跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明忠
研究生(外文):Ming-Chung Wu
論文名稱:新穎型可發光電子束光阻與磁性電子束光阻之開發研究與應用
論文名稱(外文):Synthesis, Fabrication, Characterization and Application of Novel Luminescent Electron Beam Resist and Magnetic Electron Beam Resist
指導教授:林唯芳林唯芳引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學系暨研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:105
中文關鍵詞:電子束顯影術表面電漿光子晶體磁性性質光致發光奈米粒子
外文關鍵詞:electron beam lithographysurface plasmonphotonic crystalmagnetic propertiesphotoluminescencenanoparticleelectron beam resist
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目前已經開發數種新穎的電子束光阻,例如可發光型電子束光阻:CdSe/PMMA光阻、MEHPPV/PMMA光阻和P3HT/PMMA光阻,以及磁性光阻:La0.7Sr0.3MnO3光阻和La0.6Ca0.4MnO3光阻。相較於CdSe/PMMA光阻,本研究所開發的P3HT/PMMA光阻展現較高的解析度,且具備較好的互溶性和熱穩定性。而對於磁性光阻系統而言,La0.6Ca0.4MnO3光阻相對於La0.7Sr0.3MnO3光阻展現了較佳的磁性性質。利用這些光阻,我們可以輕易的用電子束顯影技術,製作出奈米結構的圖案,再運用表面電漿共振理論和光子晶體的原理,來調控材料的光學性質和増強發光效率。
對於光子晶體的應用,我們利用電子束曝光La0.7Sr0.3MnO3光阻來製備二維的光子晶體。在製程中,La0.7Sr0.3MnO3光阻使用環保無毒性的水作為顯影劑。而且因La0.7Sr0.3MnO3光阻的高折射率(n=2.38)使其在光子晶體的應用上,容易獲得完全能隙(complete bandgap)的優點。此外,我們也可以藉由調整電子束曝光的劑量,於一個固定的設計圖案上,來調控La0.7Sr0.3MnO3光子晶體的能帶位置,而目前此能帶位置範圍可以涵蓋整個可見光的波長區段(450~680 nm)。
面電漿共振理論的應用,我們除了利用電子束顯影的技術來調整CdSe/PMMA光阻的幾何結構外,並使用熱蒸鍍來製備表面覆蓋金的CdSe/PMMA陣列。當我們調整金陣列的幾何結構時,因表面電漿效應,使得吸收波長隨著金陣列結構改變而有位移的情形,當此陣列的吸收波長符合激發波長時,螢光強度將會增強達2.5倍。而本論文同時也將金蒸鍍於La0.7Sr0.3MnO3的週期結構上,利用Extinction性質的平面定位掃瞄的量測,可以明顯判別出具有週期結構和不具週期結構之間的差異性;並藉由調控金的表面電漿效應,利用光子數平面定位掃瞄的量測,可以發現因表面電漿效應的影響使得P3HT/PMMA的光致發光產生的單位面積光子數,大幅增強20倍。
We have successfully developed several novel luminescent electron beam resist systems and magnetic electron beam resist systems. The luminescent resists are made from CdSe/PMMA composite, MEHPPV/PMMA blend or P3HT/PMMA blend. The magnetic resist are made from sol-gel precursor of La0.7Sr0.3MnO3 or La0.6Ca0.4MnO3. Among the luminescent electron beam resist systems, P3HT/PMMA electron beam resist exhibits higher resolution than that of CdSe/PMMA composite resist does. The compatibility and stability of P3HT/PMMA is also better than that of CdSe/PMMA. For the magnetic electron beam resist systems, the same magnetizing field imposed on La0.6Ca0.4MnO3 causes larger magnetization than it on La0.7Sr0.3MnO3. Periodic arrays can be fabricated using these resists and further tailored by surface plasmons or photonic crystal to enhance and modulate their optical properties.
For the photonic crystal applications, we have created unique periodical structures using water-developable La0.7Sr0.3MnO3 electron beam resist using an environmentally-friendly- one-step method. Both positive and negative patterns are readily fabricated by only varying the electron beam dosage. Different reflectance spectra of the patterned La0.7Sr0.3MnO3 in the visible light range (450 ~ 680 nm) can be obtained with a fix design pattern.
When considering the surface plasmon applications, we can tune the surface plasmon resonance by adjusting the lattice constant and the column diameter of the patterned array to coincide with the excitation wavelength. Since there occurs an efficient energy transfer from the gold surface plasmon to the CdSe quantum dots, the composite film exhibits enhanced photoluminescence intensity up to 2.5 times at 570 nm. Therefore, our approach provides excellent opportunities for the CdSe quantum dots usage in high efficient optoelectronic devices. Our research also looks into the surface plasmon effect on Au coated periodic structured La0.7Sr0.3MnO3. From the extinction mapping measurement, we can easily distinguish the difference between the material with and without periodical structures. Also, by controlling the gold surface plasmon, we discover 20 times increases in photo counts of P3HT/PMMA.
摘要......................................................I
Abstract.................................................II
Table of Content........................................III
List of Tables............................................V
List of Figures..........................................VI
Chapter 1 Introduction...................................1
1-1 Motivation...........................................1
1-2 Direct Writing Metal Oxide Nanoscale Pattern.........2
1-3 Zwitter Resist.......................................5
1-4 Water Developable Resist.............................7
1-5 Surface Plasmon Polaritions at Metal Interfaces......8
1-6 Photonic Crystals...................................12
1-7 References..........................................15
Chapter 2 Enhancing Photoluminescence of CdSe Quantum Dots by Tuning Surface Plasmon Resonance of Gold Using Periodic Structured Composite Thin Film..................17
2-1 Introduction........................................17
2-2 Experimental detail.................................18
2-3 Luminescent Array of Nanopatterned CdSe-PMMA........20
2-4 Enhancing CdSe Quantum Dots Photoluminescence from Tuning Gold Surface Plasmon Resonance....................21
2-5 Conclusions.........................................24
2-6 References...............................................24
Chapter 3 High Resolution Luminescent Nanostructure Fabricated from Simple Polymer Blend of P3HT and PMMA....26
3-1 Introduction.........................................26
3-2 Experimental detail..................................27
3-2-1 Synthesis and Characterization of HT-HT Poly(3-hexylthiophene)..........................................27
3-2-2 Preparation and Measurement of HT-HT Poly(3-hexylthiophene)/PMMA Polymer Blends Thin Films...........28
3-2-3 Electron beam lithography..........................29
3-3 Component Distribution of P3HT/PMMA Thin Films......29
3-4 Morphological Properties of P3HT/PMMA Thin Films....31
3-5 Optical Properties of P3HT/PMMA Thin Films..........33
3-6 Fabrication of High Resolution Luminescent Nanoscale Pattern..................................................37
3-7 Conclusions.........................................40
3-8 References..........................................41
Chapter 4 Fabrication, Magnetic and Optical Properties Study of the Periodical Structures Based on Water-developable and Tunable La0.7Sr0.3MnO3 Resist............43
4-1 Introduction........................................43
4-2 Experimental details................................44
4-3 Fabrication of Periodical Structures Based on Water-developable and Tunable La0.7Sr0.3MnO3 Resist............45
4-4 Optical Properties of Periodical Structures Based on Water-developable and Tunable La0.7Sr0.3MnO3 Resist......48
4-5 Tunable Gold Surface Plasmon Based on Au Coated La0.7Sr0.3MnO3 Resist by Manipulating the Electron Beam Dosage...................................................55
4-6 Magnetic Properties of patterned La0.7Sr0.3MnO3 resist...................................................64
4-7 Conclusions.........................................71
4-8 References..........................................72
Chapter 5 Nanopatterned Optical and Magnetic La0.6Ca0.4MnO3 Arrays: Synthesis, Fabrication, and Properties...............................................74
5-1 Introduction........................................74
5-2 Experimental Section................................76
5-3 Dual Functions Water Developable La0.6Ca0.4MnO3 Electron Beam Resist.....................................78
5-4 Tunable Optical Properties of Patterned La0.6Ca0.4MnO3...........................................83
5-5 Magnetic Properties of La0.6Ca0.4MnO3 resist and patterned La0.6Ca0.4MnO3.................................86
5-7 Conclusions.........................................93
5-8 References..........................................94
Chapter 6 Summary .......................................97
Chapter 7 Recommendation................................99
Appendices..............................................100
Chapter 1
1.Saifullah, M. S. M.; Subramanian, K. R. V.; Tapley, E.; Kang, D.J.; Welland, M. E.; Butler, M. Nano Lett. 2003, 3, 1587.
2.Subramanian, K. R. V.; Saifullah, M. S. M.; Tapley, E.; Kang, D.J.; Welland, M. E.; Butler, M. Nanotechnology. 2004, 15, 158.
3.Saifullah, M. S. M.; Subramanian, K. R. V.; Kang, D. J.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E. Adv. Mater. 2005, 17, 1757.
4.Alexe, M.; Harnagea, C.; Visinoiu, A.; Pignolet, A.; Hesse, D.; G¨osele, U. Scr. Mater. 2001, 14, 1175.
5.Clendenning, S. B.; Aouba, S.; Rayat, M. S.; Grozea, D.; Sorge, J. B.; Brodersen, P. M.; Sodhi, R. N. S.; Lu, Z.-H.; Yip, C. M.; Freeman, M. R.; Ruda, H. E.; Manners, I. Adv. Mater. 2004, 16, 215.
6.Chen, J. K.; Ko, F. H.; Chen, H. L.; Chang, F. C. Japan. J. Appl. Phys. 2003, 42, 3838.
7.Chen, J. K.; Ko, F. H.; Chang, F. C. Adv. Funct. Mater. 2005, 15, 1147.
8.Lin, Q.; Steinh¨ausler, T.; Simpson, L.; Wilder, M.; Medeiros, D. R.; Willson, C. G.; Havard, J.; Fréchet, J. M. J. Chem. Mater. 1997, 9, 1725.
9.Havard, J. M.; Shim, S. Y.; Fréchet, J. M. J.; Lin, Q.; Medeiros, D. R.; Willson, C. G.; Byers, J. D. Chem. Mater. 1999, 11, 719.
10.Havard, J. M.; Vladimirov, N.; Fréchet, J. M. J.; Yamada, S.; Willson, C. G.; Byers, J. D. Macromolecules. 1999, 32, 86.
11.Havard, J. M.; Yoshida, M.; Pasini, D.; Vladimirov, N.; Fr´echet, J. M. J.; Medeiros, D. R.; Patterson, K.; Yamada, S.; Willson, C. G.; Byers, J. D. J. Polym. Sci. A. 1999, 37, 1225.
12.Chae, K. H.; Sun, G. J.; Kang, J. K.; Kim, T. K. J. Appl. Polym. Sci. 2002, 86, 1172.
13.Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nautre. 2003, 424, 824.
14.Song, J. H.; Atay, T.; Shi, S.; Urabe, H.; Nurmikko, A. V. Nano Lett. 2005, 5, 1557.
15.Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace P. M. Nano Lett. 2008, 8, 1923.
16.Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
17.John, S. Phys. Rev. Lett. 1987, 58, 2486.
18.Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. “Photonic crystals: molding the flow of light”, (New York: Princeton University Press, 1995)
19.Braun, P. V.; Rinne, S. A.; Santamarı´a, F. G. Adv. Mater. 2006, 18, 2665.
20.Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
21.McMillan, R. A.; Paavola, C. D.; Howard, J.; Chan, S. L.; Zaluzec, N. J.; Trent, J. D. Nat. Mater. 2002, 1, 247.
22.Wu, C. S.; Lin, C. F.; Lin, H.Y.; Lee, C. L.; Chen, C. D. Adv. Mater. 2007, 19, 3052–3056.

Chapter 2
1.Liu, C. S.; Tripathi, V. K. IEEE Trans. Plasma Sci. 2000, 28, 353.
2.Bashevoy, M. V.; Jonsson, F.; Krasavin, A. V.; Zheludev, N. I.; Chen, Y.; Stockman, M. I. Nano Lett. 2006, 6, 1113.
3.Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667.
4.Nie, S.; Emory, S. R. Science. 1997, 275, 1102.
5.Cao, Y. C.; Jin, R.; Mirkin, C. A. Science 2002, 297, 1536.
6.Thomas, K. G.; Kamat, P. V. Acc. Chem. Res. 2003, 36, 888.
7.Miclea, P. T.; Susha, A. S.; Liang, Z.; Caruso, F.; Torres, C. M. S.; Romanov, S. G. Appl. Phys. Lett. 2004, 84, 3960.
8.Romanov, S. G.; Susha, A. S.; Torres, C. M. S.; Liang, Z.; Caruso, F. Appl. Phys. Lett. 2005, 97, 086103.
9.Yang, Y.; Nogam, M.; Shi, J.; Chen, H.; Ma, G.; Tang, S. Appl. Phys. Lett. 2006, 88, 081110.
10.Chuang, C.M.; Wu, M. C.; Cheng, K. C.; Chen, Y. F.; Su, W. F. Appl. Phys. Lett. 2006, 89, 061912.
11.Shipway, A. N.; Katz, E.; Willner, I. ChemPhysChem. 2000, 1, 18.
12.Willner, I.; Willner, B.; Pure Appl. Chem. 2002, 74, 1773.
13.Brust, M.; Kiely, C. J.; Colloids Surf. A. 2002, 202, 175.
14.Link, S.; El-Sayed¬, M.A. Ann. Rev. Phys. Chem. 2003, 54, 331.
15.Pileni, M. P.; Lalatonne, Y.; Ingert, D.; Lisiecki, I.; Courty, A. Faraday Discuss 2003, 125, 251.
16.Lee, J.; Govorov, A. O.; Dulka, J.; Kotov, N. A. Nano Lett. 2004, 4, 2323.
17.Mitsushio, M.; Miyashita, K.; Higo, M.; Sens. Actuator A-Phys. 2006, 125, 296.
18.Sharma, A. K.; Gupta, B. D. Nanotechnology. 2006, 17, 124.
19.Yang, Y.; Matsubara, S.; Nogami, M.; Shi, J.; Huang, W. Nanotechnology 2006, 17, 2821.
20.Michaels, A. M.; Nirmal, M.; Brus, L. E. J. Am. Chem. Soc. 1999, 121, 9932.
21.Ishikawa, K.; Okubo, T. J. Appl. Phys. 2005, 98, 043502.
22.Neal, T. D.; Okamoto, K.; Scherer, A. Opt. express. 2005, 13, 5522.
23.Shimizu, K. T.; Woo, W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi, M. G. Phys. Rev. Lett. 2002, 89, 117401.
24.Gueroui, Z.; Libchaber, A. Phys. Rev. Lett. 2004, 93, 166108.
25.Song, J. H.; Atay,T.; Shi, S.; Urabe, H.; Nurmikko, A. V. Nano Lett. 2005, 5, 1557.
26.Gryczynski, I.; Malicka, J.; Jiang, W.; Fischer, H.; Chan, W. C.; Gryczynski, Z.; Grudzinski, W.; Lakowicz, J. R. J. Phys. Chem. B 2005, 109, 1088.
27.Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
28.Chuang, C. M.; Lu, W. B.; Su, W. F.; Lin, C. M.; Chen, Y. F. J. Appl. Phys. 2005, 97, 096104.
29.Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Nat. Mater. 2006, 5, 102.

Chapter 3
1.Li, Z. L.; Meng, H. F.; Horng, S. F.; Hsu, C. S.; Chen, L.C.; Chang, S.M. Appl. Phys. Lett. 2004, 84, 4944.
2.Ananthakrishnan, N.; Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R. Macromolecules 2005, 38, 7660.
3.Granström, M.; Inganäs, O. Appl. Phys. Lett. 1996, 68, 147.
4.Luo, J.; Li, X.; Hou, Q.; Peng, J.; Yang, W.; Cao, Y. Adv. Mater. 2007, 19, 1113.
5.Tasch, S.; List, E. J. W.; Ekström, O.; Graupner, W.; Leising, G.; Schlichting, P.; Rohr, U.; Geerts, Y.; Scherf, U.; Mü llen, K. Appl. Phys. Lett. 1997, 71, 2883.
6.Kim, Y.G.; Thompson, B. C.; Ananthakrishnan, N.; Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R. J. Mater. Res. 2005, 20, 3188.
7.Chen, L. C.; Inganäs, O.; Roman, L. S.; Johansson, M.; Andersson, M. Thin Solid Films 2000, 363, 286.
8.McNeill, C. R.; Abrusci, A.; Zaumseil, J.; Wilson, R.; McKiernan, M. J.; Burroughes, H. J.; Halls, J. J. M.; Greenham, N. C.; Friend, R. H. Appl. Phys. Lett. 2007, 90, 193506.
9.Lin, Y. J.; Li, Y. C.; Yeh, H. J.; Wang, Y. H.; Wen, T. C.; Huang, L. M.; Chen,Y. K. Appl. Phys. Lett. 2007, 91, 253501.
10.Scott, J. C.; Jeyaprakash Samuel, J. D.; Hou, J. H.; Rettner, C. T.; Miller, R. D. Nano Lett. 2006, 6, 2916.
11.Samuel, I. D. W.; Turnbull, G. A. Chem. Rev. 2007, 107, 1272.
12.McNeill, C. R.; Westenhoff, S.; Groves, C.; Friend, R. H.; Greenham, N. C. J. Phys. Chem. C 2007, 111, 19153.
13.Chou, H. L.; Hsu, S. Y.; Wei, P. K. Polymer 2005, 46, 4967.
14.Clendenning S. B.; Aouba S.; Rayat M. S.; Grozen D.; Sorge J. B.; Broderson P. M.; Sodhi R. N. S.; Lu Z.-H..; Yip C.; M., M. R. Freeman; H. E. Ruda; Manners I., Adv. Mater. 2004, 16, 215.
15.MacLachlan M. J.; Ginzburg M.; Coombs N.; Coyle T. W.; Raju N. P.; Greedan J. E. ; Ozin G. A.; Manners I., Science 2000, 287, 1460.
16.Saifullah M. S. M.; Subramanian K. R. V.; Kang D.-J.; Anderson D.; Huck W. T. S.; Jones G. A. C., and Welland M. E. Adv. Mater. 2005, 17, 1757.
17.Pang L.; Shen Y.; Tetz K., Fainman Y.; Opt. Express 2005, 13, 44.
18.Song, J. H.; Atay, T.; Shi, S.; Urabe, H.; Nurmikko, A. V. Nano Lett. 2005, 5, 1557.
19.Baibarac, M.; Lapkowski, M.; Pron, A.; Lefrant S.; Baltog, I.; J. Raman Spectrosc., 1998, 29, 825
20.Xu X., Opt. commun, 2001, 199, 89.

Chapter 4
1.Geissler, M.; Xia, Y. Adv. Mater. 2004, 16, 1249.
2.Braun, P. V.; Rinne, S. A.; García-Santamaría, F. Adv. Mater. 2006, 18, 2665.
3.Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
4.Maune, B.; Loncar, M.; Witzens, J.; Hochberg, M.; Jones, T.B.; Qiu, Y. Appl. Phys. Lett., 2004, 85, 360.
5.Chuang, C. M.; Lu, W. B.; Su, W. F.; Lin, C. M.; Chen, Y. F. J. Appl. Phys., 2005, 97, 096104.
6.Chen, Y. L.; Chen, C. C.; Jeng, J. C.; Chen, Y. F. Appl. Phys. Lett., 2004, 85, 1259.
7.Yablonovitch, E. Phys. Rev. Lett., 1987, 58, 2059.
8.John, S. Phys. Rev. Lett., 1987, 58, 2468.
9.Noda, S. MRS Bull., 2001, 26, 618.
10.Turberfield, J. MRS Bull., 2001, 26, 632.
11.Park, S. H.; Xia, Y. N. Langmuir, 1999, 15, 266.
12.Yan, Q.; Zhou, Z.; Zhao, X. S.; Chua, S. J. Adv. Mater., 2005, 17, 1917.
13.Nakamura, T.; Yamada, Y.; Yano, K. J. Mater. Chem., 2007, 17, 3726.
14.Long, K.; Keitz B. K.; Willson, C. G. J. Mater. Chem., 2007, 17, 3575.
15.Su, Y. W.; Wu, C. S.; Chen, C. C.; Chen, C. D. Adv. Mater., 2005, 15, 49.
16.Subramania, G.; Lin, S. Y. Appl. Phys. Lett. 2004, 85, 5037.
17.Yang, D.; Chang, S. W.; Ober, C. K. J. Mater. Chem., 2006, 16, 1693.
18.Saifullah, M. S. M.; Subramanian, K. R. V.; Tapley, E.; Kang, D.; Welland, M. E.;Butler M. Nano Lett., 2003, 3, 1587.
19.Saifullah, M. S. M.; Subramanian, K. R. V.; Kang, D.; Anderson D.; Huck, W. T. S.; Jones, G. A. C. and Welland, M. E. Adv. Mater., 2005, 17, 1757.
20.Chen, J. K.; Ko, F. H.; Chen H. L.; Chang F. C. Jpn. J. Appl. Phys., 2003, 42, 3838.
21.Chen, J. K.; Ko, F. H.; Chang F. C. Adv. Func. Mat., 2005, 15, 1147.
22.Chuang, C. M.; Wu, M. C.; Huang, Y. C.; Cheng, K. C.; Lin, C. F.;Chen, Y. F.; Su, Y. F. Nanotechnology, 2006, 17, 4399.
23.Basu, R. N.; Pratihar, S. K.; Saha, M.; Maiti, H. S. Mater. Lett. 1997, 32, 217.
24.Chakraborty, A.; Devi, P. S.; Roy, S.; Maiti, H. S. J. Mater. Res. 1994, 9, 986.
25.Gaudon, M.; Laberty-Robert, C.; Ansart, F.; Stevens, P.; Rousset, A. Solid State Sci. 2002, 4, 125.
26.Antony, S. A.; Nagaraja, K. S.; Reddy, G. L. N.; Sreedaran, O. M. Mater. Lett. 2001, 51, 414.
27.Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, 1995.
28.Johnson, S.G.; Fan, S.; Villeneuve, P.R.; Joannopoulos, J. D. Phys .Rev. B, 1999, 60, 5751.
29.Kuramochi, H.; Uzumaki, T.; Yasutake, M.; Tanaka, A.; Akinaga, H.; Yokoyama, H. Nanotech. 2005, 16, 24.
30.Lennard-Jones, J. E. Proc. Phys. Soc. 1931, 43, 461.

Chapter 5
1.Wu, C. S.; Lin, C. F.; Lin, H. Y.; Lee, C. L.; Chen, C. D. Adv. Mater. 2007, 19, 3052.
2.Chueh, Y. L.; Ko, M. T.; Chou, L. J.; Chen, L. J.; Wu, C. S.; Chen, C. D. Nano Lett. 2006, 6, 1637.
3.Clendenning, S. B.; Aouba, S.; Rayat, M. S.; Grozen, D.; Sorge, J. B.; Broderson, P. M.; Sodhi, R. M. S.; Lu, Z. H.; Yip, C. M.; Freeman, M. R.; Ruda, H. E.; Manners, I. Adv. Mater. 2004, 16, 215.
4.MacLachlan, M. J.; Ginzburg, M.; Coombs, N.; Coyle, T. W.; Raju, N. P.; Greedan, J. E.; Ozin, G. A.; Manners, I. Science 2000, 287, 1460.
5.Saifullah, M. S. M.; Subramanian, K. R. V.; Kang, D. J.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C. Adv. Mater. 2005, 17, 1757.
6.Subramanian, K. R. V.; Saifullah, M. S. M.; Tapley, E.; Kang, D.J.; Welland, M. E.; Butler, M. Nanotechology. 2004, 15,158.
7.Alexe, M.; Harnagea, C.; Visinoiu, A.; Pignolet, A.; Hesse, D.; Gösele, U. Scripta Materialia 2001, 44, 1175.
8.Chen, J. K.; Ko, F. H.; Chen, H. L.; Chang, F. C. J. Appl. Phys. 2003, 42, 3838.
9.Chen, J. K.; Ko, F. H.; Chang, F. C. Adv. Func. Mat. 2005, 15, 1147.
10.Lin, Q.; Steinhäusler, T.; Simpson, L.; Wilder, M.; Medeiros, D. R.; Willson, C. G.; Havard, J.; Fréchet, J. M. J. Chem. Mat. 1997, 9, 1725.
11.Havard, J. M.; Shim, S. Y.; Fréchet, J. M. J.; Lin, Q.; Medeiros, D. R.; Willson, C. G.; Byers, J. D. Chem. Mater. 1999, 11, 719.
12.Havard, J. M.; Vladimirov, N.; Fréchet, J. M. J.; Yamada, S.; Willson, C. G.; Byers, J. D. Macromolecules 1999, 32, 86.
13.Cooper, I. A. Mater. 2001, 13, 1111.
14.Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
15.Cao, J. R.; Lee, P. T.; Choi, S. J.; Dapkus, J. D.; Dapkus, P. D. J. Nanosci. Nanotech. 2002, 2, 313.
16.Chen, Y. L.; Chen, C. C.; Jeng, J. C.; Chen, Y. F. Appl. Phys. Lett. 2004, 85, 1259.
17.Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
18.John, S. Phys. Rev. Lett. 1987, 58, 2486.
19.Fleischhaker, F.; Zentel, R. Chem. Mater. 2005, 17, 1346.
20.Yan, Q.; Zhou, Z.; Zhao, X. S. Chem. Mater. 2005, 17, 3069.
21.Chuang, C. M.; Lu, W. B.; Su, W. F.; Lin, C. M.; Chen, Y. F. J. Appl. Phys. 2005, 97, 096104.
22.Mori, S.; Chen, C. H.; Cheong, S. W. Nature. 1998, 392, 473.
23.Chen, C. H.; Cheong, S. W.; Hwang, H. Y. J. Appl. Phys., 1997, 81, 4326.
24.Battle, P. D.; Green, M. A.; Lago, J.; Millburn, J. E.; Rosseinsky, M. J.; Vente, J. F. Chem. Mater. 1998, 10, 658.
25.Jin, S.; Tiefel, T. H.; McCormack, M.; Fastnacht, R. A.; Ramesh, R.; Chen, L. H. Science. 1994, 264, 413.
26.Kim, K. H.; Lee, S.; Noh, T. W.; Cheong, S. W. Phys. Rev. Lett. 2002, 88, 167204.
27.Das, K. R.; Chakraborty, S. S.; Gupta, S. K.; Kulshreshtha, S. K. J. Magn. Magn. Mater. 2001, 237, 41.
28.Laiho, R.; Lisnov, K. G.; Lahderanta, E.; Petrenko, P.; Stamov, V. N.; Zakhvalinskii, V. S. J. Magn. Magn. Mater. 2000, 213, 271.
29.Gennes, P. G. D. Phys. Rev. 1960, 118, 141.
30.Mahendiran, R.; Tiwary, S. K.; Raychaudhuri, A. K.; Ramakrishnan T. V.; Mahesh, R.; Rangavittal N.; Rao C. N. R. Phys. Rev. B. 1996, 53, 3348.
31.Huang, Q.; Santoro, A.; Lynn, J. W.; Erwin, R. W.; Borchers, J. A.; Peng, J. L.; Ghosh, K.; Greene, R. L. Phys. Rev. B. 1998, 58,2684.
32.Wu, M. C.; Chuang, C. M.; Chen, Y. F.; Su, W. F. J. Mater. Chem. 2008, 18, 780.
33.Chuang, C. M.; Wu, M. C.; Huang, Y. C.; Cheng, K. C.; Lin, C. F.; Chen, Y. F.; Su, W. F. Nanotechnology. 2006, 17, 4399.
34.Chakraborty, A.; Devi, P. S.; Roy, S.; Maiti, H. S. J. Mater. Res. 1994, 9, 986.
35.Gaudon, M.; Laberty-Robert, C.; Ansart, F.; Stevens, P.; Rousset, A. Solid State Sci. 2002, 4, 125.
36.Antony, S. A.; Nagaraja, K. S.; Reddy, G. L. N.; Sreedharan, O. M. Mater. Lett. 2001, 51, 414.
37.Kuramochi, H.; Uzumaki, T.; Yasutake, M.; Tanaka, A.; Akinaga, H.; Yokoyama, H. Nanotechnology 2005, 16, 24.
38.Lennard-Jones, J. E. Proc. Phys. Soc. 1931, 43, 461.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊