跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗儒
研究生(外文):Tzung-Ju Lin
論文名稱:新穎奈米半導體複合材料的物理性質研究
論文名稱(外文):Investigation of Novel Physical Properties of Composite Materials based on Nanostructural Semicondocutors
指導教授:陳永芳陳永芳引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:晒化鎘液晶元件陽極氧化鋁奈米雷射奈米球微影術表面電漿子
外文關鍵詞:CdSe quantum dotsLiquid crystals deviceAAO templateNanolaserNanosphere lithographySurface plasma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出了幾種新穎奈米半導體複合材料並研究其物理性質。我們的設計包含有:
1. 液晶-晒化鎘奈米管新穎複合元件;我們率先提出的這個構想,是基於巧妙利用液晶與晒化鎘奈米管兩者之間不同的物理特性,可以達到用電壓來操控半導體發光偏極性的效果。我們的成果可以達到相當理想的72%的操控效率,這個結果是目前最高的數值。我們設計的這種智慧型元件,還具有相當大的面積,相信可以應用在LED,平面顯示器等元件上。
2. 液晶-鎳奈米棒新穎複合元件;我們首先提出這種全新的結構,來完成以控制電壓的方式,操控磁偏極性的目標。目前要達到好的操控效果,需要克服嚴苛的長晶要求,及相當高的成本。我們提出完全不同於目前思維的方式,以一種簡單且低成本的方法完成磁電效應的轉換。我們得到的效率高達40%,足可比擬目前可以達到的最高效率。這個設計與其所達到的良好效果,相信可以在磁性資料儲存元件上加以應用。
3. 晒化鎘奈米雷射:奈米化是絕對的趨勢,而將雷射達到奈米化,有著非常豐富的應用前景與學術研究價值。在此我們成功的設計出一種前所未有的奈米雷射元件。我們將半導體置入陽極氧化鋁的空腔結構中,利用WGM共振的原理,激發出奈米雷射。我們更進一步的建立了理論上的模型,做為這種結構激發出雷射的條件依據。這種簡易而又低成本的設計,除了可以用來做奈米雷射之外,還可以應用在LED等發光元件的設計上,應用潛力無窮。
4. 利用表面電漿子增強晒化鎘發光強度的元件結構;增強LED的發光強度一直是具有挑戰性的課題。我們設計的結構,可以讓表面電漿子在其中傳播,而這個傳播型的表面電漿子已證明具有相當大的輻射強度,所以將發光半導體量子點置於此結構內,可以預期會大大的增強它的發光效率。我們所做出的元件,證明它的發光效率比單純的量子點發光效率足足多了54倍。並且也觀察到在不同的表面電漿結構中,可以增強的光波波長也不同。這個結構在LED的應用上相信會有很大的價值。
In this thesis, we design several composite materials based on nanostructural semiconductors. Two liquid crystal devices with built-in semiconductor nanotubes and ferromagnetic nanorods have been designed, fabricated, and characterized. The composites consisting of semiconductors nanomaterials and anodic aluminum oxide nanocavities have been studied. In addition, CdSe quantum dots embedded in periodic gold nanoarrays have also been investigated. Quite intriguing novel propertied have been discovered, which should be very useful for the development of new optoelectronic devices

1. Electrical manipulation of physical anisotropy in the composite of liquid crystals
and nanomaterials

For liquid crystal devices with CdSe nanotubes, we demonstrate that the degree of polarization can be dramatically changed from 72% to a negligible level, with an applied voltage of 3V. The ability to well control the emission anisotropy should open up new opportunities for nanostructured semiconductors, including optical filters, polarized light emitting diodes, flat panel displays, and many other chromogenic smart devices.
Beside, the fabrication of liquid crystal devices compounded with built-in ferromagnetic nanorods has been studied. Electrically assisted magnetization switching has been demonstrated through the effect that the electrical manipulation of magnetic nanorods. In view of the well established technology of liquid crystals display, our results pave a key step for the practical application of new device paradigms based on magnetoelectric effect, including electric field-controlled magnetic data storage, transducers, attenuators, and spintronics.

2. Room-temperature nanolaser from CdSe nanotubes embedded in anodic
aluminum oxide nanocavity arrays

The foremost observation of WGM-lasing for CdSe nanotubes embedded in cylindrical nanocavities based on anodic aluminum oxide (AAO) template has been reported. Low threshold pumping level for the sample was observed, due to the high nanocavity Q. The natural cavity or waveguide formation in AAO pores suggests a simple approach to obtain a nanolaser cavity without cleavage and etching. In addition, the lasing spectrum shows strong mode selection and single constructive interference peak, due to the interferential coupling of WGMs at the outer boundary. The observation of laser action in these nanotube arrays is readily to be extended to many other systems with different emission wavelengths. Our study shown here therefore should be very useful for the future development of nano-optoelectronic devices.

3. Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons

The emission property of CdSe quantum dots arising from surface plasmon polariton of interconnected gold particles has been studied. Variation of the structural parameters allows us to tune the surface plasmon resonance to the emission band of quantum dots. It results in an enhancement up to 54 times in the external quantum efficiency. The time-resolved photoluminescence shows that the electron-hole recombination rate in CdSe QDs is enhanced, when their spontaneous emission is coupled with a gold surface plasmon mode. Our strategy for the enhancement of luminescence efficiency from semiconductor quantum dots should be useful for the creation of high efficiency solid state emitters.
Chapter 1 introduction…………………………………………………………………..1
1.1 Orientation of solid nanoparticles embedded in a monodomain nematic liquid crystal……………………………………………………………………………………...1
1.2 Whispering Gallery Modes in Nanosized Dielectric Resonators……………………..3
1.3 Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays ……………………………………………………… ……………………………..4
1.4 Overview of the thesis……………………………………………………… ………..5
References………………………..………………………………………………………..8

Chapter 2 Brief description of studied nanomaterials and experimental setups…13
2.1 Brief description of studied nanomaterials in this thesis…………………………….13
2.1.1 Liquid crystals (LC) ……………………………………………………………….13
2.1.2 CdSe nanomaterials ……………………………………………………………….14
2.1.3 Nickel nanorods …………………………………………………………………...14
2.1.4 Anodic aluminium oxide (AAO) ……………………………………………….....15
2.1.5 Composite materials consisting of Surface plasmon and quantum dots……..........16
2.2 Brief description of experimental setups……………………………….....................17
2.2.1 Scanning electron microscope (SEM) ……………………………….....................17
2.2.2 Photoluminescence………………………………...................................................18
2.2.3 X-Ray diffractometer (XRD)………………………................................................19
2.2.4 Transmission Electron Microscope (TEM) ……….................................................20
References…………………………………………………………………......................25

Chapter 3 Liquid crystal cells with built-in CdSe nanotubes for chromogenic smart emission devices………………………………………………………………….29
3.1 Introduction…………………………………………………………………………..29
3.2 Experiment…………………………………………………………………………...30
3.3 Results and Disussion………………………………………………………………..31
3.4 Conclusions…………………………………………………………………………..35
References…………………………………………………………………………..........41

Chapter 4 Electrical Manipulation of Magnetization in the composite of liquid crystals and ferromagnetic nanorods……………………..…………………………...43
4.1 Introduction………………………………………………………………………......43
4.2 Experiment……………………………………………………………………….......44
4.3 Results and Disussion…………………………………………………………..........46
4.4 Conclusions…………………………………………………………..........................48
References…………………………………………………………..................................54

Chapter 5 Room-temperature nanolasers from CdSe nanotubes embedded in AAO nanocavity arrays……………………….………………………..........................57
5.1 Introduction……………………….……………………….........................................57
5.2 Experiment……………………….………………………..........................................58
5.3 Results and Disussion…………………….…...…………..........................................61
5.4 Conclusions………………….……………………….................................................65
References……………………….……………………….................................................73

Chapter 6 Enhancement of emission from CdSe quantum dots induced by propagating surface plasmon polaritons…...…………………....................................75
6.1 Introduction …………………….………………………...........................................75
6.2 Experiment……………………….………………………..........................................76
6.3 Results and Disussion……………………….……………………….........................78
6.4 Conclusions………………………………………………..........................................80
References……………………….……………………….................................................85

Chapter 7 Conclusions………….……………………….............................................87
7.1 Manipulating physical properties by liquid crystals………………………................87
7.2 Observation of modulated lasing spectra from a very thin dielectric-coated circular AAO nanocavity………………………............................................................................88
7.3 Influence of localized surface plasmon on the optical properties of nanostructured semiconductors………………………..............................................................................89
chap.1
(1) M. L. Steigerwald, et al. J. Am. Chem. Soc. 110, 3046 (1988).
(2) G. Schmid, Chem. ReV. 92, 1709 (1992).
(3) V. Colvin, M. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994).
(4) B. O. Dabbousi, M. G. Bawendi, O. Onotsuka and M. F. Rubner, Appl. Phys. Lett. 66, 316 (1998).
(5) W. U. Huynh, X. Peng and A. P. Alivisatos, AdV. Mat. 11, 923 (1999).
(6) C. J. Loweth, W. B. Caldwell, X. Peng, A. P. Alivisatos and P. G. Schultz, Angew. Chem., Int. Ed. Engl. 38, 1808 (1999).
(7) C. B. Murray, C. R. Kagan and M. G. Bawendi, Science 270, 1335 (1995).
(8) C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, Nature 382, 607 (1996).
(9) A. P. Alivisatos, Science 271, 933 (1996).
(10) J. C. Horton, A. M. Donald and A. Hill, Nature 346, 44 (1990).
(11) T. E. Strzelecka, M. W. Davidson and R. L. Rill, Nature 331, 457 (1988).
(12) C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, Nature 382, 607 (1996).
(13) A. van Blaaderen, R. Ruel and P. Wiltzius, Nature 385, 321 (1996).
(14) F. Caruso, R. Caruso and H. Mo¨hwald, Science 282, 1111 (1998). T. Douglas and M. Young, Nature 393, 152 (1998).
(15) Y. Huang, X. Duan, Q. Wei and C. M. Lieber, Science 291, 630 (2001). Y. Dirix, C. Bastiaansen, W. Caseri and P. Smith, AdV. Mater. 11, 223 (1999).
(16) X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, Nature 409, 66 (2001).
(17) S. V. Gaponenko, Optical Processes of Semiconductor Quantum Dots; Cambridge University Press: Cambridge, 1998. Woggon, U. Optical Properties of Semiconductor Quantum Dots; Springer-Verlag: Berlin-Heidelberg, 1997.
(18) D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, Nature 389, 699 (1997).
(19) C. Wang, M. Shim and P. Guyott-Sionnest, Science 291, 2390 (2001).
(20) W.-K. Woo, K. T. Shimizu, M. V. Jarosz, R. G. Neuhauser, C. A. Leatherdale, M. A. Rubner and M. G. Bawendi, AdV. Mater. 14, 1068 (2002).
(21) L. Qu and X. J. Peng, Am. Chem. Soc. 124, 2049 (2002).
(22) S. Westenhoff and N. Kotov, J. Am. Chem. Soc. 124, 2448 (2002).
(23) J. M. Haremza, M. A. Hahn, T. D. Krauss, S. Chen and J. Calcines, Nano Lett. 2, 1253 (2002).
(24) X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature 404, 59 (2002).
(25) X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. A. Peng and X. Peng, Phys. ReV. B 64, 245304-1 (2001).
(26) J. Wang, M. S. Giduksen, X. Duan, Y. Ciu and C. M. Lieber, Science. 293, 1455 (2001).
(27) H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, Cambridge, UK, 1992).
(28) C. Vedrenne and J. Arnaud, IEEE Proc. 129, 183 (1982).
(29) D. Cros and P. Guillon, IEEE Trans. Microwave Theory Tech. 38, 1667 (1990).
(30) L. Collot, V. Lefe`vr-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
(31) S. Chiller and R. L. Byer, Opt. Lett. 16, 1138 (1991).
(32) A. T. Rosenberger, Operational Characteristics and Crystal Growth of Nonlinear Optical Materials, R. B. Lal, D. O. Frazier, eds., Proc. SPIE 3793, 179 (1999).
(33) S. M. Spillane, T. J. Kippenberg and K. J. Vahala, Nature 415, 621 (2002).
(34) V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefe`vre-Seguin, J.-M. Raimond and S. Haroche, Opt. Commun. 145, 86 (1998).
(35) P. Rabiei, W. H. Steier, C. Chang and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
(36) V. S. Ilchenko, X. S. Yao and L. Maleki, Opt. Lett. 24, 723 (1999).
(37) P. Barthia and I. J. Bahl, Millimeter Wave Engineering and Applications (Wiley, New York, 1984).
(38) G. Annino, D. Bertolini, M. Cassettari, M. Fittipaldi, I. Longo and M. Martinelli, J. Chem. Phys. 112, 2308 (2000).
(39) D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Norwood, Mass., 1986).
(40) I. Braun et al., Appl. Phys. B 70, 335 (2000).
(41) U. Vietze et al., Phys. Rev. Lett. 81, 4628 (1998).
(42) U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995). C. F. Bohren D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
(43) B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Fe´lidj, A. Leitner and F. R. Aussenegg, Appl. Phys. Lett. 79, 51 (2001).
(44) B. Lamprecht, A. Leitner and F. R. Aussenegg, Appl. Phys. B: Lasers Opt. 68, 419 (1999).
(45) M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
(46) M. Meier, A. Wokaun, and P. F. Liao, J. Opt. Soc. Am. B 2, 931 (1985); E. T. Caron, W. Fluhr, M. Meier, A. Wokaun and H. W. Lehmann, ibid. 3, 430 (1986).
(47) P. A. Bobbert and J. Vlieger, Physica A 147, 115 (1987).
(48) T. Yamaguchi, S. Yochida and A. Kinbara, Thin Solid Films 21, 173 (1974).
(49) W. Gotschy, K. Vonmetz, A. Leitner and F. R. Aussenegg, Opt. Lett. 21, 1099 (1996).
(50) M. S. Sander, R. Gronsky, Y. M. Lin and M. S. Dresselhaus, J. Appl. Phys. 89, 2733 (2001).
(51) G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner and F. R. Aussenegg, J. Appl. Phys. 90, 3825 (2001).
(52) B. Lamprecht, G. Schider, R. T. Leichner, H. Ditlbacher, J. R. Krenn, A. Leitner and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
(53) N. Fe´lidj, J. Aubard, G. Livi, J. R. Krenn, M. Salerno, B. Lamprecht, G. Schider, A. Leitner and F. R. Aussenegg, Phys. Rev. B 65, 075419 (2002).
(54) J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn and J. P. Goudonnet, Phys. Rev. B 60, 9061 (1999).
(55) J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacoute and J. P. Goudonnet, Phys. Rev. Lett. 82, 2590 (1999).
(56) H. W. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
(57) S. Linden, J. Kuhl and H. Giessen, Phys. Rev. Lett. 86, 4688 (2001).
(58) U. Schro¨ter and D. Heitmann, Phys. Rev. B 60, 4992 (1999).
(59) T. Kume, S. Hayashi and K. Yamamoto, Phys. Rev. B 55, 4774 (1997).
(60) Curie, P. Sur la J. Phys. 3 (Ser. III), 393 (1894).
(61) T. H. O’Dell, The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970).
(62) A. J. Freeman and H. Schmid, (eds) Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1975).
(63) G. A. Smolenskii and Chupis, I. E. Ferroelectromagnets. Usp. Fiz. Nauk. 137, 415 (1982); also Sov. Phys. Usp. 25, 475 (1982).
(64) Z. J. Huang, Y. Cao, Y. Sun, Y. Y. Xue and C. W. Chu, Phys. Rev. B 56, 2623 (1997).
(65) N. Iwata and K. J. Kohn, Phys. Soc. Jpn 67, 3318 (1998).
(66) T. Katsufuji, et al. (R Y, Yb and Lu). Phys. Rev. B 64, 104419 (2001).
(67) M. Fiebig, Th. Lottermoser, D. Fro¨hlich, A. V. Goltsev and R. V. Pisarev, Nature 419, 818 (2002).
(68) E. Hanamura, K. Hagita and Y. J. Tanabe, Phys. Codens. Matter 14, L103 (2003).
(69) C. G. Zhong and Q. Jiang, J. Phys. Condens. Matter 14, 8605 (2002).
(70) R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
(71) Moreira dos Santos, A. et al. Solid State Commun. 122, 49 (2002).
(72) T. Kimura, et al. Phys. Rev. B 67, 180401(R) (2003).
(73) J. Wang, et al. Science 299, 1719 (2003).
(74) V. E. Wood and A. E. Austin, Int. J. Magn. 5, 303 (1974)
chap. 2
(1) Liquid Crystals, edited by H. Stegemeyer (Steinkopff, Darmstadt, 1994).
(2) P. J. Collings and M. Hird, Introduction to Liquid Crystals (Taylor&Francis, London,
1997).
(3) V. Freedericksz and V. Tsvetkov, Phys. Z. 6, 490 (1934).
(4) M. D. Lynch and D. L. Patrick, Nano Lett. 2, 1197 (2002).
(5) I. Dierking, G. Scalia, P. Morales and D. LeClere, Adv. Mater. sWeinheim, Ger.d 16, 865 (2004).
(6) M. D. Fischbein and M. Drndic, Appl. Phys. Lett. 86, 193106 (2005).
(7) B. A. Ridley, B. Nivi and J. M. Jacobson, Science 286, 746 (1999).
(8) W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science 295, 2452 (2002).
(9) K. E. Andersen, C. Y. Fong and W. E. Pickett, J. Non-Cryst. Solids 1105, 299, (2002).
(10) R. W. Meulenberg and G. F. Strouse, Phys. Rev. B 66, 035317 (2002).
(11) H. Yu, J. B. Li, R. A. Loomis, P. C. Gibbons, L. W. Wang and W. E. Buhro, J. Am. Chem. Soc. 125, 16168 (2003).
(12) X. B. Chen, A. C. S. Samia, Y. B. Lou and C. Burda, J. Am. Chem. Soc. 127, 4372 (2005).
(13) H. Yu, J. Li, R. A. Loomis, L. W. Wang and W. E. Buhro, Nat. Mater. 2, 517 (2003).
(14) H. Yu and W. E. Buhro, Adv. Mater. (Weinheim, Ger.) 15, 416 (2003).
(15) X. S. Peng, J. Zhang, X. F. Wang, Y. W. Wang, L. X. Zhao, G. W. Meng and L. D. Zhang, Chem. Phys. Lett. 343, 470 (2001).
(16) C. Ma, Y. Ding, D. F. Moore, X. Wang and Z. L. Wang, J. Am. Chem. Soc. 126, 708 (2004).
(17) I. Z. Rahman, K. M. Razzeeb, M. A. Rahman and M. Kamruzzaman, J. Magn.
Magn. Mater., 262, 166 (2003).
(18) H. Pan, B. H. Liu, J. B. Yi, C. Poh, S. H. Lim, J. Ding, Y. P. Feng, C. H. A. Huan and J. Y. Lin, J. Phys. Chem. B, 109, 3094 (2005).
(19) H. Pan, H. Sun, C. Poh, Y. Feng and J. Lin, Nanotechnology, 16, 1559 (2005).
(20) M. Darques, A. Encinas, L. Vila and L. Piraux, J. Phys. D, 37, 1411 (2004).
(21) H. N. Hu, H. Y. Chen, J. L. Chen and G. H. Wu, Physica B, 368, 100 (2005).
(22) M. Vázquez, K. Pirota, M. Hernández-Vélez, V. M. Prida, D. Navas, R. Sanz and F. Batallán, J. Appl. Phys., 95, 6642 (2004).
(23) F. X. Redl, K. S. Cho, C. B. Murray and S. O’Brien, Nature 423, 968 (2003).
(24) D. H. Son, S. M. Hughes, Y. D. Yin and A. P. Alivisatos, Science 306, 1009 (2004).
(25) T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, Science 297, 2229 (2002).
(26) R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’Quinn, Nature 413, 597 (2001).
(27) M. Ohtsu, Proc. SPIE 4416, 1 (2001).
(28) M. Borditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat and E. Yablanovich, J. Lightwave Technol. 17, 2096 (1999).
(29) T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature 391, 667 (1998).
(30) H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, Science 297, 820 (2002).
(31) T. Kawazoe and M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003).
(32) A. Neogi, C. W. Lee, H. Everitt and E. Yablanovich, Phys. Rev. B 66, 153305 (2002).
(33) J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard and V. Tierry-Mieg, Phys. Rev. Lett. 81, 1110 (1998).
(34) E. M. Purcell, Phys. Rev. 69, 681 (1946).
(35) K. H. Drexhage, Progress in Optics XII, E. Wolf, ed. (North-Holland, Amsterdam, 1974), Vol. 12, p. 163.
(36) M. Xiao, J.-Y. Zhang and X.-Y. Wang, presented at the International Quantum Electronics Conference, San Francisco, Calif., May 16 (2004).
(37) I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra and S. P. DenBaars, Phys. Rev. B 60, 11564 (1999).
(38) Z. Gueroui, and A. Libchaber, Phys. ReV. Lett. 93, 166108 (2004).
(39) I. Larkin, M. Stockman, M. Achermann and V. Klimov, Phys. ReV. B. 69, 121403 (2004).
(40) I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. Chan, Z. Gryczynski, W. Grudzinski and J. Lakowicz, J. Phys. Chem. B 109, 1088 (2005).
(41) K. Shimizu, W. Woo, B. Fisher, H. Eisler and M. Bawendi, Phys. ReV. Lett. 89, 117401 (2002).
(42) O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon and M. Artemyev, Nano Lett. 2, 1449 (2002).
(43) http://en.wikipedia.org/wiki/Scanning_electron_microscope.
chap.3
(1) Y. Li, F. Qian, J. Xiang and C. M. Lieber, Materials Today 9, 18 (2006).
(2) P. J. Pauzauskie and P. Yang, Materials Today 9, 36 (2006).
(3) V. L. Colvin, M. C. Schlamp and A. P. Alivisato, Nature 370, 354 (1994).
(4) V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi, Science 290, 314 (2000).
(5) D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett and M. J. Moskovits, Appl. Phys. 86, 3983 (1999).
(6) W. A. de Heer, A. Chatelain and D. Ugrte, Science 270, 1179 (1995).
(7) D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, Nature 389, 699 (1997).
(8) M. S. Arnold, P. Avouris, Z. W. Pan and Z. L. Wang, J. Phys. Chem. B 107, 659 (2003).
(9) R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science 297, 787 (2002).
(10) B. O. Dabbousi, M. G.Bawendi, O. Onitsuka and M. F. Rubner, Appl. Phys. Lett. 66, 1316 (1995).
(11) C. J. Wang, M. Shim and P. Guyot-Sionnest, Science 291, 2390 (2001).
(12) P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford,
1993).
(13) P. J. Collings and M. Hird, Introduction to Liquid Crystals (Taylor & Francis, London, 1997).
(14) M. D. Lynch and D. L. Patrick, Nano Lett. 2, 1197 (2002).
(15) X. C. Jiang, B. Mayer, T. Herricks and Y. N. Xia, Adv. Mater. 15, 1740 (2003).
(16) M. Artemyev, B. Moller and U. Woggon, Nano Lett. 3, 509 (2003).
(17) J. Q.Hu, Y. Bando, J. H. Zhan, M. Y. Liao, D. Golberg, X. L. Yuan, and T. Sekiguchi, Appl. Phys. Lett. 87, 113107 (2005).
(18) L. Qu, G. Shi, X. Wu and B. Fan, Adv. Mater. 16, 1200 (2004).
(19) D. K. Jonathan, D. H. Robert, P. Dean, J. S. Michael, J. B. Charles and R. M. Charles Chem. Mater. 5, 902 (1993).
(20) S. Yochelis and G. Hodes, Chem. Mater. 16, 2740 (2004).
(21) D. Demus, J. Goodby, G. W. Gray, H. W.Spiess and V. Vill, Handbook of Liquid Crystals, (WILEY-VCH, Weinheim, 1998).
(22) J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber, Science 293, 1455 (2001).
(23) S. D. Durbin, S. M. Arakelian and Y. R. Shen, Phys. Rev. Lett. 47, 1411 (1981).
(24) M. D. Lynch and D. L. Patrick, Nano Lett. 2, 1197 (2002).
(25) I. Dierking, G. Scalia, P. Morales and D. LeClere, Adv. Mater. 16, 865 (2004).
(26) K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu and C. C. Chen, Appl. Phys. Lett. 89, 103107 (2006).
(27) I. Dierking, G. Scalia and P. Morales, J. Appl. Phys. 97, 044309 (2005).
chap.4
(1)W. C. Röntgen, Am. Phys. 35, 264 (1888).
(2)P. Curie, Sur la, J. Physique 3, 393 (1894).
(3)T. H. O’Dell, The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970).
(4)M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
(5)M. I. Bichurin, V. M. Petrov, Y. V. Kiliba and G. Srinivasan, Phys. Rev. B 66, 134404 (2002).
(6)J. Ryu, S. Priya, K. Uchino and H. E. Kim, J. Electroceram. 8, 107 (2002).
(7)K. Liu, K. Nagodawithana, P. C. Searson and C. L. Chien, Phys. Rev. B 51, 7381 (1995).
(8)S. Chui, Z. Lin and L. Hu, Phys. Lett. A 319, 85 (2003).
(9)J. Vansucht, J. Philips Res. Rep. 27, 28 (1972).
(10)J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299, 1719 (2003).
(11)C. W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong and C. X. Xiong, Appl. Phys. Lett. 81, 3831 (2002).
(12)B. B. Van Aken, T. T. M. Palstra, A. Filippetti and N. A. Spaldin, Nature Mater. 3, 164 (2004).
(13)N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha and S. W. Cheong, Nature 429, 392 (2004).
(14)T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature 426, 55 (2003).
(15)T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer and M. Fiebig, Nature 430, 541 (2004).
(16)R. E. Newnham and S.Trolier-McKinstry, J. Appl. Crystallogr. 23, 447 (1990).
(17)J. Van Den Boomgaard, A. M. J. G. Van Run and J. Van Suchtelen, Ferroelectrics 14, 727 (1976).
(18)K. Lefki and G. J. M. Dormans, J. Appl. Phys. 76, 1764 (1994).
(19)H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd and R. Ramesh, Science 303, 661 (2004).
(20)D. Demus, J. Goodby, G. W. Gray, H. W. Spiess and V. Vill, Handbook of Liquid Crystals, (WILEY-VCH, Weinheim, 1998).
(21)K. C. Chu, C. Y. Chao, Y. F. Chen, Y. C. Wu and C. C. Chen, Appl. Phys. Lett. 89, 103107 (2006).
(22)M. D. Lynch and D. L. Patrick, Nano Lett. 2, 1197 (2002).
(23)K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen and P. T. Chou, Nano Lett. 7, 1908 (2007).
(24)N. Cordente, M. Respaud, F. Senocq, M. J. Casanove, C. Amiens, B. Chaudret, Nano Lett. 1, 565 (2001).
(25)J. K. Lee, B. I. An, D. Kim, S. H. Min, J. S. Jung and S. H. Lee, Bull. Korean Chem. Soc. 28, 121 (2007).
(26)J. L. Yao, J. Tang, D. Y. Wu, D. M. Sun, K. H. Xue, B. Ren, B. W. Mao and Z. Q. Tian, Surf. Sci. 514, 108 (2002).
(27)G. Sauer, G. Brehm, S. Schneider, H. Graener, G. Seifert, K. Nielsch, J. Choi, P. Göring, U. Gösele, P. Miclea and R. B. Wehrspohn, Appl. Phys. Lett. 88, 023106 (2006).
(28)P. K. Tyagi, M. K. Singh, A. Misra, U. Palnitkar, D. S. Misra, E. Titus, N. Ali, G. Cabral, J. Gracio, M. Roy and S. K. Kulshreshtha, Thin Solid Films 469, 127 (2004).
(29)I. Dierking, G. Scalia, P. Morales and D. LeClere, Adv. Mater. 16, 865 (2004).
(30)I. Dierking, G. Scalia and P. Morales, J. Appl. Phys. 97, 044309 (2005).
chap.5
(1)Y. P. Rakovich, L. Yang, E. M. McCabe, J. F. Donegan, T. Perova, A. Moore, N. Gaponik and A. Rogach, Semicon. Sci. Technol. 18, 914 (2003).
(2)M. Cai, O. Painter, K. J. Vahala and P. C. Sercel, Opt. Lett. 25, 1430 (2000).
(3)B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J. P. Laine, J. Lightwave Tech. 15, 998 (1997).
(4)D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, Nature 421, 925 (2003).
(5)S. A. Grudinkin, T. S. Perova, R. A. Moore, Y. P. Rakovich, V. G. Golubev and N. A. Feoktistov, Optical Materials 29, 983 (2007).
(6)S. M. Spillane, T. J. Kippenberg and K. J. Vahala, Nature 415, 621 (2002).
(7)H. B. Lin and A. J. Campillo, Opt. Commun. 133, 287 (1997).
(8)A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff and A. Imamo lu, Science 308, 1158 (2005).
(9)S. M. Spillane, T. J. Kippenberg and K. J. Vahala, Nature (London) 415, 621 (2002).
(10)T. Nobis and M. Grundmann, Phys. Rev. A 72, 063806 (2005).
(11)B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
(12)H. Y. Ryu, S. H. Kim, H. G. Park and Y. H. Lee, J. Appl. Phys. 93, 831 (2003).
(13)H. J. Moon, J. Yi, J. T. Kim and J. Lee, Jpn. J. Appl. Phys. 38, L377 (1999).
(14)H. J. Moon, Y. T. Chough, J. B. Kim, K. An, J. Yi and J. Lee, Appl. Phys. Lett. 76, 3679 (2000).
(15)H. J. Moon, G.W. Park, S. B. Lee, K. An and J. H. Lee, Optics Communications 235, 401 (2004).
(16)L. Qu, G. Shi, X. Wu and B. Fan, Adv. Mater. 16, 1200 (2004).
(17)T. J. Lin, C. C. Chen, S. Cheng and Y. F. Chen, Optics Express, 16(2), 671 (2008).
(18)Z. Deng, L. Cao, F. Tang and B. Zou, J. Phys. Chem. B 109, 16671 (2005).
(19)V. G. Plotnichenko, Y. A. Mityagin and L. K. Vodop’yanov, SoV. Phys. Solid State, 19, 1584 (1977).
(20)R. Beserman, Solid State Commun. 23, 323 (1977).
(21)A. K. Arora and A. K. Ramdas, Phys. Rev. B 35, 4345 (1987).
(22)P. Y. Yu, Solid State Commun. 19, 1087 (1976).
(23)L. S. Li, H. Jiangtao, W. Yang and A. P. Alivisatos, Nano Lett. 1, 349 (2001).
(24)Purcell, Phys. Rev. 69, 681 (1946).
(25)T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz and M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004).
(26)H. J. Moon, Y. T. Chough and K. An, Phys. Rev.Lett. 85, 3161 (2000).
(27)I. L. Li, Z. K. Tang, X. D. Xiao, C. L. Yang and W. K. Ge, Appl. Phys. B 83, 2438 (2003).
chap.6
(1)Z. Gueroui and A. Libchaber, Phys. Rev. Lett. 93, 166108 (2004).
(2)I. A. Larkin, M. I. Stockman, M. Achermann and V. I. Klimov, Phys. Rev. B. 69, 121403 (2004).
(3)A. Leitner, Z. Zhao, H. Brunner, F. R. Aussenegg and A. Wokaun, Applied Optics. 32, 102 (1993).
(4)M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat and E. Yablanovich, J. Lightwave Technol. 17, 2096 (1999).
(5)J. R. Krenn, W. Gotschy, D. Somitsch, A. Leitner and F. R. Aussenegg, Appl. Phys. A: Solids Surf. 61, 541 (1995).
(6)I. I. Smolyaninov, D. L. Mazzoni and C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996).
(7)H. R. Stuart and D. G. Hall, Phys. Rev. Lett. 80, 5663 (1998).
(8)N. Felidj, J. Aubard, J. Le´vi, J. Krenn, G. Schider, A. Leitner and F. Aussenegg, Phys. Rev. B 66, 245407 (2002).
(9)B. A. F. Puygranier, P. Dawson, Y. Lacroute and J.-P. Goudonnet, Surf. Sci. 490, 85 (2001).
(10)I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. Chan, Z. Gryczynski, W. Grudzinski and J. Lakowicz, J. Phys. Chem. B 109, 1088 (2005).
(11)J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 85, 4773 (1996).
(12)K.T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler and M. G. Bawendi, Phys. Rev. Lett. 89, 117401 (2002).
(13)O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon and M. Artemyev, Nano Lett. 2, 1449 (2002).
(14)K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
(15)S. Nie and S. R. Emery, Science 275, 1102 (1997).
(16)J. Kummerlen, A. Leitner, H. Brunner, F. Aussenegg and A. Wokaun, Mol. Phys. 80, 1031 (1993).
(17)J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, Science 274, 959 (1996).
(18)C. L. Haynes, R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
(19)J. D. Joannopoulos, P. R. Villeneuve, S. Fan, Nature 386, 143 (1997).
(20)S. Yochelis, G. Hodes, Chem. Mater. 16, 2740-2744 (2004).
(21)T. J. Lin, C. C. Chen, S. Cheng and Y. F. Chen, Optics Express, 16(2), 671 (2008).
(22)J. R. Lakowicz, Plasmonics 1, 5 (2006).
(23)J. H. Song, T. Atay, S. Shi, H. Urabe and A. V. Nurmikko, Nano Lett. 5, 1557 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊