. Minkovich, "Defocused Transfer Function for Measurement of Refractive Index Profiles of Axially Symmetric Optical Fibers," Opt. Eng., Vol. 47, No. 5, 1-4, 2008.
24. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts., "Refractive Index Profiling of Axially Symmetric Optical Fibers: A New Technique," Opt. Express, Vol. 13, No. 9, 3277-3282, 2005.
25.K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagaw, "2-Photon Processes in Defect Formation by Excimer Lasers in Synthetic Silica Glass," Appl. Phys. Lett., Vol. 53, No. 20, 1891-1893, 1988
26.P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High-Pressure H-2 Loading as a Technique for Achieving Ultrahigh UV Photosensitivity and Thermal Sensitivity in Geo2 Doped Optical Fibers," Electron. Lett., Vol. 29, No. 13, 1191-1193, 1993.
27.W. W. Morey, G. Meltz, J. D. Love, and S. J. Hewlett, "Mode-Coupling Characteristics of Uv-Written Bragg Gratings in Depressed-Cladding Fiber," Electron. Lett., Vol. 30, No. 9, 730-732, 1994.
28.劉俊良, “光纖光柵製作,”國立台灣大學光電工程學研究所碩士論文, 1996.
29.J. Crank, “The Mathematics of Diffusion”, Oxford Univ. Press, Chap. 5, 1975.
30.P. J. Lemaire, "Reliability of Optical Fibers Exposed to Hydrogen - Prediction of Long-Term Loss Increases," Opt. Eng., Vol. 30, No. 6, 780-789, 1991.
31.Y. G. Han, W. T. Han, B. H. Lee, U. C. Paek, and Y. J. Chung, "Temperature sensitivity control and mechanical stress effect of boron-doped long-period fiber gratings," Fiber Integrated Opt. 20, 591-600 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top