跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林耿民
研究生(外文):Ken-Ming Lin
論文名稱:發展平行有限差分時域法:研究蜂巢狀光子晶體負折射等新穎特性
論文名稱(外文):The Parallel Finite-Difference Time Domain Program: Negative Refraction in Honeycomb Photonic Crystals
指導教授:郭光宇郭光宇引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:96
中文關鍵詞:負折射光子晶體有限差分時域法平行程式
外文關鍵詞:negative refractionphotonic crystalfinite-difference time-domain methodMPImessage passing interface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
左手材料具有克服光學繞射極限的超級透鏡的效應。近年來,光子晶體能夠模擬全角度左手材料的一些性質。其中美國麻省理工學院的光子晶體能帶程式被用來計算二維蜂巢狀結構光子晶體的能帶結構。另一方面,我們利用有限時域差分法計算蜂巢狀結構光子晶體內外在不同時刻的電場分佈。但是,蜂巢狀結構光子晶體包含了細微的結構。這導致以序列的有限時域差分法計算模擬此種問題會花費大量的時間和計算資源。本論文的目的是發展平行的有限時域差分法以有效率的計算包含細微結構光子晶體內外的電磁場分佈。同時,我們將重新評估以光子晶體做為全角度左手材料的條件。模擬結果顯示:蜂巢狀結構光子晶體的負折射的現象和入射光的入射方向有著非常重要的關係。更進一步,我們提出:非偶合模態隨著入射光的不同入射方向而扮演著不同的角色,某些情形下,它幫助負折射的現象發生;某些情形下,它讓負折射無法發生。這結果顯示:雖然我們選擇的負折射頻率在動量空間的等頻率線是各向同性的,它並不保證可以產生全角度的負折射現象。所以當我們考慮負折射光子晶體時,不可以忽略光子晶體的對稱性。雖然本研究是考慮二維的蜂巢狀結構光子晶體,但是我們的研究結果也可以應用於三維負折射光子晶體和三維的超級透鏡。另外一方面,我們發展的平行有限時域差分法不只可以運用於光子晶體,它也可以增加其它電磁學問題的計算效率以模擬更複雜和更大結構的電磁問題。
Left-handed materials have superlensing effects that enable them to surmount the optical diffraction limit. A photonic crystal is able to mimic some properties of all-angle
left-landed materials. The MIT Photonic-Bands program is employed to calculate the band structure of walled honeycomb photonic crystals. Furthermore, the finite-difference time-domain (FDTD) method is used to calculate the electromagnetc field distribution inside and outside of walled honeycomb photonic crystals. However, the walled honeycomb photonic crystals include fine structures. It takes time and computational resource to simulate this kind of problem set in executing sequential FDTD program. The objective of this thesis is to develop parallel FDTD program to simulate the propagation of electromagnetic waves in the photonic crystals with the fine structures efficiently; meanwhile, the all-angle negative refraction criteria of photonic crystals are evaluated. The simulation results indicate that the all-angle negative refraction phenomena of the honeycomb photonic crystals are correlated with the orientation of the photonic crystals, even if the equal frequency contour is in the shape of a perfect circle. Moreover, the role of the uncoupled modes varies based on their orientation to the all-angle negative
refraction photonic crystals, in one case assisting negative refraction and in the other case preventing it. The results suggest that symmetric properties should not be
ignored when considering the negative refraction of photonic crystals. Although we studied on the two-dimensional walled honeycomb photonic crystals, it would be also useful to design the three-dimensional negative refraction devices of photonic crystals. On the other hand, the development of the parallel FDTD program should progress the existing FDTD method and simulate more complicated and larger structure efficiently. While, the photonic crystals are the simulation problem of parallel FDTD program in the thesis, the method could be applied to other electromagnetic problems.
1 Introduction 1
1.1 Introduction to negative refraction materials 1
1.2 Perfect lens and artificial negative refraction materials 6
1.3 Motivation 10
1.4 Overview 12
2 Introduction to photonic crystals 14
2.1 Introduction to Bloch’s theorem 14
2.2 Plane-wave method 17
2.3 Plane-wave method in a two-dimensional photonic crystal and photonic crystal band structures 19
3 Finite-difference time-domain method 21
3.1 One-dimensional FDTD 22
3.2 Two-dimensional FDTD 30
3.3 The perfectly matched layer in a two-dimensional FDTD method 35
3.4 The two-dimensional MPI FDTD program 48
3.5 Performance analysis of the two-dimensional MPI FDTD program 54
4 Negative refraction in walled honeycomb photonic crystals 58
4.1 Material 58
4.2 Results and Discussion 60
4.3 Conclusions 72
5 Summary 73
A Program: fd1d ExHy.f90 74
B Program: fd2d Berenger TE.m 76
C Program: fd2d Berenger TM.m 80
D Program: mpi fd2d TM.f90 84
Bibliography 94
[1] V. G. Veselago, Sov. Phys. Usp. 10, 509–514 (1968).
[2] Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous
Media (Pergamon, Oxford, 1984).
[3] John David Jackson, Classical Electrodynamics (Wiley, New York, 1998).
[4] Peter Markˇos, and Costat M. Soukoulis, Wave Propagation (Princeton, Oxford,
2008).
[5] E. Yablonovitch, Phys. Rev. Lett. 58, 2059–2062 (1987).
[6] J. B. Pendry, Phys. Rev. Lett. 85, 3966–3969 (2000).
[7] S. John, Phys. Rev. Lett. 58, 2486–2489 (1987).
[8] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton
University Press, New Jersey, 1995).
[9] K. Sakoda, Optical Properties of Photonic Crystals (Springer, New York, 2001).
[10] A. Yariv and P. Yeh, Optical Waves in Crystals-Propagation and Control of Laser
Radiation (Wiley Interscience, New Jersey, 2003).
[11] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys.
Rev. Lett. 84, 4184–4187 (2000).
[12] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77–79 (2001).
[13] Neil W. Ashcroft and N. David Mermin, Solid State Physics (Brooks Cole, 1976).
[14] S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173–190 (2001), http://abinitio.
mit.edu/wiki/index.php/Main Page.
[15] David J. Griffiths, Introduction to Electrodynamics (Prentice-Hall International,
New Jersey, 1999)
[16] C. Luo, M. Ibanescu, E. J. Reed, S. G. Johnson, and J. D. Joannopoulos, Phys.
Rev. Lett. 96, 043903(4) (2006).
[17] M. Notomi, Phys. Rev. B. 62, 10696–10705 (2000).
[18] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B. 65,
201104(R) (2000).
[19] P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, Nature, 426, 404 (2003).
[20] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys.
Rev. Lett. 91, 207401(4) (2003).
[21] X. Wang, Z. F. Ren, and K. Kempa, 12, 2919–2924 (2004).
[22] C.-H. Kuo and Z. Ye, Phys. Rev. E. 70, 056608(4) (2004).
[23] H.-T. Chien, H.-T. Tang, C.-H. Kuo, C.-C. Chen, and Z. Ye, Phys. Rev. B 70,
113101(4) (2004).
[24] L.-S. Chen, C.-H. Kuo, and Z. Ye, Phys. Rev. E. 69, 066612(6) (2004).
[25] Z.-Y. Li and L.-L Lin, Phys. Rev. B. 68, 245110(7) (2003).
[26] S. Foteinopoulou and C. M. Soukoulis, Phys. Rev. B. 67, 235107(5) (2003).
[27] R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C.
M. Soukoulis, Phys. Rev. B. 71, 085106(5) (2005).
[28] R. Gaji´c, R. Meisels, F. Kuchar, and K. Hingerl, Phys. Rev. B. 73, 165310(5)
(2006).
[29] W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe,
and J. D. Joannopoulos, Phys. Rev. Lett. 68, 2023–2026 (1992).
[30] K. Sakoda, Phys. Rev. B. 51, 4672–4675 (1995).
[31] K. Sakoda, Phys. Rev. B. 52, 7982–7986 (1995).
[32] A. Mart´ınez, H. M´ıguez, A. Griol, and J. Mart´ı, Phys. Rev. B. 69, 165119(6) (2004).
[33] A. Taflove, Computational Electrodynamics-The Finite-Difference Time-Domain
Method 2nd ed. (Artech House, Boston, 2000)
[34] Jianming Jin, The Finite Element Method inn Electromagnetics (Wiley, New York,
2002)
[35] Yee, K. S., IEEE Trans. Antennas and Propagation, 14, 302-307 (1966).
[36] Matthew N. O. Sadiku, Numerical Techniques in Electromagnetics (CRC Press,
Florida, 1992)
[37] K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for
Electromagnetics (CRC Press, Florida, 1993)
[38] Dennis M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE
Press Marketing, New Jersey, 2000)
[39] Brian Hahn, FORTRAN 90 for Scientists and Engineers (Edward Arnold, London,
1994)
[40] G. Mur, IEEE Trans. Electromagn. Compat., 23, 377-384 (1981)
[41] J.-P. Berenger, J. Comput. Phys. 114, 185-200 (1994).
[42] J.-P. Berenger, Perfectly Matched Layer (PML) for Computational Electromagnetics
(Morgan and Claypool Publishers), (2007).
[43] J.-P. Berenger, IEEE Trans Antennas and Propagation, 51, 110-117 (1996).
[44] J.-P. Berenger, IEEE Trans Antennas and Propagation, 45, 466-473 (1997).
[45] Wu, Z., and J. Fang, IEEE Microwave and Guided Wave Letters, 6, 335-337 (1996).
[46] Gedney, S. D., IEEE Trans Antennas and Propagation, 44, 1630-1639 (1996).
[47] Rohit Chandra, Leo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald and Ramesh
Menon, Parallel Programming in OpenMP (Morgan Kaufmann, CA, 2001)
[48] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-
Hill Higher Education, Boston, 2004)
[49] Yukiya Aoyama and Jun Nakano, RS/6000 SP: Practical MPI Programming
(IBM Corporation, International Technical Support Organization 1999),
http://www.redbooks.ibm.com
[50] R. L. Chern, C. C. Chang, and R. R. Hwang, Phys. Rev. E. 68, 026704(5) (2003).
[51] Tai-I Weng, and G. Y, Guo, J. Appl. Phys. 99, 093102(5) (2006).
[52] K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures
in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646–2649
(1990).
[53] Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures:
Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett. 65, 2650–2653
(1990).
[54] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in
periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊