跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:白植豪
研究生(外文):Chih-Hao Pai
論文名稱:強場電漿光電元件之發展
論文名稱(外文):Development of High-Field Plasma Photonic Devices
指導教授:汪治平汪治平引用關係
指導教授(外文):Jyhpyng Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:106
中文關鍵詞:電漿光學加工頻率轉換斷層掃瞄自波導拉曼效應
外文關鍵詞:PlasmasOptical fabricationFrequency conversionTomographySelf-guidingRaman effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著線性變頻脈衝放大技術的發展,在過去十年間雷射物理學家藉著持續成長的尖峰功率不斷地開創令人驚嘆的新研究領域—強場雷射物理。在10^23W/m^2的強大電磁場作用下,任何物質都會被瞬間游離成為電漿,而產生出來的電漿可以當作一種具有非線性光學性質的媒介。由於電漿不會被高強度雷射破壞,又具有極寬廣的工作頻率範圍,其光學性質可以藉由改變電漿密度或雷射強度來控制,可調的範圍很大,且反應速度快,因此頗具優勢。而電漿非線性光學是可以用來達成控制強場物理裡面雷射與電漿進行交互作用的重要方法。在這本論文裡面,我闡述一項以雷射加工氣體來製作電漿中的瞬態週期結構的有效方法。在強場雷射物理總體的發展上,此種電漿結構技術的開發更把強場物理的運作平台推進到回授控制電漿器件的層次。在眾多以電漿非線性光學為基礎的電漿元件裡,週期性交錯的電漿密度結構是要獲得具有準相位匹配的相對論性諧波產生的必要電漿元件,而電漿波導則是能夠用來增長高強度雷射脈衝與電漿交互作用的有效作用長度的必要電漿元件。應用過去已開發完成的局佈加熱膨脹的方法,我利用一道可程式控制的加熱脈衝,可以完成這兩種電漿元件的製作。而且因為電漿裡的離子需要奈秒的時間尺度才足以移動一微米距離,這兩種電漿元件並不會被接著來進行強場物理反應的飛秒脈衝所破壞。在實驗上,一方面我應用可程式控制、具有週期性密度調變的電漿波導以準相位匹配的方法來增強三階相對論性諧波的強度達50倍。一方面我將電漿波導的方法應用到背向拉曼雷射放大器的實驗,可以將單程的增益提升近一千倍。這些實驗顯示出雷射加工的瞬態電漿結構將在強場雷射物理的未來發展上扮演極端重要的角色。
The advent of femtosecond lasers with relativistic intensity has opened a new frontier of research—high-field physics. Under such a strong electromagnetic field it becomes possible to use plasmas as nonlinear optical medium. Plasma nonlinear optics is a crucial approach for controlling laser-plasma interaction in high-field physics. The ability to fabricate gas and/or plasma density structures is the crucial element for attaining fine control on laser-plasma interaction. In this thesis, the development of an effective method for fabricating arbitrary transient plasma structures that function as programmable photonic devices in high-field physics is presented. Among various devices based on plasma nonlinear optics, periodic plasma structures are essential for achieving quasi-phase matching in relativistic harmonic generation, and plasma waveguide are essential for extending the effective length of laser-plasma interaction. These plasma structures can be fabricated by programmed machining pulses using the ignitor-heater scheme, and the structures will not be damaged by the following femtosecond main pulse because ions in the structures move in a much longer time scale. By using a programmed periodic plasma structure, quasi-phase matching in relativistic harmonic generation was achieved, and the on-axis intensity of the harmonic was increased by 50 folds. By using a plasma waveguide, the interaction length of backward Raman amplification was significantly increased, and a gain of near 1000 was achieved. These experiments demonstrate that laser-fabricated plasma structures can play an important role in the future development of high-field physics.
Abstract v
List of Figures vii
1 Introduction 1
1.1 High-Field Plasma Nonlinear Optics 1
1.2 IAMS 10-TW Laser System 4
1.3 Experimental Techniques on Laser-Plasma Interaction 6
1.4 About the Thesis 9
2 Fabrication of Transient Plasma Structures by Laser Machining 13
2.1 Fabrication of Spatial Transient Density Structures 13
2.2 Optical System for Laser Machining 15
2.3 System Configuration 16
2.4 Characteristics of Plasma Density Structures 20
2.4.1 Basic Characteristics 20
2.4.2 Plasma Density Distributions 23
2.5 Tomography of High Harmonic Generation in a Cluster Jet 27
2.5.1 High Harmonic Generation from Gases 27
2.5.2 Experimental Setup and Diagnostic Tools 30
2.5.3 Principle of Tomographic Measurement of Laser-Plasma Interaction 32
2.5.4 Tomographic Measurement of High Harmonic Generation in a Ar Cluster Jet 34
2.6 Programmable Mask 40
2.7 Plasma Waveguide 46
2.8 Adaptive Feedback Control 49
3 Quasi-Phase Matching of Relativistic Harmonic Generation by a Periodic Plasma Waveguide 51
3.1 Introduction 51
3.2 Relativistic Harmonic Generation 53
3.2.1 Basic Physics 53
3.2.2 Quasi-Phase Matching of the Relativistic Harmonics 54
3.2.3 Experimental Setup and Diagnostic Tools 56
3.3 Quasi-Phase-Matched Relativistic Third Harmonic Generation 60
3.3.1 Characteristics of the Third Harmonics 60
3.3.2 Enhancement of Relativistic Third Harmonic by a Periodic Waveguide 64
4 Backward Raman Amplification in a Plasma Waveguide 71
4.1 Plasma-Based Laser Amplification 71
4.2 Demonstration of Backward Raman Amplification in a Plasma Waveguide 76
4.2.1 System Design and Configuration 77
4.2.2 Guiding of the laser pulses by the plasma waveguide 78
4.2.3 Characterization of the Amplified Seed Pulse 82
4.3 Advantage and Limitation 89
5 Conclusion and Perspective 93
Bibliography 97
[1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
[2] R. W. Hellwarth, Q modulation of lasers (Colimbia University Press, New York, (1961).
[3] L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” J. Appl. Phys. 5, 4 (1964).
[4] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm. 56, 219-221 (1985).
[5] A. V. Borovsky, A. L. Galkin, A. B. Shiryaev, and T. Auguste, Laser physics at relativistic intensities (Springer-Verlag, Berlin Heidelberg, 2003).
[6] C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent x-rays in the water window using 5-femtosecond laser pulses,” Science 278, 661 (1997).
[7] Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn, “Generation of coherent soft x rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967 (1997).
[8] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini1, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).
[9] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509 (2001).
[10] P. Tzallas, D. Charalambidis, N. A. Papadogiannis, K. Witte, and G. D. Tsakiris, “Direct observation of attosecond light bunching,” Nature (London) 426, 267 (2003).
[11] Vachaspati, “Harmonics in the scattering of light by free electrons,” Phys. Rev. 128, 664 (1962).
[12] L. S. Brown and T. W. Kibble, “Interaction of intense laser beams with electrons,” Phys. Rev. 133, A705 (1964).
[13] E. S. Sarachik and G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons,” Phys. Rev. D 1, 2738 (1970).
[14] C. I. Castillo-Herrera and T. W. Johnston, “Incoherent harmonic emission from strong electromagnetic waves in plasmas,” IEEE Trans. Plasma Sci. 21, 125 (1993).
[15] E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. A 48, 3003 (1993).
[16] E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu, “Non-linear analysis of relativistic harmonic generation by intense lasers in plasmas,” IEEE Trans. Plasma Sci. 21, 95 (1993).
[17] S.-Y. Chen, A. Maksimchuk, and D. Umstadter, “Experimental observation of relativistic nonlinear Thomson scattering,” Nature 396,653 (1998).
[18] S.-Y. Chen, A. Maksimchuk, E. Esarey, and D. Umstadter, “Observation of phase-matched relativistic harmonic generation,” Phys. Rev. Lett. 84, 5528 (2000).
[19] S. Banerjee, A. R. Valenzuela, R. C. Shah, A. Maksimchuk, and D. Umstadter, “High harmonic generation in relativistic laser-plasma interaction,” Phys. Plasmas 9, 2393 (2002).
[20] S. Banerjee, A. R. Valenzuela, R. C. Shah, A. Maksimchuk, and D. Umstadter, “High-harmonic generation in plasmas from relativistic laser-electron scattering,” J. Opt. Soc. Am. B 20, 182 (2003).
[21] G. Shvets, N. J. Fisch, A. Pukhov, and J. M. ter Vehn, “Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump,” Phys. Rev. Lett. 81, 4879 (1998).
[22] V. M. Malkin, G. Shvets, and N. J. Fisch, “Ultra-powerful Raman amplifiers,” Phys. Rev. Lett. 82, 4448-4451 (1999).
[23] N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulse,” Phys. Plasmas 10, 2056 (2003).
[24] H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y. Lin, C.-H. Lee, S. y. Chen, and J. Wang, “A versatile 10-TW laser system with robust passive controls to achieve high stability and spa-
tiotemporal quality,” Appl. Phys. B 79, 193 (2004).
[25] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, “Plasma electron trapping and acceleration in a plasma wakefield using a density transition,” Phys. Rev. Lett. 86, 1011-1014 (2001).
[26] H. Suk, H. J. Lee, and I. S. Ko, “Generation of high-energy electrons by a femtosecond terawatt laser propagating through a sharp downward density transition,” J. Opt. Soc. Am. B 21, 1391-1396 (2004).
[27] J. U. Kim, N. Hafz, and H. Suk, “Electron trapping and acceleration across a parabolic plasma density pro‾le,” Phys. Rev. E 69, 026409(2004).
[28] P. L. Shkolnikov, A. E. Kaplan, and A. Lago, “Phase-matching optimization of large-scale nonlinear frequency upconversion in neutral and ionized gases,” J. Opt. Soc. Am. B 13, 412-423 (1996).
[29] M. Geissler, A. E. Kaplan, and A. Lago, “Phase-matching optimization of large-scale nonlinear frequency upconversion in neutral and ionized gases,” J. Opt. Soc. Am. B 13, 412-423 (1996).
[30] J. M. Rax and N. J. Fisch, “Third-harmonic generation with ultrahigh-intensity laser pulses,” Phys. Rev. Lett. 69, 772-775 (1992).
[31] J. M. Rax and N. J. Fisch, “Phase-matched third harmonic generation in a plasma,” IEEE Trans. Plasma Sci. 21, 105-109 (1993).
[32] C. G. Durfee III and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409-2412 (1993).
[33] P. Volfbeyn, E. Esarey, and W. P. Leemans, “Guiding of laser pulses in plasma channels created by the ignitor-heater technique,” Phys. Plasmas 6, 2269-2277 (1999).
[34] Y.-F. Xiao, H.-H. Chu, H.-E. Tsai, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Efficient generation of extended plasma waveguides with the axicon ignitor-heater scheme,” Phys. Plasmas 11, L21-L24 (2004).
[35] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, “High-quality electron beams from a laser wakefield accelerator,” Nature (London) 431, 538-541 (2004).
[36] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Dramatic enhancement of optical-field-ionization collisional-excitation X-ray lasing by an optically preformed plasma waveguide,” Phys. Rev. Lett. 99, 063 904 (2007).
[37] C.-T. Hsieh, C.-M. Huang, C.-L. Chang, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator,” Phys. Rev. Lett. 96, 095 001 (2006).
[38] M.-C. Chou, P.-H. Lin, T.-S. Hung, J.-Y. Lin, J. Wang, and S.-Y.Chen, “Experimental investigation of the parameter space for optical-field-ionization Cluster-Jet X-Ray Lasers,” Phys. Rev. A 74, 023 804
(2006).
[39] C.-H. Pai, C.-C. Kuo, M.-L. Lin, J. Wang, S.-Y. Chen, and J.-Y. Lin, “Tomography of high harmonic generation in a cluster jet,” Opt. Lett. 31, 984-986 (2006).
[40] C.-C. Kuo, C.-H. Pai, M.-L. Lin, K.-H. Lee, J.-Y. Lin, J. Wang, and.-Y. Chen, “Enhancement of relativistic harmonic generation by an optically-preformed periodic plasma waveguide,” Phys. Rev. Lett. 98, 033901 (2007).
[41] S.-Y. Chen, G. S. Sarkisov, A. Maksimchuk, R. Wagner, and D. Umstadter, “Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse,” Phys. Rev. Lett. 80, 2610-2613 (1998).
[42] C.-L. Chang, C.-T. Hsieh, Y.-C. Ho, Y.-S. Chen, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator,” Phys. Rev. E 75, 036 402 (2007).
[43] C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Fabrication of Spatial Transient-Density Structures as High-Field Plasma Photonic Devices,” Phys. Plasmas 12, 070707 (2005).
[44] P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994-1997 (1993).
[45] K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamics of Short-Pulse Excitation, Ionization and Harmonic Conversion,” .
[46] T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000).
[47] J. Seres, E. Seres, A. J. Verhoef, G. Tempea, C. Streli, P.Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Source of coherent kiloelectronvolt X-rays,” Nature (London) 433, 596 (2000).
[48] T. D. Donnelly, T. Ditmire, K. Neuman, M. D. Perry, and R. W. Falcone, “High-order harmonic generation in atom clusters,” Phys. Rev. Lett. 76, 2472-2475 (1996).
[49] J. W. G. Tisch, T. Ditmire, D. J. Frasery, N. Hay, M. B. Mason, E. Springate, J. P. Marangos, and M. H. R. Hutchinson, “Investigation of high-harmonic generation from xenon atom clusters,” J. Phys. B 30, L709-L714 (1997).
[50] C. Vozzi, M. Nisoli, J.-P. Caumes, G. Sansone, S. Stagira, S. D. Silvestri, M. Vecchiocattivi, D. Bassi, M. Pascolini, L. Poletto, P. Villoresi, and G. Tondello, “Cluster effects in high-order harmonics generated by ultrashort light pulses,” Appl. Phys. Lett. 86, 111 121 (2005).
[51] S. X. Hu and Z. Z. Xu, “Enhanced harmonic emission from ionized clusters in intense laser pulses,” Appl. Phys. Lett. 71, 2605-2607 (1997).
[52] V. Véniard, R. Taijeb, and A. Maquet, “Atomic clusters submitted to an intense short laser pulse: a density-functional approach,” Phys. Rev. A 65, 013 202 (2001).
[53] J. R. Vázquez. de Aldana and L. Roso, “High-order harmonic generation in atomic clusters with a two-dimensional model,” J. Opt. Soc. Am. B 18, 325-330 (2001).
[54] T. Tajima, Y. Kishimoto, and M. C. Downer, “Optical properties of cluster plasma,” Phys. Plasmas 6, 3759-3764 (1999).
[55] J. W. G. Tisch, “Phase-matched high-order harmonic generation in an ionized medium using a buffer gas of exploding atomic clusters,” Phys. Rev. Lett. 62, 041 802 (2000).
[56] S. Kazamias, D. Douillet, F. Weihe, C. Valentin, A. Rousse, S. Sebban, G. Grillon, F. Aug¶e, D. Hulin, and P. Balcou, “Global optimization of high harmonic generation,” Phys. Rev. Lett. 90 (2003).
[57] H.-H. Chu, H.-E. Tsai, Y.-F. Xiao, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Control of laser-beam propagation and absorption in a nanoplasma gas by programming of a transient complex refractive index with a prepulse,” Phys. Rev. E 69, 035 403 (2004).
[58] C. G. Durfee III, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187-2190 (1999).
[59] K. Y. Kim, V. Kumarappan, and H. M. Milchberg, “Measurement of the average size and density of clusters in a gas jet,” Appl. Phys. Lett. 83 (2003).
[60] T.-Y. Chien, C.-L. Chang, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp,” Phys. Rev. Lett. 94, 115 003 (2005).
[61] R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, New York, 1996), p. 312.
[62] T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267-270 (1979).
[63] P. Sprangle, E. Esarey, A. Ting, and G. Joyce, “Laser wakefield acceleration and relativistic optical guiding,” Appl. Phys. Lett. 53, 2146-2148 (1988).
[64] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, J. Cary, and W. P. Leemans, “Guiding of Relativistic Laser Pulses by Preformed Plasma Channels,” Phys. Rev. Lett. 95, 145002 (2005).
[65] H. M. Milchberg, C. G. Durfee III, and J. Lynch, “Application of a plasma waveguide to soft-x-ray lasers,” J. Opt. Soc. Am. B 12, 731-737 (1995).
[66] A. Butler, A. J. Gonsalves, C. M. McKenna, D. J. Spence, S. M. Hooker, S. Sebban, T. Mocek, I. Bettaibi, and B. Cros, “Demonstration of a Collisionally Excited Optical-Field-Ionization XUV Laser Driven in a PlasmaWaveguide,” Phys. Rev. Lett. 91, 205001 (2003).
[67] T. Mocek, C. M. McKenna, B. Cros, S. Sebban, D. J. Spence, G. Maynard, I. Bettaibi, V. Vorontsov, A. J. Gonsavles, and S. M. Hooker, “Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide,” Phys. Rev. A 71, 013 804 (2005).
[68] H. M. Milchberg, T. R. Clark, C. G. Durfee III, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasmas 3, 2149-2155 (1995).
[69] E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent soft x-ray generation in the water window with quasi-phase matching,” Science 302, 95-98 (2003).
[70] H. M. Milchberg, C. G. Durfee III, and T. J. McIlrath, “High-order Frequency conversion in the plasma waveguide,” Phys. Rev. Lett. 75, 2494-2497 (1995).
[71] X. S. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, “Quasi-phase-matching and quantum-path-control of high-harmonic generation using counterpropagating light,” Nat. Phys. 3, 270-275 (2007).
[72] I. Walmsley and H. Rabitz, “Quantum physics under control,” Phys. Today 56 (2003).
[73] D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, “Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses,” Phys. Rev. A 52, R25-R27 (1995).
[74] P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, M. Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N.Walsh, J. S.Wark, and A. E. Dangor, “Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets,” Phys. Rev. Lett. 76, 1832-1835 (1996).
[75] U. Teubner, K. Eidmann, U. Wagner, U. Andiel, F. Pisani, G. D. Tsakiris, K. Witte, J. M. ter Vehn, T. Schlegel, and E. Forster, “Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses,” Phys. Rev. Lett. 92, 185001 (2004).
[76] E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu, “Non-linear analysis of relativistic harmonic generation by intense lasers in plasmas,” IEEE Trans. Plasma Sci. 21, 95-104 (1993).
[77] A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412-1415 (1998).
[78] F. Quere, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, and P. Audebert, “Coherent wake emission of high-order harmonics from overdense plasmas,” Phys. Rev. Lett. 96, 125 004 (2006).
[79] A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Science 421, 51-54(2003).
[80] J. J. Thomson, Conduction of electricity through gases (Cambridge University Press, Cambridge, UK, 1906).
[81] G.-Y. Tsaur and J. Wang, “Three-dimensional analysis of collective relativistic electron motion and coherent harmonic generation driven by an intense pulsed gaussian beam,” Phys. Rev. A 76, 063815 (2007).
[82] G.-Z. Sun, E. Ott, Y.-C. Lee, and P. Guzdar, “Self-focusing of short intense pulses in plasmas,” Phys. Fluids 30, 526 (1987).
[83] M. Dreher, E. Takahashi, J. Pukhov, J. M. ter Vehn, and K.-J. Witte, “Observation of superradiant amplification of ultrashort laser pulses in a plasma,” Phys. Rev. Lett. 93, 095 001 (2004).
[84] V. M. Malkin, Y. A. tsidulko, and N. J. Fisch, “Stimulated Raman scattering of rapidly amplified short laser pulses,” Phys. Rev. Lett. 85, 4068-4071 (2000).
[85] D. S. Clark and N. J. Fisch, “Particle-in-cell simulations of Raman laser amplification in preformed plasmas,” Phys. Plasmas 10, 4848-4855 (2003).
[86] V. M. Malkin, G. Shvets, and N. J. Fisch, “Detuned Raman amplification of short laser pulses in plasma,” Phys. Rev. Lett. 84, 1208-1211 (2000).
[87] Y. A. Tsidulko, V. M. Malkin, and N. J. Fisch, “Suppression of superluminous precursors in high-power backward Raman amplifiers,” Phys. Rev. Lett. 88, 235 004 (2002).
[88] P. Mardahl, H. J. Lee, G. Penna, J. S. Wurtele, and N. J. Fisch, “Intense laser pulse amplification using Raman backscatter in plasma channels,” Phys. Lett. A 296, 109 (2002).
[89] Y. Ping, I. Geltner, N. J. Fisch, G. Shvets, and S. Suckewer, “Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam,” Phys. Rev. E 62, R4532-R4535 (2000).
[90] Y. Ping, I. Geltner, A. Morozov, N. J. Fisch, and S. Suckewer, “Raman amplification of ultrashort laser pulses in microcapillary plasmas,” Phys. Rev. E 66, 046 401 (2002).
[91] Y. Ping, W. Cheng, S. Suckewer, D. S. Clark, and N. J. Fisch, “Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma,” Phys. Rev. Lett. 92, 175 007 (2004).
[92] W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. J. Fisch, M. S. Hur, and J. S. Wurtele, “Reaching the Nonlinear Regime of Raman Amplification of Ultrashort Laser Pulses,” Phys. Rev. Lett. 94, 045 003
(2005).
[93] J. Ren, W. Cheng, and S. L. an S. Suckwer, “A new method for generating ultraintense and ultrashort laser pulses,” Nature Phys. 3, 732-736 (2007).
[94] A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326-328 (1990).
[95] C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51, 2368-2389 (1995).
[96] H. Hamster, A. Sullivan, S. Gordon, W. Ehite, and R. W. Falcone, “Subpicosecond, electromagnetic pulses from intense laser-plasma interaction,” Phys. Rev. Lett. 71, 2725-2728 (1993).
[97] W. P. Leemans, C. G. R. Geddes, J. Faure, C. Toth, J. van Tilborg, C. B. Schroeder, E. Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. Byrd, and M. C. Martin, “Ob-
servation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary,” Phys. Rev. Lett. 91, 074802 (2003).
[98] W. P. Leemans, J. van Tilborg, J. Faure, C. G. R. Geddes, C. Toth, C. B. Schroeder, E. Esarey, G. Fubiani, and G. Dugan, “Terahertz radiation from laser accelerated electron bunches,” Phys. Plasmas 11,
2899 (2004).
[99] T. M. Antonsen, Jr. and J. Palastro, “Excitation of terahertz radiation by laser pulses in nonuniform plasma channels,” Phys. Plasmas 14, 033107 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top