跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅瀚葵
研究生(外文):Han-Kuei Fu
論文名稱:半導體上等效週期陣列與表面電漿子的光學性質研究
論文名稱(外文):Effects of Periodic Arrays and Surface Plasmons on Optical Properties of Semiconductors
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:138
中文關鍵詞:光子晶體表面電漿子波導元件傅利葉轉換紅外光譜光激螢光光譜拉曼光譜
外文關鍵詞:photonic crystalssurface plasmonwaveguidedeviceFTIRPLRaman
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們研究了數種介電物質和金屬的光學特性,包括了以矽為材料的全能隙二維光子晶體,用金屬光柵製造CdSe/ZnS量子點的光學異向性,結合穿孔的金屬薄膜和一維光子晶體製作可選擇的熱輻射發射器,還有製作擁有大角度電致螢光光譜的ZnO奈米瓶子發光二極體。
1.擁有最大全能隙六角形連接的光子晶體
我們設計並且製作測量了一個擁有大全能隙的二維光子晶體,這個光子晶體的設計是根據一種多格子點加速反轉迭代法計算出來的。我們使用電子束微影和誘導式電漿離子反應蝕刻在矽上面製造光子晶體,並且發現由柱子和欄組合成的六角形陣列擁有最佳的光子全能隙。除此以外,我們還比較了之前常常研究的光子晶體設計,證明了我們設計的光子晶體有比較好的導光效果,因此我們的設計可以應用在高功率的光電元件上面。
2.利用金屬光柵的表面電漿子共振特性製造CdSe/ZnS量子點的光學異向性
我們展現一種有效的方式,利用金屬光柵表面電漿子共振的特性控制CdSe/ZnS量子點的光學異向性。並且發現透過我們的設計,可以把CdSe/ZnS量子點沒有極化性的螢光和拉曼散射控制成很強的光學異向行為。而整個機制可以用金屬光柵的表面電漿子模態和量子點螢光發光共振的原理來解釋。這在用量子點製成的光電元件上,可以是一個很好的發展和應用。
3.可選擇波長的熱輻射發射器:以光子晶體和表面電漿子結合的原理製程
我們把一維光子晶體夾在兩片銀薄膜上面,製作成一個可選擇波長的熱輻射發射器,而上層的銀薄膜是由六角形週期穿孔洞的陣列組成。因為光子晶體的特性,選擇性的熱輻射會在一維的光子晶體內產生並且透過上層設計的表面電漿子震盪模態發射出去,並且發現光子能隙漏光的模態和表面電漿子震盪模態接近時會增強熱輻射的發射強度。利用光子晶體和表面電漿子製成的熱輻射器是可以藉由這些模態來選擇發射波長的,這項技術可以應用在高功率遠紅外光源發展上。
4.大角度電致螢光光譜的ZnO奈米瓶子/GaN發光二極體
我們報告一個由p型GaN和ZnO奈米瓶子組成發波長405奈米紫色光的發光二極體。擁有良好結晶品質和排列整齊的奈米瓶子是由一個特殊倒置在攝氏450度環境的化學氣相沈積方法中製成。發光大角度的照明在我們日常生活中常見,運用我們奈米瓶子波導的特性,可以很容易在發光二極體上面製作大角度的發光光源。
In this thesis, we have performed several studies on the effects of periodic arrays and surface plasmons on the optical properties of semiconductors, including the fabrication of Si based two-dimensional photonic crystals with a large full band gap, the creation of optical anisotropy of CdSe/ZnS quantum dots with metal grating, the fabrication of a selective thermal emitter with combining a perforated metal film and one-dimensional photonic crystals, and ZnO nanobottles light emitting diodes with wide angle electroluminescence.

1. Connected hexagonal photonic crystals with largest full band gap
A two-dimensional photonic crystal with a large full band gap has been designed, fabricated, and characterized. The photonic crystal design was based on a calculation using inverse iteration with multigrid acceleration. The fabrication of the photonic crystal on silicon was realized by the processes of electron-beam lithography and inductively coupled plasma reactive ion etching. It was found that the hexagonal array of circular columns and rods has an optimal full photonic band gap. In addition, we show that a larger extraction of light from our designed photonic crystal can be obtained when compared with the frequently used photonic crystals reported previously. Our designed PC structure therefore should be very useful for creating highly efficient optoelectronic devices.

2. Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating
An efficient method that can be used to control the optical anisotropy of CdSe/ZnS quantum dots by coupling to the surface plasmon polariton resonance of a metal grating has been demonstrated. It is found that the unpolarized emission and Raman scattering signals arising from CdSe/ZnS quantum dots can be manipulated and exhibit a strong anisotropic behavior based upon our strategy. The optical anisotropy is interpreted in terms of the coupling between the directional surface plasmon of metal grating and the emitted light beam of quantum dots. Due to the importance of quantum dots in optoelectronic devices, our new approach should be useful for future application.

3. A thermal emitter with selective wavelength: based on the coupling between photonic crystals and surface plasmon polaritons
A thermal emitter with selective wavelength has been demonstrated, in which the dielectric layers formed one-dimensional photonic crystals are sandwiched between two Ag films. The top Ag film is perforated periodically with hexagonal hole array. The selected thermal radiation of the photonic crystals resonates between two metal films, and surface plasmon polaritons are generated on the top Ag and converted to light radiation. It is found that when leakage modes adjacent to the optic band gap of photonic crystals meet the resonant modes of surface plasmom polaritons, an enhanced thermal emission with maximum intensity can be obtained. The hybrid photonic and plasmonic thermal emitters are selective, which should be very useful for the creation of high power infrared light sources.

4. Wide angle electroluminescence from ZnO nanobottles/GaN light emitting diodes
Wide angle electroluminescence of bright violet light with a peak wavelength of 405 nm from light emitting diodes composed of p-GaN/ZnO nanobottles has been reported. The fabrication of well aligned nanobottles with excellent crystalline quality was achieved by chemical vapor deposition at temperature as low as 450 ºC with a specially designed upside-down arrangement of substrate configuration. Wide angle light sources are essential in our daily life, and with the geometry of nanobottles waveguides, it is very easy to realize such a practical application.
Contents
1 Introduction………………………………………………....01
1.1 Manipulating light in the dielectric and metallic materials…….01
1.2 Overview of the thesis…………………………………………… 03
2 Theory of photonic crystals and surface plasmons……… 06
2.1 Introduction of photonic crystals…………………………………06
2.1.1 Wave equations and eigenvalue problems…………………….. 11
2.1.2 The plane-wave expansion method…………………………….14
Reference of section 2.1 .....………………………………………...19
2.2 Introduction of surface plasmons………………………………...22
2.2.1 Surface plasmons on smooth surfaces (Semi-infinite system)......23
2.2.2 Plasmonic (application of surface plasmons)……………………30
Reference of section 2.2 …………………………………………….34
3 Manufacture technology and optical measurement of materials……………………………………………………..36
3.1 Fabrication method………………………………………………..36
3.1.1 Photolithography………………………………………………...36
3.1.1.1 Introduction…………………………………………………..36
3.1.1.2 The photolithographic process…………………………..…...36
3.1.2 E-beam lithography……………………………………………..41
3.1.2.1 The system of ELS-7500EX…………………………………41
3.1.2.2 Electron energy deposition in matter………………….……..44
3.1.3 Reactive ion etching………………………………………...…..46
3.1.4 Evaporation (deposition)………………………………………..49
Reference of section 3.1 ………..………………………………..….51
3.2 Techniques of measurement……………………………………....52
3.2.1 Fourier transform infrared spectroscopy (FTIR)………………...52
3.2.2 Photoluminescence (PL)…………………………………………56
3.2.3 Raman scattering……………………………………………...…59
Reference of section 3.2 ……………………………………………63
4 Connected hexagonal photonic crystals with largest full band gap…………………………………………………….64
4.1 Introduction……………………………………………………….64
4.2 Calculation and fabrication………………………………………65
4.3 Experimental measurements……………………………………..70
4.4 Results and discussion…………………………………………….72
4.5 Summary…………………………………………………………..79
Reference of chapter 4 ……………………………………………...80
5 Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating………………………………………………………82
5.1 Introduction………………………………………………………82
5.2 Experiment………………………………………………………..83
5.3 Results and discussion…………………………………………....87
5.4 Summary………………………………………………………….93
Reference of chapter 5 ……………………………………………..94
6 A thermal emitter with selective wavelength: based on the coupling between photonic crystals and surface plasmon polaritons…………………………………………………..98
6.1 Introduction………………………………………………………98
6.2 Experiment…………………………………………………….....99
6.3 Results and discussion………………………………………….102
6.4 Summary………………………………………………………...114
Reference of chapter 6 ……………………………………………115
7 Wide angle electroluminescence from ZnO nanobottles/GaN light emitting diodes……………………………………...118
7.1 Introduction……………………………………………………..118
7.2 Experiment……………………………………………………….119
7.3 Results and discussion……………………………………………121
7.4 Summary…………………………………………………………..133
Reference of chapter 7 ……………………………………………...134
8 Conclusion………………………………………………….136
Section 2.1
1. E. Yablonovith, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
3. C. Kittel, Introduction to Solid State Physics, 7th ed. Hoboken, NJ: John Wiley & Sons, Inc. (1996).
4. J. D. Jannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton, NJ: Princeton Univ. Press (1995).
5. K. M. Leung and Y. F. Liu, “Photonic band structures: the plane-wave method,” Phys. Rev. B, 41, 10188-10190 (1990).
6. S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express, 11, 167-175 (2003).
7. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Progag. 14, 302-307 (1966).
8. G. Mur, “Absorbing boundary conditions for the Finite-Difference approximation of the Time-Domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. 23, 377-382 (1981).
9. Bikash C. Gupta, Chao-Hsien Kuo, and Zhen Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E 69, 066615(2004).
10. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11, 2526-2538 (1994).
11. D. Hermann, M. Frank, and K. Busch, “Photonic band structure computations,” Opt. Express, 8, 167-172 (2001).
12. A. Yariv, P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New York, 1983.
13. R. T. Neal, M. E. Zoorob, M. D. Charlton, and G. J. Parker, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415 (2004).
14. Wounjhang Park and Christopher J. Summers, “Optical properties of superlattice photonic crystal waveguides,” Appl. Phys. Lett. 84, 2013 (2004).
15. Jonathan C. Knight, “Photonic crystal fibres,” Nature, 424, 847 (2003).
16. Takayuki Okamoto, Fekhra H’Dhili, and Satoshi Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968 (2004).
17. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, and P. Viktorovitch, “InP-based two-dimensional photonic crystal on silicon: In-plane Bloch
mode laser,” Appl. Phys. Lett. 81, 5102 (2002).
18. Young Rag Do, Yoon-Chang Kim, Young-Woo Song, and Yong-Hee Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure,” J. Appl. Phys. 96, 7629 (2004).
19. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett. 84, 3885 (2004).
20. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
21. J. G. Fleming, Shawn-Yu Lin, Opt. Lett. 24,49 (1999).
22. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000).
23. J.-M. Lourtioz et al. Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin (2003).

Section 2.2
1. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
3. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
4. H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
7. S. Lal, S. Link, and N. J. Halas, Nat. Photonics 1, 641 (2007).
8. Surface-Enhanced Raman Scattering-Physics and Application, edited by K. Kneipp, M. Moskovits, and H. Kneipp (Springer, Berlin, 2006), and references therein.
9. F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).
10. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, Phys. Rev. Lett. 95, 116802 (2005).
11. J. M. Pitarke, V. M. Silkin, E. V. Chulkov and P. M. Echenique, Rep. Prog. Phys. 70 1–87 (2007).
12. Jackson J D, Classical Electrodynamics (New York: Wiley, 1962).
13. Ekmel Ozbay, Science 311, 189 (2006).
14. S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, O. Painter, Appl. Phys. Lett. 86, 071103 (2005).
15. W. Nomura, M. Ohtsu, T. Yatsui, Appl. Phys. Lett. 86, 181108 (2005).
16. H. Cao, A. Nahata, Opt. Exp. 12, 1004 (2004).

Section 3.1
1. Richard C. Jaeger, Introduction to Microelectronic Fabrication, (Addison-Wesley Publication Company, Inc. 1988)
2. Syed Rizvi et al. Handbook of Photomask Manufacturing Technology, (Taylor & Francis Group, 2005)
3. D. F. Kyser and N. S. Viswanathan, J. Vac. Sci. Technol. 12(6), 1305 (1975)

Section 3.2
1. Douglas A. Skoog, F. James Holler, Timothy A. Nieman, Principles of instrumental analysis (Philadelphia : Saunders College Pub. ; Orlando, Fla. : Harcourt Brace College Publishers, c1998).
2. S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy (Academic Press, 1993).
3. Harris and Bertolucci, Symmetry and Spectroscopy (Dover Publications, 1989).
4. R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors (Hilger, 1990).
5. H. J. Bowley, D. J. Gardiner, D. L. Gerrard, P. R. Graves, J. D. Louden, and G. Turrell, Practical Raman Spectroscopy (Springer-Verlag, 1989).

Chapter 4
1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
2. S. Lin and G. Arjavalingam, “Photonic bound states in two-dimensional photonic crystals probed by coherent-microwave transient spectroscopy,” J. Opt. Soc. Am. B 11, 2124-2127 (1994).
3. R. L. Chern, C. Chung Chang, Chien C. Chang, and R. R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E 68, 026704 (2003).
4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
5. A. A. Erchak, D. J. Ripin, S. H. Fan, P. Rakich, J. D. Joannoupoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563-565 (2001).
6. T. N. Oder, J. Shakya, J. Y. Lin, and H. X. Jiang, “III-nitride photonic crystals,” Appl. Phys. Lett. 83, 1231-1233 (2003).
7. T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett. 84, 466-468 (2004).
8. Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
9. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous Emission Extraction and Purcell Enhancement from Thin-Film 2-D Photonic Crystals,” J. Lightwave Technol. 17, 2096-2112 (1999).
10. V. N. Astratov, I. S. Culashaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Resonant Coupling of Near-Infrared Radiation to Photonic Band Structure Waveguides,” J. Lightwave Technol. 17, 2050-2057 (1999).
11. Vladimir V. Poborchii, Tetsuya Tada and Toshihiko Kanayama, “Photonic-band-gap properties of two-dimensional lattices of Si nanopillars,” J. Appl. Phys. 91, 3299-3305 (2002) .
12. D. Cassagne, C. Jouanin, and D. Bertho, “Optical properties of two-dimensional photonic crystals with graphite structure,” Appl. Phys. Lett. 70, 289-291 (1997).
13. F. Gadot, A. Chelnokov, A. De Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, “Experimental demonstration of complete photonic band gap in graphite structure,” Appl. Phys. Lett. 71, 1780-1782 (1997).
14. A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute band gaps in the visible,” Appl. Phys. Lett. 72, 627-629 ( 1998).

Chapter 5
1. Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater., 12, 605 -607 (2000).
2. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
3. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
4. K. Manzoor, S. R. Vadera, and N. Kumar, “Multicolor electroluminescent devices using doped ZnS nanocrystals,” Appl. Phys. Lett. 84, 284-286 (2004).
5. J. T. Andrews and P. Sen, “Steady state optical gain in small semiconductor quantum dots,” J. Appl. Phys. 91, 2827-2832 (2002).
6. L. V. Asryana, M. Grundmann, N. N. Ledentsov, O. Stier, and D. Bimberg, “Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser,” J. Appl. Phys. 90, 1666-1668 (2001).
7. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22, 969-976 (2004).
8. Margaret A. Hines and Philippe Guyot-Sionnest, “Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals,” J. Phys. Chem. 100, 468-471 (1996).
9. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B, 101, 9463-9475 (1997).
10. Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, “Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters,” Nanotechnology 18, 025403 (2007).
11. J. Wang, M. K. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires,” Science 293, 1455-1457 (2001).
12. H. Pettersson, J. Trägardh, A. I. Persson, L. Landin, D. Hessman, and L. Samuelson, “Infrared Photodetectors in Heterostructure Nanowires,” Nano Lett. 6, 229-232 (2006).
13. Z. Fan, P. Chang, J. G. Lu, E. C. Walter, R. M. Penner, C. Lin, and H. P. Lee, “Photoluminescence and polarized photodetection of single ZnO nanowires,” Appl. Phys. Lett. 85, 6128-6130 (2004).
14. V. M. Agranovich and D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
15. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett. 77, 1569-1571 (2000).

16. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824-830 (2003).
18. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 331, 189-193 (2006).
19. A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90, 243110 (2007).
20. Chun-Yen Chen, Chiu-Ting Cheng, Jen-Kan Yu, Shih-Chieh Pu, Yi-Ming Cheng, and Pi-Tai Chou, “Spectroscopy and Femtosecond Dynamics of Type-II CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor,” J. Phys. Chem. B 108, 10687-10691 (2004).
21. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
22. A. Brioude, J. Bellessa, and S. Rabaste, et al. “Resonant Raman effect enhanced by surface plasmon excitation of CdSe nanocrystals embedded in thin SiO2 films,” J. Appl. Phys. 95, 2744-2748 (2004).

Chapter 6
1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
2. M. Cornelius and J. P. Dowling, Phys. Rev. A 59, 4736 (1999).
3. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, J. Appl. Phys. 83, 2377 (1998).
4. Arvind Narayanaswamy and G. Chen, Phys. Rev. B 70, 125101 (2004).
5. Ivan Celanovic, David Perreault, and John Kassakian, Phys. Rev. B 72, 075127 (2005).
6. M. Laroche, R. Carminati, and J.-J. Greffet, Phys. Rev. Lett. 96, 123903 (2006).
7. B. J. Lee and Z. M. Zhang, J. Appl. Phys. 100, 063529 (2006).
8. B. J. Lee, C. J. Fu, and Z. M. Zhang, Appl. Phys. Lett. 87, 071904 (2005).
9. Joshua N. Winn, Yoel Fink, Shanhui Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
10. Kevin M. Chen, Andrew W. Sparks, Hsin-Chiao Luan, Desmond R. Lim, Kazumi Wada, and Lionel C. Kimerling, Appl. Phys. Lett. 75, 3805 (1999).
11. Hyun-Yong Lee, Hisao Makino, and Takafumi Yao, Appl. Phys. Lett. 81, 4502 (2002).
12. D. Bria, B. Djafari-Rouhani, E. H. El Boudouti, A. Mir, A. Akjouj, and A. Nougaoui, J. Appl. Phys. 91, 2569 (2002).
13. Yeonsang Park, Young-Geun Roh, Chi-O Cho, Heonsu Jeon, Min Gyu Sung and J. C. Woo, Appl. Phys. Lett. 82, 2770 (2003).
14. V. M. Agranovich and D. L. Mills, Surface Polaritons (North-Holland, Amsterdam, 1982).
15. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, Appl. Phys. Lett. 77, 1569 (2000).
16. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
18. Ming-Wei Tsai, Tzu-Hung Chuang, Hsu-Yu Chang, and Si-Chen Lee, Appl. Phys. Lett. 88, 213112 (2006).
19. Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 033120 (2006).
20. Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 173128 (2006).
21. Ming-Wei Tsai, Chia-Yi Chen, Yu-Wei Jiang, Yi-Han Ye, Hsu-Yu Chang, Tzu-Hung Chuang, and Si-Chen Lee, Appl. Phys. Lett. 91, 213104 (2007).
22. Chi-Yang Chang, Hsu-Yu Chang, Chia-Yi Chen, Ming-Wei Tsai, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 91, 163107 (2007).
23. Ming-Wei Tsai, Tzu-Hung Chuang, Chao-Yu Meng, Yi-Tsung Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 173116 (2006).
24. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
25. Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, and Edwin L. Thomas, Science 282, 1679 (1998).
26. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
27. S. Collin, F. Pardo, and J.L. Pelouard, Opt. Express 15, 4310 (2007).

Chapter 7
1. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292, 1897 (2001).
2. Qing-Xuan Yu, Bo Xu, Qi-Hong Wu, Yuan Liao, Guan-Zhong Wang, and Rong-Chuan Fang, Appl. Phys. Lett. 83, 4713 (2003).
3. Cheng Pin Chen, Min Yung Ke, Chien Cheng Liu, and Yuan Jen Chang Appl. Phys. Lett. 91, 091107 (2007).
4. W. I. Park and G. C. Yi, Adv. Mater. (Weinheim, Ger.) 16, 87 (2004).
5. R. Könenkamp, R. C. Word, and M. Godinez, Nano Lett. 5, 2005 (2005).
6. E. S. P. Leong and S. F. Yu, Adv. Mater. (Weinheim, Ger.) 18, 1685 (2006).
7. B. Claflin, D. C. Look, S. J. Park, and G. Cantwell, J. Cryst. Growth 287, 16 (2006).
8. S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, Phys. Rev. Lett. 92, 155504 (2004).
9. C. H. Kuo, H. C. Feng, C. W. Kuo, and C. M. Chen, Appl. Phys. Lett. 90, 142115 (2007).
10. Hyun-Min Jung, Gi-Yeon Nam, Byung-Kyun Choi, Tae-Hee Lee, Hyun-Suk Kim, Soo-Kun Jeon, Eun-Hyun Park, and Chang-Tae Kim, Appl. Phys. Lett. 91, 111106 (2007).
11. Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Soo-Kun Jeon, Jae-Gu Lim, Jun-Serk Lee, Cheol-Hoi Kim, and Joong-Seo Park, Appl. Phys. Lett. 93, 101112 (2008).
12. A. Khan, K. Balakrishnan, T. Katona, Nat. Photon. 2, 77 (2008).
13. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
14. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, Opt. Exp. 14, 2372 (2006).
15. Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu and C. Lee, Appl. Phys. Lett. 83, 4631 (2003).
16. J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977).
17. Ya. I. Alivov et al. Appl. Phys. Lett. 83, 2943 (2003).
18. Elaine Lai, Woong Kim, and Peidong Yang, Nano Res. 1, 123 (2008).
19. Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, Appl. Phys. Lett. 86, 222101(2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊