( 您好!臺灣時間:2021/08/01 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Wei-Lun Xu
論文名稱(外文):SnO2 as an optoelectronic material – Photoluminescence and Electroluminescence study
指導教授(外文):Ming-Yau Chern
外文關鍵詞:SnO2white lightphosphorphotoluminescenceelectroluminescence
  • 被引用被引用:0
  • 點閱點閱:517
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為尋找環境友善、成份簡單單一且低成本之白光螢光材料,我們選擇錫之最穩定氧化物—二氧化錫為研究主題。二氧化錫為一寬能隙材料。過去文獻中所報告其能帶在3.6~4 eV之間,因此二氧化錫被視為一有效之光致發光系統。錫有二價與四價之離子,具有價數轉換的空間;錫及其氧化物具有豐富之物理化學性質,產生在光電及半導體上許多可變化的空間。更重要的是錫與二氧化錫無毒而安全。因此我們選擇二氧化錫為研究對象。
The study is aiming to produce white luminescence from economical, environment friendly material with simple methods. SnO2 as a transparent conducting oxide (TCO) has its reported band-gap value between 3.6 ~ 4 eV, therefore it is expected to be an effective photoluminescence system. Meanwhile, the two oxidation states of Sn — Sn(IV) and Sn(II) have enabled the possibilities of transitions between them. The abundant physical and chemical properties of Sn and its oxide have opened a wide space in semiconductor and optoelectronics. Furthermore, Sn and SnO2 are non-toxic. These are the reasons that SnO2 is chosen as the object of study.
SnO2 of different properties are prepared by direct firing, high-pressure water treatment, dismutation reaction and repeated water-assisted annealing. The samples differ in morphology and defects. X-ray measurements have settled the structure as cassiterite (tetragonal SnO2). Microstructures are presented under SEM observation. As the samples are excited by 325nm UV, series of photoluminescence of orange, yellow and high-intensity white are observed. On the other hand, electroluminescence is also observed while driven by DC and AC electric field.
The mechanism of photoluminescence of SnO2 in literatures was simply attributed to the oxygen vacancies located at the surface. We have first proposed a model of low-coordinated Sn with oxygen vacancies. By inspecting the result of TD-DFT calculations, 3 specific structures are found matching the spectrum.
In conclusion, it is indicated in the study that simple-formulated, non-toxic and low cost material – SnO2 could serve as the phosphor material under UV excitation. Especially, the white photoluminescence produced by single-component SnO2 is not yet seen in the commercial market of phosphor. It is also indicated that SnO2 is a potential material in electroluminescence applications.
口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents v
List of figures v
List of tables x
Abstract iv
Chapter 1 Introduction of Luminescence Materials – the Quest of Simple Material of White Light 1
1.1 Luminescence 2
1.2 Luminescence of Solid-State Crystal 5
1.3 Luminescence of Localized Centers 9
1.4 White Light Luminescence Nowadays 13
1.4.1 Light Emitting Diode 13
1.4.2 Fluorescent Lamps and High Intensity Discharge Lamp(HID) 15
Chapter 2 Literature Survey on the Luminescence of SnO2 and related systems 16
2.1 Basic material properties of SnO2 16
2.2 PL of Thin Films of SnO2 17
2.3 PL of Nanostructures of SnO2 18
2.3.1 Nanoparticles 18
2.3.2 Nanowires /Nanoribbon 19
2.3.3 Other structure 20
2.4 PL of Doped Systems of SnO2 20
2.5 PL of Heterostructures of SnO2 22
2.6 Sn2+ ions 22
2.7 Summary of PL Characteristic and Mechanisms 24
Chapter 3 Towards White Photoluminescence of SnO2 – Implementation and Interpretations 25
3.1 Fired Sn in Air Atmosphere 25
3.1.1 Preparation 25
3.1.2 Characterization 25
3.2 Orange PL SnO2 System 26
3.2.1 Preparation 26
3.2.2 Characterizations and Discussions 27
3.3 Yellow PL SnO2 system 33
3.3.1 Preparation 33
3.3.2 Characterization 34
3.4 White PL SnO2 system 37
3.4.1 Preparation 37
3.4.2 Characterization 38
3.5 Luminescent Centers of Implemented SnO2 systems 42
Chapter 4 Theoretical modeling of Luminescence Mechanisms 44
4.1 Introduction to Density Function Theory and Time-Dependent Density Function Theory 44
4.2 Models 46
4.3 Tool and methods 48
4.4 Results 49
4.5 Luminescent centers 54
4.5.1 UV centers 54
4.5.2 Red centers 54
4.5.3 Green centers 55
4.5.4 Blue Centers 55
Chapter 5 Applications – Implemented and Intended 57
5.1 Electroluminescence 57
5.1.1 DC Type Electroluminescence 58
5.1.2 AC Type Electroluminescence 59
5.2 Phosphors 60
5.3 Others 61
Chapter 6 Conclusions 62
Reference 65
Appendix: Characterization methods 68
A.1 X-ray Diffraction 68
A.2 Temperature-Vaiable Photoluminescence Measurements 68
A.4 SEM 68
A.5 FTIR 68
A.6 TG / DTA 69
A.7 Vis/NIR Fluorescent spectrometer 69
A.8 UV/Vis/NIR Spectrometer 69
1.B P Chandra, P.K.V. and M.H. Ansari, Crystalloluminescence produced during the polymorphic phase transition of growing crystallites. J. Phys.: Condens. Matter, 1997. 9: p. 7675.
2.Yen, W.M., S. Shionoya, and H. Yamamoto, Phosphor handbook. The CRC Press laser and optical science and technology series. 2007, Boca Raton: FL :CRC Press/Taylor and Francis.
3.Agekyan, V.T., Spectroscopic Properties of Semiconductor Crystals with Direct Forbidden Energy-Gap. Physica Status Solidi a-Applied Research, 1977. 43(1): p. 11-42.
4.Street, R. and N. Mott, States in the Gap in Glassy Semiconductors. Physical Review Letters, 1975. 35(19): p. 1293-1296.
5.Yu, B., C. Zhu, and F. Gan, Exciton spectra of SnO2 nanocrystals with surficial dipole layer. Optical Materials, 1997. 7(1-2): p. 15-20.
6.Kim, T.W., D.U. Lee, and Y.S. Yoon, Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. Journal of Applied Physics, 2000. 88(6): p. 3759-3761.
7.Jeong, J., et al., Photoluminescence properties of SnO2 thin films grown by thermal CVD. Solid State Communications, 2003. 127(9-10): p. 595-597.
8.Gu, F., et al., Luminescence of SnO2 thin films prepared by spin-coating method. Journal of Crystal Growth, 2004. 262(1-4): p. 182-185.
9.Wang, Y., et al., Structural and photoluminescence characters of SnO2:Sb films deposited by RF magnetron sputtering. Journal of Luminescence, 2005. 114(1): p. 71-76.
10.Gu, F., et al., Synthesis and luminescence properties of SnO2 nanoparticles. Chemical Physics Letters, 2003. 372(3-4): p. 451-454.
11.Lee, E.J.H., et al., Photoluminescence in quantum-confined SnO2 nanocrystals: Evidence of free exciton decay. Applied Physics Letters, 2004. 84(10): p. 1745-1747.
12.Ribeiro, C., et al., Study of Synthesis Variables in the Nanocrystal Growth Behavior of Tin Oxide Processed by Controlled Hydrolysis. The Journal of Physical Chemistry B, 2004. 108(40): p. 15612-15617.
13.Yang, H.M., et al., Enhanced photoluminescence property of SnO2 nanoparticles contained in mesoporous silica synthesized with leached talc as Si source. Microporous and Mesoporous Materials, 2007. 102(1-3): p. 204-211.
14.Skuja, L., Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study. Journal of Non-Crystalline Solids, 1992. 149(1-2): p. 77-95.
15.Luo, S.H., et al., Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients. Applied Physics Letters, 2006. 88(18): p. -.
16.Zhou, J.X., et al., Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires. Solid State Communications, 2006. 138(5): p. 242-246.
17.Zhou, X.T., et al., The effect of the surface of SnO2 nanoribbons on their luminescence using x-ray absorption and luminescence spectroscopy. Journal of Chemical Physics, 2008. 128(14): p. -.
18.Lettieri, S., et al., On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO2 adsorption. New Journal of Physics, 2008. 10: p. -.
19.Kim, H.W. and S.H. Shim, Branched structures of tin oxide one-dimensional nanomaterials. Vacuum, 2008. 82(12): p. 1395-1399.
20.Zhao, Q.R., et al., Facile synthesis and optical property of SnO2 flower-like architectures. Journal of Nanoparticle Research, 2006. 8(6): p. 1065-1069.
21.Cai, D., et al., Synthesis and photoluminescence properties of novel SnO2 asterisk-like nanostructures. Materials Letters, 2005. 59(16): p. 1984-1988.
22.Morais, E.A., et al., Photoluminescence of Eu3+ ion in SnO2 obtained by sol-gel. Journal of Materials Science, 2008. 43(1): p. 345-349.
23.Fang, L.M., et al., Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. Journal of Materials Science-Materials in Electronics, 2008. 19(8-9): p. 868-874.
24.Feng, X.J., et al., Structural and photoluminescence properties of single crystalline SnO2 : In films deposited on alpha-Al2O3 (0001) by MOCVD. Journal of Crystal Growth, 2008. 310(16): p. 3718-3721.
25.Yu, W.D., X.M. Li, and X.D. Gao, Microstructure and photoluminescence properties of bulk-quantity SnO2 nanowires coated with ZnO nanocrystals. Nanotechnology, 2005. 16(12): p. 2770-2774.
26.Li, Y., et al., SnO2/M2O3 one-dimensional nano-core-shell structures: Synthesis, characterization and photoluminescence properties. Solid State Communications, 2007. 142(8): p. 441-444.
27.Tsuboi, T., M.J. Stillman, and P.W.M. Jacobs, On the Assignment of Absorption-bands in Alkali-halides Doped with S2 Ions. Chemical Physics Letters, 1980. 74(1): p. 135-138.
28.Fang, M., et al., Impurity induced formation of Sn2+ ions in SnO2 and the photoluminescence property. Journal of Physics D-Applied Physics, 2007. 40(24): p. 7648-7651.
29.IAPWS. The International Association for the Properties of Water and Steam 1994 December 31, 2008 [cited 2009 Jan 20]; Available from: http://www.iapws.org.
30.Losos, Z. and A. Beran, OH defects in cassiterite. Mineralogy and Petrology, 2004. 81(3-4): p. 219-234.
31.Lawson, F., Tin Oxide - Sn3O4. Nature, 1967. 215(5104): p. 955-956.
32.Grzeta, B., et al., Structural studies of nanocrystalline SnO2 doped with antimony: XRD and Mossbauer spectroscopy. Journal of Physics and Chemistry of Solids, 2002. 63(5): p. 765-772.
33.Haines, J. and J.M. Leger, X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure: Relationships between structure types and implications for other rutile-type dioxides. Physical Review B, 1997. 55(17): p. 11144-11154.
34.Toledo-Antonio, J.A., et al., Thermal stability and structural deformation of rutile SnO2 nanoparticles. Journal of Solid State Chemistry, 2003. 174(2): p. 241-248.
35.Bandura, A.V., J.O. Sofo, and J.D. Kubicki, Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations. Journal of Physical Chemistry B, 2006. 110(16): p. 8386-8397.
36.Frisch, M.J., et al. 2003, Gaussian, Inc.: Pittsburgh PA.
37.Chen, Z.-y. and J.-l. Yang, The B3LYP hybrid density functional study on solids. Frontiers of Physics in China, 2006. 1(3): p. 339-343.
第一頁 上一頁 下一頁 最後一頁 top