跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王姿以
研究生(外文):Tzu-Yi Wang
論文名稱:攝食菊醣改善人體腸胃道菌相並降低糞便萃取液對HT-29及Caco-2毒性之研究
論文名稱(外文):Inulin Consumption Modulates Human Intestinal Microflora and Decreases Fecal Water Extract Toxicity in HT-29 and Caco-2 cells
指導教授:游若篍
指導教授(外文):Roch-Chui Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:腸道菌相菊醣雙叉桿菌產氣莢膜梭菌細胞毒性基因毒性
外文關鍵詞:intestinal microflorainulinbifidobacteriaClostridium perfringenscytotoxicitygenotoxicity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:536
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人體腸胃道菌相種類複雜,包含益菌如雙叉桿菌(bifidobacteria)及乳酸桿菌(lactobacilli)及壞菌如產氣莢膜梭菌(Clostridium perfringens)等,腸道好壞菌相之平衡對人體健康扮演重要角色。許多文獻指出攝食益生質(prebiotics)能選擇性促進腸道好菌生長,進而改善宿主腸道健康,菊醣是益生質的一種,體外及體內之研究皆顯示可促進腸道中雙叉桿菌生長。本研究探討攝食菊醣對20位22~30歲健康成人腸道菌相、糞便水分含量及pH值之影響,並評估攝食菊醣降低糞便萃取液對HT-29及Caco-2細胞所造成之細胞毒性及基因毒性之效果。試驗分成四個時期,第一期為飲食調整期,第二及第三期為攝食前期及攝食後期,第四期為排空期。
實驗結果顯示攝食菊醣後,實驗組糞便中之雙叉桿菌菌數由第一期之9.46 log CFU/g顯著增加到第二期之10.39 log CFU/g (p < 0.01)及第三期之10.90 log CFU/g (p < 0.01),控制組變化不大,且實驗組之第二及第三期雙叉桿菌菌數與控制組之第二及第三期比較,均有顯著差異 (p < 0.01)。實驗組糞便中之產氣莢膜梭菌菌數由第一期之7.36 log CFU/g顯著降低至第二期之6.93 log CFU/g (p < 0.05) 及第三期之6.60 log CFU/g (p < 0.01),與控制組第二及第三期比較皆有顯著差異(p < 0.01)。試驗期間實驗組與控制組糞便水分含量分別為75.5~77.7%及77.3~78.6%,兩組間無顯著差異 (p > 0.05);實驗組糞便pH值由第一期之6.60顯著降低至第二期之6.14及第三期之5.96 (p < 0.01),而控制組pH值在試驗之四個時期無顯著變化 (p > 0.05),約為6.40~6.62。試驗前後受試者身高、體重、BMI值及血液生化值均無顯著變化 (p > 0.05),顯示本試驗對受試者無有不良影響。
細胞毒性試驗結果顯示,攝食菊醣可降低實驗組受試者糞便萃取液對HT-29細胞及Caco-2細胞株之毒性 (p < 0.05),而控制組則無差異 (p > 0.05)。基因毒性部份,實驗組攝食菊醣後,其糞便萃取液對HT-29及Caco-2細胞之基因毒性亦顯著下降 (p < 0.05)。綜合上述,本試驗確認攝食菊醣可顯著增加腸道中益菌數,減少壞菌數,降低糞便萃取液對腸道細胞之毒性,可改善腸道健康。

關鍵字:腸道菌相、菊醣、雙叉桿菌、產氣莢膜梭菌、細胞毒性、基因毒性
The gastrointestinal tract of human is a complex ecosystem which contains beneficial bacteria such as bifidobacteria and lactobacilli and pathogenic bacteria such as C. perfringens. The balance between beneficial bacteria and harmful pathogenic bacteria plays a key role in normal gut function and human health. Many researches indicate that the administration of prebiotics can modulate the intestinal microflora. Inulin, a kind of prebiotics, can selectively stimulate the growth of bifidobacteria. The aim of this study is to evaluate the effects of inulin intake on the change of intestinal microflora, fecal water content and fecal pH value in human subjects and to investigate fecal cytotoxicity and genotoxcity towards HT-29 and Caco-2 cells.
Results indicated that inulin intake significantly increased the fecal bifidobacteria of treatment group from 9.46 log CFU/g in period 1 to 10.39 log CFU/g in period 2 and 10.90 log CFU/g in period 3 (p < 0.01), and were both higher than control group in period 2 and 3 (p < 0.01). Fecal C. perfringens also decreased significantly in treatment group from 7.36 log CFU/g in period 1 to 6.93 log CFU/g in period 2 (p < 0.05) and 6.60 log CFU/g in period 3 (p < 0.01), and were both lower than control group in period 2 and 3 (p < 0.01). During the experiment, fecal water contents were 75.5~77.7 % in treatment group and 77.3~78.6 % in control group without significant difference (p > 0.05). Fecal pH value of control group was 6.40~6.62 without significant difference (p > 0.05). However, in treatment group, the pH value significantly decreased from 6.60 in period 1 to 6.14 and 5.96 in period 2 and 3 after inulin intake (p<0.01). No differences were found for the height, weight, BMI and serum biochemical values of 20 subjects before and after the experiment (p > 0.05).
MTT assay showed that inulin intake significantly decreased the fecal water cytotoxicity of treatment group toward HT-29 and Caco-2 cells (p < 0.05), but not in control group. Results from comet assay revealed that after inulin consumption, the genotoxicity of fecal water in treatment group significantly decreased (p < 0.05). To conclude the above, this study confirmed that inulin intake could increase the beneficial bacteria bifidobacteria but decrease harmful bacterial C. perfringens in human intestinal tract, and could decrease the toxicity of fecal water and therefore improve human intestinal health.

Key words: intestinal microflora, inulin, bifidobacteria, Clostridium perfringens, cytotoxicity, genotoxicity
目錄
頁次
謝誌...................................................i
摘要...................................................iii
英文摘要...............................................iv
目錄...................................................v
圖目錄.................................................viii
表目錄.................................................ix
壹、前言...............................................1
貳、文獻整理...........................................2
一、人體消化道菌群分布.................................2
(一) 人體腸道菌相之簡介 ............................2
(二) 影響腸道菌相之因素............................7
二、腸道菌相與人體健康.................................10
(一) 腸道菌相之功效................................10
(二) 腸內物質的組成................................12
(三) 腸道細菌代謝造成的毒性影響....................12
三、糞便毒性與大腸癌...................................18
(一)糞便之毒性.......................................18
(二)大腸癌...........................................18
四、測定大腸功能之方法.................................19
(一)簡介.............................................19
(二)基因毒性試驗法--慧星試驗 (Comet assay) .........19
五、雙叉桿菌之簡介.....................................22
(一) 雙叉桿菌的介紹................................22
(二) 雙叉桿菌的營養機能及健康功效..................22
七、益生質之簡介.......................................25
(一) 益生質........................................25
(二) 菊醣類寡醣介紹................................25
(三) 菊醣類寡醣之健康功效..........................27
參、材料與方法.........................................29
一、實驗架構...........................................29
二、實驗材料...........................................33
(一)菊醣膳食纖維.....................................33
(二)試驗細胞株.......................................33
(三)藥品.............................................33
(四)器材.............................................35
三、實驗方法...........................................36
(一) 人體試驗之設計................................36
1. 受試者........................................36
2. 試驗設計......................................37
3. 飲食控制與飲食紀錄............................38
(二) 人體試驗之方法................................38
1. 培養基........................................38
2. 取樣及微生物檢測..............................39
3. 糞便檢體水分含量測定..........................40
4. 糞便檢體pH值測定..............................40
(三) 細胞株的活化、繼代培養與保存..................40
(四) 糞便萃取液之製備..............................41
(五) MTT assay.....................................42
(六) 糞便檢體萃取液對HT-29及Caco-2之細胞毒性試驗...42
(七) 糞便檢體萃取液對HT-29及Caco-2之基因毒性試驗...43
四、統計分析...........................................44
肆、結果與討論.........................................45
一、試驗期間受試者身高體重、血液生化值及每日營養素平均攝取量之變化.................................................45
二、攝食菊醣對受試者腸道中雙叉桿菌之影響...............46
三、攝食菊醣對受試者腸道中產氣莢膜梭菌之影響...........47
四、攝食菊醣對受試者腸道中雙叉桿菌及產氣莢膜梭菌菌數對數比值之影響.................................................49
五、攝食菊醣對受試者糞便中水分含量及pH值之影響.........50
六、攝食菊醣之受試者糞便萃取液對HT-29及Caco-2細胞株之細胞毒性試驗.................................................51
七、攝食菊醣之受試者糞便萃取液對HT-29及Caco-2細胞株之基因毒性試驗.................................................54
伍、結論...............................................57
陸、參考文獻...........................................77
附錄...................................................88
附錄一、受試者基本資料.................................88
附錄二、糞便性質與生活習慣問卷.........................89
附錄三、飲食習慣問卷...................................91
附錄四、人體試驗後測問卷...............................92
附錄五、飲食紀錄範例...................................94
附錄六、臺灣保健食品學會同意臨床試驗證明書—菊醣(中文)...................................................95
附錄七、臺灣保健食品學會同意臨床試驗證明書—菊醣(英文)...................................................96
三多士股份有限公司提供資料。三多膳食纖維之營養成分。三多士股份有限公司。臺北。臺灣。
行政院衛生署。2002。國人膳食營養素參考攝取量(Dietary Reference Intakes, DRIs)。行政院衛生署。臺北。臺灣。
行政院衛生署。2003。健康食品之胃腸功能改善評估方法。行政院衛生署公告衛署食字第0920401629號。行政院衛生署。臺北。臺灣。
行政院衛生署。2008。民國97年主要死因統計。行政院衛生署。臺北。臺灣。
朱芳瑢。2008。數株益生菌及其發酵乳抑制大腸癌細胞增生及4NQO誘導Int-407 基因毒性之研究。國立台灣大學食品科技研究所碩士論文。臺北。臺灣。
林國輝。2006。乳酸發酵蔬菜萃取物對4-nitroquinline-N-oxide基因毒性及數株癌細胞抑制之研究。國立台灣大學食品科技研究所碩士論文。臺北。臺灣。
邱佩娟。2007。攝食雙叉桿菌鮮乳對腸道菌相與Caco-2及HT-29毒性之影響。國立台灣大學食品科技研究所碩士論文。臺北。臺灣。
鄭安平。2002。攝食益生菌奶粉對健康成人腸道菌之影響。國立台灣大學食品科技研究所碩士論文。臺北。臺灣。
Abrahamse, S. L.; Pool-Zobel, B. L.; Rechkemmer, G. Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells. Carcinogenesis. 1999, 20, 629-634.
Arunachalam, K. D. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 1999, 19, 1559-1597.
Backhed, F.; Ley, R. E.; Sonnenburg, J. L.; Peterson, D. A.; Gordon, J. I. Host-bacterial mutualism in the human intestine. Science. 2005, 307, 1915-1920.
Boeckner, L. S.; Schnepf, M. I.; Tungland, B. C., Inulin: A review of nutritional and health implications. In Advances in food and nutrition research, Taylor, S. L., Ed. Academic Press: San Diego, CA, 2001; Vol. 43, pp 1-63.
Botsford, J. L.; Demoss, R. D. Escherichia-coli tryptophanase in enteric environment. J. Bacteriol. 1972, 109, 74-&.
Bouhnik, Y.; Raskine, L.; Champion, K.; Andrieux, C.; Penven, S.; Jacobs, H.; Simoneau, G. Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans. Nutr. Res. 2007, 27, 187-193.
Burns, A. J.; Rowland, I. R. Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2004, 551, 233-243.
Chung, Y.-C.; Hsu, C.-K.; Ko, C.-Y.; Chan, Y.-C. Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly. Nutr. Res. 2007, 27, 756-761.
Collins, M. D.; Gibson, G. R. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 1999, 69, 1052S-1057S.
Cummings, J. H.; Macfarlane, G. T.; Englyst, H. N. In Prebiotic digestion and fermentation, International Symposium on Probiotics and Prebiotics, Kiel, Germany, Jun 11-12, 1998; Amer Soc Clinical Nutrition: Kiel, Germany, 1998; pp 415S-420S.
de Kok, T.; van Maanen, J. M. S. Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat. Res.-Rev. Mutat. Res. 2000, 463, 53-101.
Delzenne, N. M.; Daubioul, C.; Neyrinck, A.; Lasa, M.; Taper, H. S. Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br. J. Nutr. 2002, 87, S255-S259.
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods. 1986, 89, 271-277.
Fooks, L. J.; Fuller, R.; Gibson, G. R. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 1999, 9, 53-61.
Fooks, L. J.; Gibson, G. R. Probiotics as modulators of the gut flora. Br. J. Nutr. 2002, 88, S39-S49.
Gibson, G. R. Dietary modulation of the human gut microflora using prebiotics. Br. J. Nutr. 1998, 80, S209-S212.
Gibson, G. R.; Beatty, E. R.; Wang, X.; Cummings, J. H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995, 108, 975-982.
Gibson, G. R.; McCartney, A. L. Modification of the gut flora by dietary means. Biochem. Soc. Trans. 1998, 26, 222-228.
Gibson, G. R.; Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401-1412.
Gibson, G. R.; Wang, X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J. Appl. Bacteriol. 1994, 77, 412-420.
Glinghammar, B.; Venturi, M.; Rowland, I. R.; Rafter, J. J. Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of fecal water - potential risk factors for colon cancer. Am. J. Clin. Nutr. 1997, 66, 1277-1282.
Gomes, A. M. P.; Malcata, F. X. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 1999, 10, 139-157.
Granum, P. E. Clostridium-Perfringens Toxins Involved in Food Poisoning. Int. J. Food Microbiol. 1990, 10, 101-112.
Guarner, F. Enteric flora in health and disease. Digestion. 2006, 73 Suppl 1, 5-12.
Gupta, I.; Baptista, J.; Bruce, W. R.; Che, C. T.; Furrer, R.; Gingerich, J. S.; Grey, A. A.; Marai, L.; Yates, P.; Krepinsky, J. J. Structures of fecapentaenes, the mutagens of bacterial origin isolated from human feces. Biochemistry. 1983, 22, 241-245.
Hall, H. E.; Lewis, K. H.; Foter, M. J.; Angelotti, R. Characteristics of Clostridium perfringens strains associated with food and food-borne disease. J. Bacteriol. 1963, 85, 1094-1103.
Hamann, L.; El-Samalouti, V.; Ulmer, A. J.; Flad, H. D.; Rietschel, E. T. Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 1998, 41, 141-154.
Hawrelak, J. A.; Myers, S. P. The causes of intestinal dysbiosis: a review. Altern. Med. Rev. 2004, 9, 180-197.
Hill, M. J. Role of colon anaerobes in metabolism of bile-acids and steroids, and its relation to colon cancer. Cancer. 1975, 36, 2387-2400.
Holzapfel, W. H.; Haberer, P.; Snel, J.; Schillinger, U.; Huis in''t Veld, J. H. J. Overview of gut flora and probiotics. Int. J. Food Microbiol. 1998, 41, 85-101.
Hose, H.; Sozzi, T. Probiotics - fact or fiction. J. Chem. Technol. Biotechnol. 1991, 51, 540-544.
Hughes, R.; Rowland, I. R. Metabolic activities of the gut microflora in relation to cancer. Microb. Ecol. Health Dis. 2000, 12, 179-185.
Hursting, S. D.; Kari, F. W. The anti-carcinogenic effects of dietary restriction: mechanisms and future directions. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1999, 443, 235-249.
Jägerstad, M.; Skog, K. Genotoxicity of heat-processed foods. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2005, 574, 156-172.
Jiang, T. A.; Mustapha, A.; Savaiano, D. A. Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 1996, 79, 750-757.
Kieran, J. A.; Curet, M. J.; Schermer, C. R. Institutional variations in the management of patients with acute appendicitis. . J. Gastrointest. Surg. 2003, 7, 523-528.
Kleessen, B.; Hartmann, L.; Blaut, M. Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br. J. Nutr. 2001, 86, 291-300.
Klinder, A.; Forster, A.; Caderni, G.; Femia, A. P.; Pool-Zobel, B. L. Fecal water genotoxicity is predictive of tumor-preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synbiotic combination. Nutr. Cancer. 2004, 49, 144-155.
Klinder, A.; Karlsson, P. C.; Clune, Y.; Hughes, R.; Glei, M.; Rafter, J. J.; Rowland, I.; Collins, J. K.; Pool-Zobel, B. L. Fecal water as a non-invasive biomarker in nutritional intervention: Comparison of preparation methods and refinement of different endpoints. Nutr. Cancer. 2007, 57, 158-167.
Knasmüller, S.; Steinkellner, H.; Hirschl, A. M.; Rabot, S.; Nobis, E. C.; Kassie, F. Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2001, 480, 129-138.
Kolida, S.; Gibson, G. R. Prebiotic capacity of inulin-type fructans. J. Nutr. 2007, 137, 2503S-2506S.
Kruse, H. P.; Kleessen, B.; Blaut, M. Effects of inulin on faecal bifidobacteria in human subjects. Br. J. Nutr. 1999, 82, 375-382.
Lesuffleur, T.; Kornowski, A.; Luccioni, C.; Muleris, M.; Barbat, A.; Beaumatin, J.; Dussaulx, E.; Dutrillaux, B.; Zweibaum, A. Adaptation to 5-fluorouracil of the heterogeneous human colon-tumor cell-line ht-29 results in the selection of cells committed to differentiation. Int. J. Cancer. 1991, 49, 721-730.
Macfarlane, G. T.; Cummings, J. H., The colonic flora, fermentation and large bowel digestive function. In The large intestine: physiology, pathophysiology and disease., Phillips, S. F.; Pemberton, J. H.; Shorter, R. G., Eds. Raven Press Ltd.: New York, NY, 1991; pp 51-92.
Massey, R. C.; Key, P. E.; Mallett, A. K.; Rowland, I. R. An investigation of the endogenous formation of apparent total n-nitroso compounds in conventional microflora and germ-free rats. Food Chem. Toxicol. 1988, 26, 595-600.
McClane, B. A., Clostridium perfringens. In International handbook of foodborne pathogens, Miliotis, M. D.; Bier, J. W., Eds. Marcel Dekker Inc.: New York, NY, 2003.
Mirvish, S. S. Formation of n-nitroso compounds - chemistry, kinetics, and in vivo occurrence. Toxicol. Appl. Pharmacol. 1975, 31, 325-351.
Mitsuoka, T. Bifidobacteria and their role in human health. J. Indust. Microbiol. 1990, 6, 263-267.
Mitsuoka, T. Intestinal flora and human health. Asia Pacific J. Clin. Nutr. 1996, 5, 2-9.
Miyamae, Y.; Yamamoto, M.; Sasaki, Y. F.; Kobayashi, H.; Igarashi-Soga, M.; Shimoi, K.; Hayashi, M. Evaluation of a tissue homogenization technique that isolates nuclei for the in vivo single cell gel electrophoresis (comet) assay: a collaborative study by five laboratories. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1998, 418, 131-40.
Moore, W. E. C.; Holdeman, L. V. Discussion of current bacteriological investigations of relationships between intestinal flora, diet, and colon cancer. Cancer Res. 1975, 35, 3418-3420.
Morotomi, M.; Mutai, M. In vitro binding of potent mutagenic pyrolysates to intestinal bacteria. J. Natl. Cancer Inst. 1986, 77, 195-201.
Muñoa, F. J.; Pares, R. Selective medium for isolation and enumeration of Bifidobacterium spp. Appl. Environ. Microbiol. 1988, 54, 1715-1718.
Nagengast, F. M.; Grubben, M.; Vanmunster, I. P. Role of bile-acids in colorectal carcinogenesis. Eur. J. Cancer. 1995, 31A, 1067-1070.
Naidu, A. S.; Bidlack, W. R.; Clemens, R. A. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 1999, 39, 13-126.
Olivares, M.; Diaz-Ropero, M. P.; Gomez, N.; Lara-Villoslada, F.; Sierra, S.; Maldonado, J. A.; Martin, R.; Lopez-Huertas, E.; Rodriguez, J. M.; Xaus, J. Oral administration of two probiotic strains, Lactobacillus gasseri CECT5714 and Lactobacillus coryniformis CECT5711, enhances the intestinal function of healthy adults. Int. J. Food Microbiol. 2006, 107, 104-111.
Osswald, K.; Becker, T. W.; Grimm, M.; Jahreis, G.; Pool-Zobel, B. L. Inter- and intra-individual variation of faecal water - genotoxicity in human colon cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2000, 472, 59-70.
Ouwehand, A. C.; Salminen, S.; Tolkko, S.; Roberts, P.; Ovaska, J.; Salminen, E. Resected human colonic tissue: New model for characterizing adhesion of lactic acid bacteria. Clin. Diagn. Lab. Immunol. 2002, 9, 184-186.
Plummer, S. M.; Grafstrom, R. C.; Yang, L. L.; Curren, R. D.; Linnainmaa, K.; Harris, C. C. Fecapentaene-12 causes dna damage and mutations in human-cells. Carcinogenesis. 1986, 7, 1607-1609.
Pool-Zobel, B. L. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br. J. Nutr. 2005, 93, S73-S90.
Pool-Zobel, B. L.; Sauer, J. Overview of experimental data on reduction of colorectal cancer risk by inulin-type fructans. J. Nutr. 2007, 137, 2580S-2584S.
Poupard, J. A.; Husain, I.; Norris, R. F. Biology of bifidobacteria. Bacteriol. Rev. 1973, 37, 136-165.
Rafii, F.; Cerniglia, C. E. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ. Health Perspect. 1995, 103, 17-19.
Rafii, F.; Franklin, W.; Cerniglia, C. E. Azoreductase Activity of Anaerobic-Bacteria Isolated from Human Intestinal Microflora. Appl. Environ. Microbiol. 1990, 56, 2146-2151.
Rafii, F.; Hall, J. D.; Cerniglia, C. E. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem. Toxicol. 1997, 35, 897-901.
Rafter, J.; Geltner, U.; Bruce, R. Cellular toxicity of human fecal water - possible role in etiology of colon cancer. Scand. J. Gastroenterol. 1987a, 22, 245-250.
Rafter, J. J.; Child, P.; Anderson, A. M.; Alder, R.; Eng, V.; Bruce, W. R. Cellular toxicity of fecal water depends on diet. Am. J. Clin. Nutr. 1987b, 45, 559-563.
Reddy, B. S.; Rivenson, A. Inhibitory effect of bifidobacterium-longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res. 1993, 53, 3914-3918.
Roberfroid, M. B. Introducing inulin-type fructans. Br. J. Nutr. 2005, 93, S13-S25.
Roberfroid, M. B. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007, 137, 2493S-2502S.
Roberton, A. M. Roles of endogenous substances and bacteria in colorectal-cancer. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1993, 290, 71-78.
Rogasa, M. In: Bergey''s manual of determinative bacteriology, Buchanan, R. E.; Gibbons, N. E., eds. 1974, 669-676.
Rojas, E.; Lopez, M. C.; Valverde, M. Single cell gel electrophoresis assay: methodology and applications. J. Chromatogr. B. 1999, 722, 225-254.
Rowland, I. R.; Mallett, A. K.; Wise, A. The effect of diet on the mammalian gut flora and its metabolic-activities. CRC Crit. Rev. Toxicol. 1985, 16, 31-103.
Rumney, C. J.; Rowland, I. R.; Oneill, I. K. Conversion of IQ to 7-OHIQ by gut microflora. Nutr. Cancer. 1993, 19, 67-76.
Saikali, J.; Picard, C.; Freitas, M.; Holt, P. R. Fermented milks, probiotic cultures, and colon cancer. Nutr. Cancer. 2004, 49, 14-24.
Saito, Y.; Takano, T.; Rowland, I. Effects of soybean oligosaccharides on the human gut microflora in in-vitro culture Microb. Ecol. Health Dis. 1992, 5, 105-110.
Salminen, S.; Bouley, C.; Boutron-Ruault, M. C.; Cummings, J. H.; Franck, A.; Gibson, G. R.; Isolauri, E.; Moreau, M. C.; Roberfroid, M.; Rowland, I. Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 1998a, 80, S147-S171.
Salminen, S.; Isolauri, E.; Salminen, E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek. 1996, 70, 347-358.
Salminen, S.; Ouwehand, A. C.; Isolauri, E. Clinical applications of probiotic bacteria. Int. Dairy J. 1998b, 8, 563-572.
Schiffrin, E. J.; Rochat, F.; Linkamster, H.; Aeschlimann, J. M.; Donnethughes, A. Immunomodulation of human blood-cells following the ingestion of lactic-acid bacteria. J. Dairy Sci. 1995, 78, 491-497.
Shekels, L. L.; Lyftogt, C. T.; Ho, S. B. Bile acid-induced alterations of mucin production in differentiated human colon cancer cell lines. Int. J. Biochem. Cell Biol. 1996, 28, 193-201.
Singh, J.; Rivenson, A.; Tomita, M.; Shimamura, S.; Ishibashi, N.; Reddy, B. S. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 1997, 18, 833-841.
Singh, N. P.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184-191.
Speit, G.; Hartmann, A. The contribution of excision-repair to the dna effects seen in the alkaline single-cell gel test (comet assay). Mutagenesis. 1995, 10, 555-559.
Steer, T.; Carpenter, H.; Tuohy, K.; Gibson, G. R. Perspectives on the role of the human gut microbiota and its modulation by pro- and prebiotics. Nutr. Res. Rev. 2000, 13, 229-254.
Tahri, K.; Grill, J. P.; Schneider, F. Involvement of trihydroxyconjugated bile salts in cholesterol assimilation by bifidobacteria. Curr. Microbiol. 1997, 34, 79-84.
Tamura, G.; Gold, C.; Ferroluzzi, A.; Ames, B. N. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci. USA. 1980, 77, 4961-4965.
Tanaka, R.; Mutai, M. Improved medium for selective isolation and enumeration of Bifidobacterium. Appl. Environ. Microbiol. 1980, 40, 866-869.
Tannock, G. W.; Bateup, J. M.; Jenkinson, H. F. Effect of sodium taurocholate on the in vitro growth of lactobacilli. Microb. Ecol. 1997, 33, 163-167.
Taper, H. S.; Roberfroid, M. B. Inulin/oligofructose and anticancer therapy. Br. J. Nutr. 2002, 87, S283-S286.
Tice, R. R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J. C.; Sasaki, Y. F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000, 35, 206-221.
Van Loo, J.; Franck, A.; Roberfroid, M. Functional food properties of non-digestible oligosaccharides. Br. J. Nutr. 1999, 82, 329.
Waligora-Dupriet, A.-J.; Campeotto, F.; Nicolis, I.; Bonet, A.; Soulaines, P.; Dupont, C.; Butel, M.-J. Effect of oligofructose supplementation on gut microflora and well-being in young children attending a day care centre. Int. J. Food Microbiol. 2007, 113, 108-113.
Wang, X.; Gibson, G. R. Effects of the in-vitro fermentation of oligofructose and inulin by bacteria growing in the human large-intestine. J. Appl. Bacteriol. 1993, 75, 373-380.
Wasson, G. R.; McKelvey-Martin, V. J.; Downes, C. S. The use of the comet assay in the study of human nutrition and cancer. Mutagenesis. 2008, 23, 153-162.
Weaver, C. M.; Liebman, M. Biomarkers of bone health appropriate for evaluating functional foods designed to reduce risk of osteoporosis. Br. J. Nutr. 2002, 88, 225S-232S.
Woods, J. A.; Dunne, C.; Collins, J. K.; Shanahan, F.; O''Brien, N. M. Genotoxicity of fecal water in a free-living Irish population. Nutr. Cancer. 2002, 42, 62-69.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊