跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫豫蘋
研究生(外文):Yu-Ping Sun
論文名稱:乳酸發酵大白菜之製造及抗氧化特性研究
論文名稱(外文):Production and antioxidative properties of lactic-fermented Chinese cabbage
指導教授:游若篍
指導教授(外文):Roch-Chui Yu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:155
中文關鍵詞:乳酸發酵大白菜乾鹽法捕捉DPPH自由基能力還原力螯合亞鐵離子能力
外文關鍵詞:lactic-fermented Chinese cabbagedry-salt methodDPPH-radical scavenging effectFe2+-ion chelating abilityreducing activities
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
本研究利用乾鹽法(dry-salt method)以及簡單的配料來進行韓式口味之乳酸發酵白菜(lactic acid fermented cabbage)的製造,探討食鹽與溫度發酵對乳酸發酵白菜之影響,並探討發酵過程、添加雙叉桿菌對乳酸發酵白菜抗氧化活性以及乳酸發酵白菜於貯存過程中之菌相變化。
乳酸發酵白菜隨著發酵時間增加,可滴定酸度增加、pH值下降;乳酸菌在發酵前期很快的成為主要優勢菌種,其中Leuconostoc mesenteroides為發酵初期的主要菌種,之後由Lactobacillus plantarum取而代之;發酵溫度對乳酸發酵白菜的乳酸菌相影響較食鹽明顯,溫度較高(25℃)時,L. mesenteroides與L. plantarum消長速度較快;發酵溫度較低(18℃)時,食鹽對菌數影響較顯著。乳酸發酵白菜經消費者喜好性評估,結果顯示以3%食鹽處理、25℃發酵溫度者較受消費者喜愛。
抗氧化活性方面,萃取溶劑與發酵過程對白菜混合物(未發酵)的抗氧化活性有明顯的影響。ㄧ般而言,發酵過程對於白菜混合物之甲醇萃取物的螯合亞鐵離子能力與還原力並無影響,然而水萃取物部分之抗氧化活性卻有明顯的降低,甲醇萃取物比水萃取物具有較高的捕捉DPPH自由基能力與還原力, 其中發酵白菜的甲醇萃取物具有最高的捕捉DPPH自由基能力。萃取溶劑的種類與發酵過程對於萃取物中的總酚與類黃酮含量亦有影響,發酵過程會增加甲醇萃取物中的總酚含量,但卻會降低水萃取物中的類黃酮的含量,但大白菜混合物與乳酸發酵白菜萃取物的抗氧化變化與其中所含的總酚與類黃酮含量變化並不完全ㄧ致。
添加益生性雙叉桿菌Bifidobacterium breve BCRC 11846、B. lactis Bb-12、B. infantis BCRC 14602以及B. bifidum BCRC 14615至乳酸發酵白菜中,清除DPPH自由基清除能力情形,除了B. breve 11846與未添加之控制組的能力無顯著差異,其他添加雙叉桿菌之乳酸發酵白菜對於捕捉DPPH.能力較控制組具有顯著的促進效果;添加雙叉桿菌組的水萃取之螯合亞鐵離子能力明顯較未添加者佳,無論是甲醇萃取物或是水萃取物以添加B. infantis BCRC14602表現最佳,與其他組別具有顯著差異(p < 0.05);還原力方面,添加雙叉桿菌之乳酸發酵白菜的水萃取物明顯較未添加之控制組的還原力好(p < 0.05),甲醇萃取物的還原力比水萃取物為佳,其中以添加B. lactis Bb12的乳酸發酵白菜甲醇萃取物表現最佳。綜合抗氧化實驗結果顯示添加雙叉桿菌的乳酸發酵白菜具有促進抗氧化能力效果,但因添加之雙叉桿菌菌種不同亦會有所差異。
貯存過程對添加雙叉桿菌的乳酸發酵白菜的酸鹼值與可滴定酸方面,無顯著影響,但其中總乳酸菌數與雙叉桿菌的存活有明顯的影響,乳酸菌數由原先8 log CFU/g貯存至第三週時已減少至6~7 log CFU/g,有明顯差異(p < 0.05);雙叉桿菌數方面,貯存至第2週時均減少至4 log CFU/g,有明顯的差異(p < 0.05)。抗氧化能力方面,無論有無添加雙叉桿菌之乳酸發酵白菜之甲醇萃取物的抗氧化能力(捕捉DPPH.能力與還原力),並未隨著貯存時間增加有明顯變化,但是水萃取物之抗氧化能力隨著貯存時間增加有明顯減少的變化。
This study tries to produce lactic acid fermented cabbage similar to kimchi in Korea with a dry-salt method and simple formula, investigate the effects of temperature and NaCl on lactic acid fermented cabbage. Besides, antioxidant activity was determined and the effects of fermentation on the change of antioxidant activity, the antioxidative activity of supplemented with bifidobacteria into lactic acid fermented cabbage and storage were also investigated.
Results showed that pH value decreased and titratable acidity increased following with fermentation time. Lactic acid bacteria (LAB) became the dominant flora after 1 day. Leuconostoc mesenteroides appeared at the earlier stage of fermentation and Lactobacillus plantarum appeared in the later stage. The changes of microflora during fermentation were much more dependent on temperature than on salt concentrations. L. mesenteroides decreased much more rapidly at 25℃ than at 18℃. The microbial growth in lactic acid fermented cabbage fermentation was significantly changed by sodium chloride within the range of 2-3% at 18℃. However, the influence of salt concentration was not significant while fermentation was carried out at 25℃. Hedonic sensory evaluation of lactic acid fermented cabbage was prepared at either 2% or 3% salt concentration and fermented at 25℃ for 2 day and 18℃ for 2.5 day. It showed that the lactic acid fermented cabbage dehydrated by 3% salt concentration, and fermented at 25℃ was better than others.
Antioxidant activity observed on Chinese cabbage mixture may vary with extraction solvents and fermentation. Generally, the methanol extract of cabbage mixture showed a higher DPPH radical scavenging activity and reducing activity than did the water extract. Although fermentation did not alter the Fe2+-chelating ability and reducing activity of the methanol extract of the cabbage mixture, it reduced these same antioxidant activities in the water extract. Among the various extracts examined, the methanol extract of fermented cabbage showed the highest DPPH-radical scavenging effect. Additionally, the type of solvent and fermentation were also found to affect the total phenolic and flavonoid content of the extracts. Fermentation increased the total phenolic content of the methanol extract, while reducing the total flavonoid content of the water extract. Furthermore, changes in the antioxidant activity observed on the extracts of cabbage mixture and fermented cabbage did not coincide exactly with the content of total phenolics and total flavonoids.
Supplemented with B. breve BCRC 11846、B. lactis Bb-12、B. infantis BCRC 14602以及B. bifidum BCRC 14615 into lactic acid fermented cabbage to 107 CFU/g, there is no significantly difference on total lactic acid bacteria, L. mesenteroides, L. plantarum, pH value and titratable acid. The extracts of supplemented probiotic bifidobacteria of lactic acid fermented cabbage except supplemented B. breve 11846 showed a higher DPPH radicals scavenging effect than control (without supplemented). Moreover, the extracts of lactic acid fermented cabbage supplemented B. infantis BCRC14602 showed the best Fe2+-chelating ability. The methanol extract of lactic acid fermented cabbage supplemented B. lactis Bb12 showed the best reducing power and the water extracts of lactic acid fermented cabbage supplemented bifidobacteria showed a higher DPPH radicals scavenging effect than control. Furthermore, supplemented bifidobacteria to lactic acid fermented cabbage may enhance the antioxidative activity, but have some variations in variety of bifidobacteria supplemented.
Changes of lactic acid fermented cabbage supplemented with bifidobacteria on the total lactic acid bacteria, bifidobacteria, and antioxidative activity during storage at 4℃. there are no significant change at pH value and titratable acid, total lactic acid bacteria of fermented cabbage supplemented with/without bifidobacteria showed that there was not a significant decrease during the first 2 weeks while being storage at about 8 log CFU/g. However, there was a significant decrease to 6~7 log CFU/g at the third week (p<0.05), and an even more significant decrease to the remaining 4~5 log CFU/g at the fourth week (p<0.05). Form the second week the numbers of bifidobacteria were significantly decreased to 4 log CFU/g, but and antioxidative activity of methanol extracts showed no significant decrease or change during storage, but the water extracts significantly decreased during storage and the longer the storage time, the less antioxidative activity.
論文口試委員審定書--------------------------------------------------------------------- i
謝誌------------------------------------------------------------------------------------------ ii
中文摘要------------------------------------------------------------------------------------ iii
英文摘要------------------------------------------------------------------------------------ v
目錄------------------------------------------------------------------------------------------ vii
圖次------------------------------------------------------------------------------------------ x
表次------------------------------------------------------------------------------------------ xi
第壹章、文獻整理------------------------------------------------------------------------ 1
一、益生菌-------------------------------------------------------------------------------1
1. 益生菌的定義------------------------------------------------------------------------ 1
2. 乳酸菌之定義與特性--------------------------------------------------------------- 1
3. 乳酸菌之分類------------------------------------------------------------------------2
4. 乳酸菌之生理功效-----------------------------------------------------------------2
4.1 維持腸道中正常微生物相,促進腸胃道的健康------------------------- 3
4.2 改善乳糖不耐症、維生素的合成與改善營養價值--------------------- 3
4.3 調節免疫機能------------------------------------------------------------------ 3
4.4 降低血清中膽固醇含量------------------------------------------------------ 4
4.5 抗氧化--------------------------------------------------------------------------- 4
4.6 抗致突變與抗腫瘤------------------------------------------------------------ 5
二、乳酸菌與乳酸發酵蔬菜---------------------------------------------------------- 6
1. 乳酸菌在食品中之作用----------------------------------------------------------- 6
2. 乳酸發酵蔬菜----------------------------------------------------------------------- 6
3. 影響蔬菜發酵之因子-------------------------------------------------------------- 7
3.1 食鹽濃度------------------------------------------------------------------------ 7
3.2 酸度------------------------------------------------------------------------------ 8
3.3 溫度------------------------------------------------------------------------------ 8
4. 韓式泡菜(Kimchi)------------------------------------------------------------------ 8
4.1 韓式泡菜製造過程------------------------------------------------------------ 9
4.2 韓式泡菜發酵過程------------------------------------------------------------ 11
4.3 韓式泡菜發酵的影響因子--------------------------------------------------- 11
4.4 營養與機能特性----------------------------------------------------------------- 12
三、氧化作用及抗氧化機制原理---------------------------------------------------- 15
1. 自由基終止劑(Free radical terminator)-------------------------------------- 15
2. 還原劑或氧清除劑(reductants and oxygen scavengers)------------------- 15
3. 金屬螯合劑(metal chelator)---------------------------------------------------- 16
四、蔬果中的抗氧化物質------------------------------------------------------------- 16
1. 維生素C (ascorbic acid, 抗壞血酸)----------------------------------------- 16
2. 維生素 E(生育醇, tocopherol)------------------------------------------------ 17
3. 類胡蘿蔔素(carotenoids)------------------------------------------------------- 17
4. 酚類化合物(phenolic compounds)-------------------------------------------- 17
五、參考文獻---------------------------------------------------------------------------- 19
第貳章、溫度、食鹽對乳酸發酵大白菜之影響------------------------------------ 28
Abstract ----------------------------------------------------------------------------------- 29
摘要 --------------------------------------------------------------------------------------- 30
前言---------------------------------------------------------------------------------------- 31
材料與方法------------------------------------------------------------------------------- 33
結果與討論------------------------------------------------------------------------------- 37
結論 --------------------------------------------------------------------------------------- 48
參考文獻---------------------------------------------------------------------------------- 49
第參章、乳酸發酵大白菜的抗氧化性研究------------------------------------------ 52
Abstract ----------------------------------------------------------------------------------- 53
摘要 --------------------------------------------------------------------------------------- 54
前言---------------------------------------------------------------------------------------- 55
材料與方法------------------------------------------------------------------------------- 57
結果與討論------------------------------------------------------------------------------- 60
結論---------------------------------------------------------------------------------------- 71
參考文獻---------------------------------------------------------------------------------- 72
第肆章、添加雙叉桿菌之乳酸發酵大白菜的抗氧化特性探討----------------- 77
Abstract ----------------------------------------------------------------------------------- 78
摘要 --------------------------------------------------------------------------------------- 79
前言---------------------------------------------------------------------------------------- 80
材料與方法------------------------------------------------------------------------------- 82
結果與討論------------------------------------------------------------------------------- 85
結論 -------------------------------------------------------------------------------------- 102
參考文獻---------------------------------------------------------------------------------- 103
第伍章、添加雙叉桿菌之乳酸發酵大白菜於4℃貯存期間之抗氧化變化--- 107
Abstract ---------------------------------------------------------------------------------- 108
摘要 -------------------------------------------------------------------------------------- 109
前言--------------------------------------------------------------------------------------- 110
材料與方法------------------------------------------------------------------------------- 111
結果與討論------------------------------------------------------------------------------- 114
結論 -------------------------------------------------------------------------------------- 124
參考文獻---------------------------------------------------------------------------------- 125
附錄1、溫度與食鹽對乳酸發酵白菜之發酵過程的菌相變化------------------ 128
附錄2、乳酸發酵大白菜之消費者喜好性品評問卷------------------------------ 129
附錄3、Antioxidant activity of lactic-fermented Chinese cabbage(已接受)----- 131
圖次
圖1.1 韓式泡菜之製作流程----------------------------------------------------------- 10
圖2.1 食鹽、發酵溫度對發酵大白菜之發酵期間的pH 值之變化----------- 38
圖2.2 食鹽、發酵溫度對發酵大白菜之發酵期間的可滴定酸度之變化------ 40
圖2.3 不同食鹽量預處理(2%, 3%)、溫度對乳酸發酵大白菜發酵過程
菌相變化之影響----------------------------------------------------------------- 44
圖3.1 大白菜混合物與發酵大白菜之甲醇萃取物與水萃取物之
DPPH自由基清除能力--------------------------------------------------------- 65
圖3.2 大白菜混合物與發酵大白菜之甲醇萃取物與水萃取物之亞
鐵離子螯合能力----------------------------------------------------------------- 66
圖3.3 大白菜混合物與發酵大白菜之甲醇萃取物與水萃取物之還
原力--------------------------------------------------------------------------------- 67
圖4.1 添加雙叉桿菌的發酵大白菜甲醇萃取物之DPPH自由基清
除能力----------------------------------------------------------------------------- 91
圖4.2 添加雙叉桿菌的發酵大白菜水萃取物之DPPH自由基清除
能力-------------------------------------------------------------------------------- 92
圖4.3 添加雙叉桿菌的發酵大白菜甲醇萃取物之亞鐵離子螯合能力-------- 95
圖4.4 添加雙叉桿菌的發酵大白菜水萃取物之亞鐵離子螯合能力----------- 96
圖4.5 添加雙叉桿菌的發酵大白菜甲醇萃取物之還原力----------------------- 98
圖4.6 添加雙叉桿菌的發酵大白菜水萃取物之還原力-------------------------- 99
圖5.1 添加雙叉桿菌之發酵大白菜於4℃貯存過程中的酸鹼值與可
滴定酸之變化-------------------------------------------------------------------- 117
圖5.2 添加雙叉桿菌的發酵大白菜於貯存期間甲醇萃取物之DPPH
自由基清除能力的變化------------------------------------------------------- 120
圖5.3 添加雙叉桿菌的發酵大白菜於貯存期間水萃取物之DPPH自
由基清除能力的變化---------------------------------------------------------- 121
圖5. 4 添加雙叉桿菌的發酵大白菜於貯存期間甲醇萃取物之還原能
力的變化------------------------------------------------------------------------ 122
圖5.5 添加雙叉桿菌的發酵大白菜於貯存期間水萃取物之還原能力
之變化------------------------------------------------------------------------------ 123


表1.1 韓式泡菜中的生理活性物質------------------------------------------------- 14
表2.1 喜好性品評之發酵大白菜之酸鹼值與可滴定酸度情形---------------- 46
表2.2 2%、3%鹽處理與25℃、18℃發酵溫度製備之發酵大白菜
的喜好性品評------------------------------------------------------------------- 47
表3.1 大白菜混合物與發酵大白菜之萃取率------------------------------------- 61
表3.2 大白菜混合物與發酵大白菜之甲醇萃取物與水萃取物之抗
氧化特性------------------------------------------------------------------------- 68
表3.3 大白菜混合物與發酵大白菜之甲醇萃取物與水萃取物之總
酚與類黃酮含量情形---------------------------------------------------------- 70
表4.1 添加雙叉桿菌之發酵大白菜的總乳酸菌菌數、雙叉桿菌數
、L. mesenteroides 與 L. plantarum菌數情形---------------------------- 87
表4.2 添加雙叉桿菌之發酵大白菜的酸鹼值與可滴定酸度情形-------------- 88
表4.3 添加雙叉桿菌的發酵大白菜甲醇萃取物與水萃取物對捕
捉DPPH.能力與螯合亞鐵離子能力之半有效濃度(IC50)------------ 101
表5.1 添加雙叉桿菌之發酵大白菜於4℃貯存期間之的總乳酸菌
菌數、雙叉桿菌數變化情形------------------------------------------------- 116
丁懷謙。2000。益生菌與胃腸保健功效。食品工業。32(10): 1-7。
方祖達。1983。醃漬及蔬菜發酵生產之改進。科學發展。11(2):157-158。
王吉彬。1995。酸菜醃漬過程中之微生物。食品工業月刊。9:16-23.
王義雄、賴敏雄。1978。中國蔬菜醃製法之調查。食品工業發展研究所研究報告第123號。 14(10):61-62。
朱芳瑢。2008。數株益生菌及其發酵乳抑制大腸癌細胞增生及4NQO誘導Int-407基因毒性之研究。國立臺灣大學食品科技研究所碩士學位論文。台北。
吳俊輝。1996。低鹽醃漬結球白菜之研究。國立台灣大學園藝學研究所碩士學位論文。台北。
李福臨。1989。食品加工上乳酸菌之利用。食品工業。21(12):32-38。
李臨福。1981。醃漬物中的微生物。食品工業。15(2):31-38。
李臨福。2000。乳酸菌分類之研究近況。食品工業。32(8):36-42。
周延芳。2000。雙叉桿菌在克弗爾中之生長與抗氧化之研究。國立台灣大學食品科技研究所碩士學位論文。台北。
林明君。2002。新鮮及乾燥蕃茄甲醇萃取液之抗氧化性比較。大葉大學食品工程學系碩士學位論文。彰化。
林明君。2002。新鮮及乾燥蕃茄甲醇萃取液之抗氧化性比較。大葉大學食品工程學系碩士學位論文。彰化。
林書妍、陳右人。2003。柑橘類類黃酮的結構與生理機能。中國園藝。49(1):1-10。
林彣郁。2001。乳酸菌和雙叉桿菌益生特性之探討。國立中興大學畜產研究所碩士學士論文。台中市。
宮尾茂雄、小川敏郎。1988。發酵漬物中各種乳酸菌之選擇計數。日本食品工業學會誌。35:610-617。
宮尾茂雄、小川敏郎。1988。發酵漬物中各種乳酸菌之選擇計數。日本食品工業學會誌。35:610-617。
商惠芳、劉珍芳、曾金章、王正怡、李菱玟、葉必立、高信義、鍾美玉、呂秀介、謝明哲。2000。優酪乳對人體腸道細菌相及血液生化分析之影響。中華民國營養學會雜誌。25(3):159-169。
商惠芳、劉珍芳、曾金章、王正怡、李菱玟、葉必立、高信義、鍾美玉、呂秀介、謝明哲。2000。優酪乳對人體腸道細菌相及血液生化分析之影響。中華民國營養學會雜誌。25(3):159-169。
張喜寧。2002。蔬菜與水果的防癌性。科學農業。50 1,2:168-173。
許夏芬、張肇麟和朱燕華。2000。數種蔬菜中類黃酮含量及抗氧化性分析。臺灣農業化學與食品科學。38:377-387。
許雅鈞。2004。雙叉桿菌胞內物對活性氧之抗致突變性與抗氧化性。國立台灣大學食品科技研究所碩士學位論文。台北。
許雅鈞。2004。雙叉桿菌胞內物對活性氧之抗致突變性與抗氧化性。國立臺灣大學食品科技研究所碩士學位論文。台北。
陳元宏、游若篍。1995。乳酸鏈球菌素作為做微生物防腐劑之生產研究。食品科學 22:77-85。
陳俊成。2003。乳酸菌之益生作用。食品資訊。196: 52-58。
陳慶源、林富美。2004。益生菌之保健功效。食品工業。36(3):1-3。
游若篍、陳雍仁、王宜婕。2001。溫度、食鹽及乳酸菌酛對德式酸菜發酵之影響。台灣農業化學與食品科學。39(1):16-22。
游淑玲、周正俊。1987。不同鹽度下醃漬泡菜時一些食物中毒菌之存活。食品科學。14:119-128。
黃爾竺。2003。數株益生菌對4-nitroquinoline –1-oxide之抗致突變性。國立台灣大學食品科技研究所碩士學位論文。台北。
楊媛絢。1996。原生保健性菌種與益助性生質之應用。食品工業。30: 11-22。
路茲喻。2002。本土性乳酸菌對脂質代謝與腸道之影響。國立臺灣大學微生物與生化學研究所碩士學位論文。台北。
廖啟成。1998。乳酸菌之分類與應用。食品工業。30(2):1-10。
蔡英傑。1998。乳酸菌與益生菌。生物產業。9 (2):98-104。
賴明群。1999。德式酸菜之控制發酵及E. coli O157:H7在發酵儲存期間之存活研究。國立台灣大學食品科技研究所碩士學位論文。台北。
錢明賽 。1998。蔬果中之抗氧化物質。食品工業。30(8):21-34。
鍾愛嵐。2001。青草植物抗氧化力及抗氧化功能性之研究。中國文化大學生活應用科學研究所碩士論文。
鍾愛嵐。2001。青草植物抗氧化力及抗氧化功能性之研究。中國文化大學生活應用科學研究所碩士學位論文。台北。
Ahotupa M, Ruutu M, Mäntylä E. 1996. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 29(2): 139-144
Amanatidou A, Smid EJ, Bennik MH. 2001. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentration. FEMS Microbiol Lett 203(1): 87-94.
Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915-7922.
Ames BN. 1989. Endogenous DNA damage as related to cancer and aging. Mutat Res 214: 41-46.
Amin I, Zamaliah MM, Chin WF. 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chem 87: 581-586.
Amin I, Norazaidah Y, Emmy Hainida KI. 2006. Antioxidatant activity and phenolic content of raw and blanched Amaranthus species. Food Chem 94: 47-52.
Amro B, Aburjai T, Al-Khalil S. 2002. Antioxidative and radical scavenging effects of olive cake extract. Fitoterapia 73: 456-461.
Anderson JW, Smith BM, Gustafson NJ. 1994. Health benefits and practical aspects of high-fiber diets. Am J Clin Nutr 59(5S): 1242S-1247S.
Archibald FS, Fridovich I. 1981. Manganese, superoxide dismutase, and oxygn tolerance in some latic acid bacteria. J Bacteriol 146: 928-936.
Arunachalam KD. 1999. Role of bifidobacteria in nutrition, medicine and technology. Nutr Res 19: 1559-1597.
Aruoma OI, Deiana M, Rosa A, Casu V, Piga R, Peccagnini S, Dessi MA, Ke B, Liang Y-F, Higa T. 2002. Assessment of the ability of the antioxidant cocktail-derived from fermentation of plants with effective microorganisms (EM-X) to modulate oxidative damage in the kidney and liver of rats in vivo: Studies upon the profile of poly- and mono-unsaturated fatty acids. Toxicol Lett 135: 209-217.
Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1200.
Bonorden WR, Pariza MW. 1994. Antioxidant nutrients and protection form free radicals, In: Nutr Toxicol, Kostsonis FN, Mackey M, Hjelle J Ed. Raven press. New York. pp. 19-48.
Brand-Willians W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol 25: 25-30.
Buratti S, Pellegrini N, Brenna OV, Mannino S. 2001. Rapid electrochemical method for the evaluation of the antioxidant power of some lipophilic food extracts. J Agric Food Chem 49: 5136-5141.
Burns J, Fraser PD, Bramley PM. 2003. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62: 939-947.
Burton GW. 1994. Vitamin E: molecular and biological function. Proc Nutr Soc 53: 251-262.
Caplice E, Fizgerald GF. 1999. Food fermentation: Role of microorganism in food production and preservation. the microflora of sauerkraut fermentation. Food Tech 8: 1-5.
Cheigh HS, Park KY. 1994. Biochemical, microbiology, and nutritional aspects of kimchi (Korean fermentated vegetable products). Crit Rev Food Sci Nutr 34(2): 175-203.
Cheung LM, Cheung PCK, Ooi VEC. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255.
Ching LS, Mohamed S. 2001. Alpha-tocopherol content in 62 edible tropical plants. J Agric Food Chem 49: 3101-3105.
Choi MH, Park YH. 1999. Growth of Pichia guilliermondii A9, an osmotolerant yeast , in waste brine generated from kimchi production. Biores Technol 70: 231-236.
Choi MH, Ji GE, Koh KH, Ryu YW, Jo DH, Park YH. 2002. Use of waste Chinese cabbage as a substrate for yeast biomass production. Biores Technol 83: 251-253.
Choi SY, Beuchat LR, Perkins LM, Nakayama T. 1994. Fermentation and sensory characteristics of kimchi containing potassium chloride as a partial replacement for sodium chloride. Int J Food Microbio 21(4): 335-340.
Choi SY, Kim YB, Yoo JY, Lee IS, Chung KS, Koo YJ. 1990. Effect of temperature and salt concentration of kimchi manufacturing on storage. Korean J Food Sci Technol 22(6):707-710.
Chou ST, Chang CT, Chao WW, Chung YC. 2002. Evaluation of antioxidative and mutagenic properties of 50% ethanolic extract from red beans fermented by Aspergillus oryzae. J Food Prot 65: 1463-1469.
Conway PL, Gorbach SL, Goldin BR. 1987. Survival of lactic acid bacteria in human stomach and adhesion to intestine cells. J Dairy Sci 70:1-12.
Cook NC, Samman S. 1996. Flavonoids – chemistry, metabolism cardioprotective effects, and dietary sources. J Nutr Biochem 7: 66-76.
Dambekodi PC, Gilliland SE. 1998. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J Dairy Sci 81: 1818-1824.
Deguchi Y, Morishita T, Mutai M. 1985. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric Biol Chem 49: 13-19.
Desjardins ML, Roy D, Goulet J. 1990. Growth of bifidobacteria and their enzyme profiles. J Dairy Sci 73: 299-307.
Dinis TCP, Madeira VMC, Almeida LM. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitor of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161-169.
Duh PD, Yen GC. 1997. Antioxidant activity of three herbal water extracts. Food Chem 60: 639-645.
Dziezak JD. 1986. Antioxidant: the ultimate answer to oxidation. Food Technol 40(9): 94-102.
Erkkila S, Petaja E. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci 55: 97-300.
Etchells JL, Johns ID. 1943. Bacteriological changes in cucumber fermentation. Food Ind 15: 54-56.
Ewald C, Fjelkner-Modig S, Johansson K, Sjöholm I, Åkesson B. 1999. Effect of processing on major flavonoids in processed onions, green beans, and peas. Food Chem 64: 231-235.
Faboam FW, Fulde RC, Merrick JE. 1953. A new V-8 medium for determining lactobacilli. Food Res 18: 280.
Fleming HP, McFeeters RF. 1981. Use of microbial cultures: vegetable products. Food Tech 35: 84-87.
Foyer CH, Fletcher JM. 2001. Plant antioxidants: Colour me healthy. Biologist 48(3): 115-120.
Frazier WC, Westhoff DC. 1978. Food microbiology, McGrawn-Hill Book Company Inc.:New York, pp. 366-380.
Frazier WC, Westhoff DC. 1988. Microorganisms important in food microbiology. In: Frazier WC, Westhoff DC. Food Microbiology. 4th ed. New York: McGraw-Hill Book Co.
Fuller R. 1989. Probiotics in man and animals. J Appl Bacteriol 66:365-378.
García-Alonso M, de Pascual-Teresand S, Santos-Buelga C, Rivas-Gonzalo JC. 2004. Evaluation of the antioxidant properties of fruits. Food Chem 84: 13-18.
Gardner NJ, Savard T, Obermeier P, Caldwell G. 2001. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol 64: 261-275.
Gardner PT, White TAC, McPhail DB, Duthie GG. 2000. The relative contribution of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem 68: 471-474.
Giese J. 1996. Antioxidants: Tool for preventing lipid oxidation. Food Technol 50: 73-82.
Gilliland SE, Kim HS. 1984. Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. J Dairy Sci 67: 1-6.
Goldin B. 1996. The metabolic activity of the intestinal microflora and its role in colon cancer. Nutr Today 31: 24-27.
Gomes AMP, Malcata FX. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10: 139-157.
Gomes AMP, Malcata FX. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10: 139-157.
Gordon MH. 1990. The mechanism of antioxidant action into vitro. In B. J. F. Hudson (Ed.), Food antioxidants (pp. 1-18). London and New York: Elsevier Applied Science.
Grilliland SE, Sandine WE, Vedamuthu ER. 1984. Acid-producing microorganisms. In: Speck ML eds. Compendium of methods for the microbiological examination of foods. 2th edn. American public Health Association, New York, NY. pp. 184-196.
Grilliland SE, Rich CN. 1990. Stability during frozen and subsequent refrigerated storage of Lactobacillus acidophilus grown at different pH. J Dairy Sci 73: 1187-1192.
Halasz A, Barath A, and Holzapfel WH. 1999. The influence of starter culture selection on sauerkraut fermentation. Z Lebensm Unters Forsch A 208: 434-438.
Halasz A, Barath A, Holzapfel WH. 1999. The influence of starter culture selection on sauerkraut fermentation. ZLebensm Unters Forsch A 208: 434-438.
Halliwell B, Gutteridge JMC, Cross CE. 1992. Free radicals, antioxidants and human disease: where are we now?. J Lab Clin Med 119(6): 598-620.
Haliwell B, Murcia MA, Chirico S, Aruoma OI. 1995. Free radicals and antioxidants in food and in vivo: What they do and how they work. Crit Rev Food Sci Nutr 35: 7-20
Hamann C, Samalouti VEL, Ulmev AJ, Flad HD, Rietschel ET. 1998. Compoents of gut bacteria as immunomodulators. Int Food Micorbiol 41: 141-154.
Hammnn WT, Marth EH. 1984. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in commercial and experimental yogurts. J Food Prot 47: 781-786.
Handelman GJ. 2001. The evolving role of carotenoids in human biochemisty. Nutrition 17: 818-822.
Haskard C, Binnion C, Ahokas J. 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chemico-Bio Int 128: 39-49.
Havsteen B. 1983. Flavonoids, a class of natural products of high pharmacological potency. Biochem Parmacol 32: 1141-1148.
Hirayama K, Rafter J. 2000. The role of probiotic bacteria in cancer prevention. Microbes and Infect 2: 681-686.
Hirota T. 1990. The anticipating bioactivity functions of Lactobacillus in dairy products. New Food Ind 32(10): 9-17.
Hosono A, Kashina T. 1986. Antimutagenic proerties of lactic acid-cluture milk on chemical and fecal mutagens. J Dairy Sci 69: 2237-2242.
Hosono A, Wardojo, Otani H. 1990. Inhibitory effect of lactic acid bacteria from fermented milk on the mutagenicities of volatile nitrosamines. Agric Biol Chem 54: 1639-1643.
Hosono A, Lee J, Ametani A, Natsume M, Hiratama M, Adachi T and Kaminogawa S. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotech Biochem 61(2): 312-316.
Hosono A, Lee J, Ametani A, Natsume M, Hiratama M, Adachi T and Kaminogawa S. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotech Biochem 61(2): 312-316.
Hudson BJF, Lewis JI. 1983. Polyhydroxy flavonoid antioxidants for edible oils. Structural criteria for activity. Food Chem 10: 47-53.
Iqbal S, Bhanger MI. 2007. Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chem 100: 246-254.
Ishikawa Y, Morimoto K, Sada T, Fujiwara T. 1992. Antioxionone produced by Penicillium aurantiovirens, and it’s antioxidant activity. J Jpn Oil Chem Soc 41: 7-10.
Jiang T, Mustapha A, Savaiano DA. 1996. Improvement of lactose digestion in human by injection of fermented milk containing Bifidobacterium longum. J Dairy Sci 79: 750-757.
Jiang T, Mustapha A, Savaiano DA. 1996. Improvement of lactose digestion in humans by injection of unfermented milk containing Bifidobacterium longum. J Dairy Sci 79: 750-757.
Kailasapathy K, Rybaka S. 1997. L. acidophilus and Bifidobacterium spp. – their therapeutic potential and survival in yogurt. Aust J Dairy Technol 52: 28-35.
Kaur C, Kapoor HC. 2001. Anitoxidants in fruits and vegetables – the millennium’s health. Int J Food Sci Technol 36: 703-725.
Kawai M, Matsuura S, Asanuma M, Ogawa N. 1998. Manda, a fermented natural food, suppresses lipid peroxidation in the senescent rat brain. Neurochem Res 23(4): 55-61.
Kaziu H, Sasaki M, Nakajima H, Suzuki Y. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J Dairy Sci 78: 761-768.
Kim DH, Song HP, Yook HS, Ryu YG, Byun MW. 2004. Isolation of enteric pathogens in the fermentation process of Kimchi (Korean fermented vegetables) and its radicidation by gamma irradiation. Food Control 15: 441-445.
Kim MR, Rhee HS. 1993. Decrease of pungency in “radish kimchi” during fermentation. J Food Sci 58: 128-137.
Kim MR, Lee KJ, Kim HY, Kim JH, Kim YB, Sok DE. 1999. Effect of various kimchi extracts on the hepatic glutathione S-transferase activity of mice. Food Research International. 31(5): 389-394.
Kim SS and Bhowmilk SR. 1990. Survival of lactic acid bacteria during spray drying of plant yogurt. J Food Sci 55: 1008-1010.
Kim SY. 2001. Korean kimchi business. In: First Asian Conference of Lactic Acid Bacteria for Industrial Application and New Technology. SKKU, Suwon, Korea. pp. 30-40.
Kitts DD. 1997. An evaluation of the multiple effects of the antioxidant vitamins. Trends Food Sci Technol 8(6): 198-203.
Klaver FAM, Meer RV. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugating activity. Appl Environ Microbiol 59: 1120-1124.
Kopp-Hoolihan L. 2001. Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc 101: 229-238.
Kris-Etherton PM, Hekker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. 2002. Bioactive compounds in food: Their role in the prevention of cardiovascular disease and cancer. Am J Med 113 (9B): 71S-88S.
Kullisaar T, Zilmer M, Mikelsaar M. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72: 215-224.
Labuza TP. 1971. Kinetics of lipid oxidation in foods. Crit Rev Food Technol 1: 355-396.
Lankaputhra WEV, Shah NP. 1995. Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult Dairy Prod J 30:2-7.
Lankaputhra WEV, Shah NP. 1998. Antimutagenic properties of probiotic bacteria and of organic acid. Mutat Res 397: 169-182.
Lankaputhra WEV, Shah NP. 1998. Antimutagenic properties of probiotic bacteria and of organic acid. Mutat Res 397: 169-182.
Larson RA. 1988. The antioxidants of higher plants. Phytochem 27: 969-978.
Lee CH. 1997. Lactic acid fermented foods and their benefits in Asia. Food Control 8: 256-269.
Lee SK, Ji GE, Park YH. 1999. The viability of bifidobacteria introduced into kimchi. Lett Appl Microbiol l28: 153-158.
Lee Y , Salminen S. 1995. The coming of age of probiotics. Trends Food Sci Technol 6: 241-245.
Lilly DM, Stillwell RH. 1965. Probiotics: Growth promoting factors produced by microorganisms. Science 147: 747-748.
Lin MY, Yen CL. 1999. Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47: 1460-1466.
Lo PR, Yu RC, Chou CC , Tsai YH. 2002. Antimutageinicity activity of several probiotic bifidobacteria against benzo[a]pyrene. J Biosci Bioengineer 94: 148-153.
Lo PR, Yu RC, Chou CC, Huang EC. 2004. Determination activity of the antimutagenic activity of several probiotic bifidobacteria under acidic pH and bile treatments against benzo[a]pyrene by a modified Ames test. Int J Food Microbiol 93: 249-257.
Mara LS, Manuela DT, Marina Mm. 2001. Determination of peroxy radical-scavenging of lactic acid bacteria. Int J Food Microbiol 64: 183-188.
Marshall VM. 1987. Fermented milk and their future trends. I. Microbiol Aspects. J Dairy Res 54:559-574.
McCarthy MA, Matthew RH. 1994. Nutritional quality of fruits and vegetables subject to minimal processes. In Wiley RC, editors. Mininally Processed Refrigerated Fruits and Vegetables. London: Chapman and Hall. pp. 313-326.
McDonald LC, Fleming HP, Hassan HM. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl Environ Microbiol 56 : 2120-2124.
Medina LM, Jordano R. 1993. Survival of constitutive microflora in commercially fermented milk containing bifidobacteria during refrigerated storage. J Food Protect 56: 731-734.
Mheen TI, Kwon TW. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J Food Sci Technol 16(4): 443-450.
Muñoa FJ, Pares R. 1988. Selective Medium for isolation and enumeration of Bifidobacterium spp. Appl Environ Microbiol 54(7): 1715-1718
Murakami H, Asakawa T, Terao J, Matsushita S. 1984. Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agric Biol Chem 48: 2971-2975.
Naidu AS, Bidlack WR, Clemens RA. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr 39: 13-126.
Namiki M. 1990. Antioxidants / antimutagens in food. Cric Rev Food Sci Nutr 29: 281-300.
Orrenius S, McConkey DJ, Bekkomo G, Nicotera P. 1989. Role of Ca2+ in toxin cell killing. Trends Pharmacol Sci 281(10): 1-18.
Ou B, Huang D, Hampsch-Woodill M, Flanagan JA and Deemer EK. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assay: a comparative study. J Agric Food Chem 50: 3122-3128.
Oyaizu M. 1986. Antioxidative activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775.
Ozaki Y. 1991. The promotion of growth of bifidobacteria with various kinds of sugars. New Food Ind 32: 12-15.
Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka JJ. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 marophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J Food Microbiol 46: 231-241.
Pederson CS, Albury MN. 1954. The influence of salt and temperature on the microflora of sauerkraut fermentation. Food Tech 8: 1-5.
Pederson CS. 1960. Sauerkraut. Adv Food Res 10: 233-291.
Pederson CS. 1979. Microbiology of Food Fermentation. 2nd ed. Westport, CT: AVI Publishing Co., Inc.
Perdigin G, Alvarez S, Rachid M, Agüero G, Gobbato N. 1994. Symposium: probiotic bacteria for humans: Clinical systems for evaluation of effectiveness. J Dairy Sci 78: 1597-1606.
Perdigin G, Alvarez S, Rachid M, Agüero G, Gobbato N. 1994. Symposium: probiotic bacteria for humans: Clinical systems for evaluation of effectiveness. J Dairy Sci 78: 1597-1606.
Pochart P, Marteau P, Bouhnik Y, Goderel I, Bourlioux P, Rambaud JC. 1992. Survival of bifidobacteria ingested via fermented milk during their passage through the human small intestine: an in vivo study using intestinal perfusion. Am J Clin Nutr 55:78-80.
Potts EA, Fleming HP. 1979. Changes in dissolved oxygen and microflora during fermentation of aerated, brined cucumbers. J Food Sci 44: 429.
Prasad J, Gill H, Smart J, Gopal PK. 1998. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int Dairy J 8:993-1002.
Raymond J. 2006. World’s healthiest foods: Kimchi (Korea). Health Com: http://eating.health.com/2008/02/01/worlds-healthiest-foods-kimchi-korea/
Reed G. 1982. Prescott & Dunn’s Industrial Microbiology, 4th ed.; McGrawn-Hill Book Company Inc.: New York, pp. 185-236.
Robbins R. 1980. Medical and nutritional aspects of citrus bioflavonoids. In Nagy, S., & Attaway, J., Citrus Nutrition and Quality. Washington, DC: American Chemical Society Press. pp. 43-59
Roberts JS, Kidd DR. 2005. Lactic acid fermentation of onions. Lebensm.-Wiss. u.-Technol 38: 185-190.
Roos NM, Katan MB. 2000. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am J Clin Nutr 71: 405- 411.
Salminen S, Ouwehand AC, Benno Y, Lee YK. 1999. Probiotics: How should they be defined? Trends Food Sci Technol 10: 107-110.
Samona A, Robinson RK. 1994. Effect of yogurt cultures on the survival of bifidobacteria in fermented milk. J Soc Dairy Technol 47(2): 58-60.
Scardovi V. 1986. Bifidobacterium. In: Sneath PH, Mair NS, Sharpe ME, Holt JG. editors. Bergey’s Manual of Systemic Bacteriology. 9th ed. Baltimore, MD: William and Wilkins Publishers. pp. 1418-1434.
Schrezenmeir J, Vrese M. 2000. Probiotics, prebiotics, and synbiotics-approaching a definition. Am J Clin Nutr 73: 361-364.
Schuler P. 1990. Natural antioxidants exploited commercially. In: Hudson BJF editor. Food Antioxidants. London and New York: Elsevier Applied Science. pp. 99-170.
Schuler-Malyoth R, Ruppert A, Muller F. 1968. The microorganisms of the bifidus group (Lactobacillus bifidus). 1. Historical review, nutritional, physiological and therapeutic aspects, morphology, culture procedures and taxonomy. Milchwissenschaft 23: 356-360.
Shah NP. 2007. Functional cultures and health benefits. J Int Dairy 17: 1262-1277.
Shahidi F, Janitha PK, Wanasundara PD. 1992. Phenolic antioxidants. Crit Rev Food Sci Nutr 32: 67-103.
Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the anti-oxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40: 945-948.
Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, Tomita M. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J Dairy Sci 75: 3296-3306
Shin DH. 1994. Physicochemical and microbial properties of market kimchi during fermentation in different containers. The Science of Kimchi. KoSFoST, Seoul, Korea, pp. 82-136.
Sies H. 1991. Oxidative stress: From basic research to clinical application. Am J Med 91: 31-38.
Six P. 1994. Current research in natural food antioxidants. INFORM 5(6): 679.
Skaper SD, Fabris M, Ferrari V, Carbonare MD, Leon A. 1997. Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: Cooperative effects of ascorbic acid. Free Rad Biol Med 22: 669-678.
Snyder BA, Nicholson RJ. 1990. Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248: 1637-1639.
Songisepp E, Kullisaar T, Hutt P. 2004. A new probiotic cheese with antioxidative and antimicrobial activity. J Diary Sci 87(7): 2017-2023.
Stahl W, Sies H. 2003. Antioxidant activity of carotenoids. Mol Aspects Med 24: 345-351.
Stamer JR, Stoyla BO. 1967. Growth response of Lactobacillus brevis to aeration and organic catalysts. Appl Microbiol 15: 1025-1030.
Sun T, Ho CT. 2005. Antioxidant activities of buckwheat extracts. Food Chem 90: 743-749.
Sun, Y. P., & Yu, R. C. 2003. Effect of temperature and dry-salt concentrations on the microflora of Kimchi. Second Asian Conference on Lactic Acid Bacteria. Taipei: TALAB Press. pp. 88.
Takahama U. 1985. Inhibition of lipoxygenase dependent lipid peroxidaton by quercetin: Mechanism of antioxidative function. Phytochemistry 24: 1443-1446.
Terahara M, Kurama S, Takemoto N. 2001. Prevenive by lactic acid bacteria of the oxidation of human LDL. Biosci Biotechnol Biochem 65(8): 1864-1868
Tsangalis D, Ashton JF, Mcgill AEJ, Shah NP. 2002. Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase-producing bifidobacteria. J Food Sci 67: 3104-3113.
Velioglu YS, Mazza G, Gao L, Oomah BD. 1998. Antioxidant activity and the total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46: 4113-4117.
Vina SZ and Chaves AR. 2006. Antioxidant responses in minimally processed celery during refrigerated storage. Food Chem 94: 68-74..
Vinderoloa CG, Bailo N, Reinheimer JA. 2000. Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage. Food Res Int 33: 97-102.
Wang H, Cao G, Prior RL. 1996. Total antioxidant capacity of fruits. J Agric Food Chem 44: 701-705.
Wang YC, Yu RC, Chou CC. 2002. Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiol 19: 161-168.
Wang YC, Yu RC, Chou CC. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiol 23: 128-135.
Yamaguchi T, Takamura H, Matoba T, Terao J. 1998. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-dicrylhydrazyl. Biosci Biotechnol Biochem 62: 1201-1204.
Yang JH, Mau JL, Ko PT, Huang LC. 2000. Antioxidant properties of fermented soybean broth. Food Chem 71:249-254.
Yi H, Kim J, Hyung H, Lee S, Lee CH. 2001. Cleaner production option in a food (kimchi) industry. Journal of cleaner production 9: 35-41.
Yilmaz Y, Toledo RT. 2004. Health aspects of functional grape seed constituents. Trends Food Sci Technol 15: 422-433
Yu JH, Pyun YR. 1980. Manufacture of kimchi. In: Food industry research and development institute editor. Proceeding of the oriental fermentation foods. Hsinchu, Taiwan, ROC. pp. 180-191.
Yun JW, Kang SC , Song SK. 1996. Mannitol accumulation during fermentation of kimchi. J Fermen Bioeng 81(3):279-280.
Zhang D, Hamauzu Y. 2004. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave Cheigh HS, Park KY. 1994. Biochemical, microbiology, and nutritional aspects of kimchi (Korean fermentated vegetable products). Crit Rev Food Sci Nutr 34(2): 175-203.
Zhang XB, Ohta Y. 1991. Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci 74: 1477-1481.
Zommara M, Tachibana N, Sakono M, Suzuki Y, Oda T, Hashiba H, Imaizumi K. 1996. Whey from cultured skim milk decreases serum cholesterol and increases antioxidant enzymes in liver and red blood cells in rats. Nutr Res 16(2): 293-302.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top