跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖聖侖
研究生(外文):Shein-Lun Liao
論文名稱:以第一原理研究非等向性阱中玻色-愛因斯坦凝結在接觸與偶極交互作用下的特性
論文名稱(外文):Ab initio study of the properties of Bose-Einstein condensates with dipolar interactions in an anisotropic Trap
指導教授:朱時宜
指導教授(外文):Shih-I Chu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:48
中文關鍵詞:玻色愛因斯坦凝結廣義擬似譜法Gross-Pitaevskii 方程散射長度偶極
外文關鍵詞:BECdipoleGPS methodGross-Pitaevskii equationdouble peaks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
We present an ab initio numerical method to study the properties of Bose-Einstein condensates (BECs) which include both interactions via contact and magnetic dipole-dipole forces. We efficiently solve the nonlocal and anisotropic interaction potential between dipoles which are represented in a differential form. The BEC Hamiltonian is discretized and solved accurately through the generalized pseudospectral method (GPS method). Using the iteration minimization technique, we obtain the solutions of the non-linear Gross-Pitaevskii equation with non-local dipolar interaction. We find that the density profiles strongly depend upon the geometry of trapping potentials. We determine that the maximum density is not always located at the center of a trap due to the interaction between dipoles. Experiments have shown that the stability of dipolar BECs strongly depends on the geometry of trapping potentials and the scattering length. As the scattering length decreases under certain critical values acrit , BECs are no longer stable. Using the GPS method, the critical scattering length corresponding to different trap geometries is accurately determined with a minimum number of grid points. In addition, we show that the
Thomas-Fermi approximation is not good enough to describe condensates before BECs collapse, and the double-peaks feature of density profiles is an important characteristic in such condition. In the near future, the dynamics of dipolar BECs will be studied employing the GPS method.
Contents
Acknowledgement i
Abstract (Chinese) ii
Abstract iii
1 Introduction 1
1.1 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dipolar BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Theory of Bose-Einstein condensate and dipole gas 6
2.1 Effective interactions and the scattering length . . . . . . . . . . . . . . . 6
2.2 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Gross-Pitaevskii equation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Stability and collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Dipolar interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
iv
3 Numerical methods 15
3.1 Challenge of dipole interaction . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Generalized pseudospectral method . . . . . . . . . . . . . . . . . . . . 16
3.3 BEC in an anisotropic trap . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Dipole-dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Ground state and energy minimization by iterative method . . . . . . . . 24
4 Results and discussions 28
4.1 Pure contact interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Pure dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Scattering length and stability . . . . . . . . . . . . . . . . . . . . . . . 37
5 Conclusions and Perspectives 41
Bibliography 43
Bibliography
[1] T. Koch, T. Lahaye, J. Metz, B. Frohlich, A. Griesmaier, and T. Pfau. Stabilization
of a purely dipolar quantum gas against collapse. Nat Phys, 4(3):218–222, March
2008.
[2] Eric Cornell. Very cold indeed: The nanokelvin physics of bose-einstein condensation.
J. Res. Natl. Inst. Stand. Technol., 101:419, 1996.
[3] S. Yi and L. You. Probing dipolar effects with condensate shape oscillation. Phys.
Rev. A, 66(1):013607, Jul 2002.
[4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell.
Observation of bose-einstein condensation in a dilute atomic vapor. Science,
269(5221):198–201, 1995.
[5] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-einstein condensation in a gas of sodium atoms. Phys.
Rev. Lett., 75(22):3969–3973, Nov 1995.
43
[6] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of boseeinstein
condensation in an atomic gas with attractive interactions. Phys. Rev. Lett.,
75(9):1687–1690, Aug 1995.
[7] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag,
and R. Grimm. Bose-Einstein Condensation of Molecules. Science,
302(5653):2101–2103, 2003.
[8] Markus Greiner, Cindy A. Regal, and Deborah S. Jin. Emergence of a molecular
bose-einstein condensate from a fermi gas. Nature, 426(6966):537–540, December
2003.
[9] Markus Greiner, Olaf Mandel, Tilman Esslinger, TheodorW. Hansch, and Immanuel
Bloch. Quantum phase transition from a superfluid to a mott insulator in a gas of
ultracold atoms. Nature, 415(6867):39–44, January 2002.
[10] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell,
S. J. J. M. F. Kokkelmans, and C. Salomon. Experimental study of the bec-bcs
crossover region in lithium 6. Phys. Rev. Lett., 93(5):050401, Jul 2004.
[11] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and
W. Ketterle. Condensation of pairs of fermionic atoms near a feshbach resonance.
Phys. Rev. Lett., 92(12):120403, Mar 2004.
44
[12] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and
R. Grimm. Crossover from a molecular bose-einstein condensate to a degenerate
fermi gas. Phys. Rev. Lett., 92(12):120401, Mar 2004.
[13] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas. Evidence for
superfluidity in a resonantly interacting fermi gas. Phys. Rev. Lett., 92(15):150402,
Apr 2004.
[14] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange,
K. Pilch, A. Jaakkola, H.-C. Ngerl, and R. Grimm. Evidence for efimov quantum
states in an ultracold gas of caesium atoms. Nature, 440(7082):315–318, March
2006.
[15] Axel Griesmaier, J¨orgWerner, Sven Hensler, J¨urgen Stuhler, and Tilman Pfau. Boseeinstein
condensation of chromium. Phys. Rev. Lett., 94(16):160401, Apr 2005.
[16] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, and
L. Santos. Observation of dipole-dipole interaction in a degenerate quantum gas.
Phys. Rev. Lett., 95(15):150406, Oct 2005.
[17] S. Giovanazzi, D. O’Dell, and G. Kurizki. Density modulations of bose-einstein
condensates via laser-induced interactions. Phys. Rev. Lett., 88(13):130402, Mar
2002.
45
[18] K. G´oral, L. Santos, and M. Lewenstein. Quantum phases of dipolar bosons in optical
lattices. Phys. Rev. Lett., 88(17):170406, Apr 2002.
[19] L. Santos, G. V. Shlyapnikov, and M. Lewenstein. Roton-maxon spectrum and stability
of trapped dipolar bose-einstein condensates. Phys. Rev. Lett., 90(25):250403,
Jun 2003.
[20] M. A. Baranov, Klaus Osterloh, and M. Lewenstein. Fractional quantum hall states
in ultracold rapidly rotating dipolar fermi gases. Phys. Rev. Lett., 94(7):070404, Feb
2005.
[21] D. DeMille. Quantum computation with trapped polar molecules. Phys. Rev. Lett.,
88(6):067901, Jan 2002.
[22] E. Bodo, F. A. Gianturco, and A. Dalgarno. F + d[sub 2] reaction at ultracold temperatures.
The Journal of Chemical Physics, 116(21):9222–9227, 2002.
[23] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein. Bose-einstein condensation
in trapped dipolar gases. Phys. Rev. Lett., 85(9):1791–1794, Aug 2000.
[24] S. Giovanazzi, P. Pedri, L. Santos, A. Griesmaier, M. Fattori, T. Koch, J. Stuhler, and
T. Pfau. Expansion dynamics of a dipolar bose-einstein condensate. Physical Review
A (Atomic, Molecular, and Optical Physics), 74(1):013621, 2006.
46
[25] Duncan H. J. O’Dell, Stefano Giovanazzi, and Claudia Eberlein. Exact hydrodynamics
of a trapped dipolar bose-einstein condensate. Phys. Rev. Lett., 92(25):250401,
Jun 2004.
[26] E.P. Gross. Structure of a quantized vortex in boson systems. Nuovo Cimento,
20:454, 1961.
[27] L.P. Pitaevskii. Vortex lines in an imperfect bose gas. Sov. Phys. JETP, 13:451, 1961.
[28] J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga.
Observation of feshbach resonances in an ultracold gas of cr52. Phys. Rev. Lett.,
94(18):183201, May 2005.
[29] Thierry Lahaye, Tobias Koch, Bernd Frohlich, Marco Fattori, Jonas Metz, Axel
Griesmaier, Stefano Giovanazzi, and Tilman Pfau. Strong dipolar effects in a quantum
ferrofluid. Nature, 448(7154):672–675, August 2007.
[30] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of
bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(3):463–512, Apr
1999.
[31] R. J. Dodd, Mark Edwards, C. J. Williams, C. W. Clark, M. J. Holland, P. A.
Ruprecht, and K. Burnett. Role of attractive interactions on bose-einstein condensation.
Phys. Rev. A, 54(1):661–664, Jul 1996.
47
[32] X. M. Tong and S. I. Chu. Theoretical study of multiple high-order harmonic generation
by intense ultrashort pulsed laser fields: A new generalized pseudospectral
time-dependent method. Chem. Phys., 217(2-3):119–130, 1997.
[33] A. R. Edmonds. Angular momentum in quantum mechanics. Princeton, N.J. : Princeton
University Press,, 1957.
[34] Paulsamy Muruganandam and Sadhan K Adhikari. Boseeinstein condensation dynamics
in three dimensions by the pseudospectral and finite-difference methods.
Journal of Physics B: Atomic, Molecular and Optical Physics, page 2501, 2003.
[35] B. I. Schneider and D. L. Feder. Numerical approach to the ground and excited states
of a bose-einstein condensed gas confined in a completely anisotropic trap. Phys.
Rev. A, 59(3):2232–2242, Mar 1999.
[36] T. Lahaye, J. Metz, B. Fr¨ohlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau,
H. Saito, Y. Kawaguchi, and M. Ueda. d-wave collapse and explosion of a dipolar
bose-einstein condensate. Physical Review Letters, 101(8):080401, 2008.
[37] Maciej Lewenstein. Dancing the bose-nova with a twirl. Physics, 1:13, Aug 2008.
[38] X. M. Tong and S. I. Chu. Density-functional theory with optimized effective potential
and self-interaction correction for ground states and autoionizing resonances.
Phys. Rev. A, 55(5):3406–3416, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top