跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 15:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘昌志
研究生(外文):Chang-Chih Pan
論文名稱:以砂箱實驗探討增積岩體的前緣增積作用
論文名稱(外文):Frontal Accretion of Accretionary Wedges Based on Sandbox Experiments
指導教授:喬凌雲喬凌雲引用關係
指導教授(外文):Ling-Yun Chiao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:增積岩體砂箱實驗滑脫面深度底部摩擦系數質點影像測速儀(PIV)
外文關鍵詞:accretionary wedgesandbox experimentdepth of detachmentbasal frictionParticle Image Velocimetry(PIV)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用物理模型來進行地質構造模擬,能即時觀察到構造的型貌及構造的演化,而由於顆粒狀流體的特性,砂箱模型可以用來模擬非線性變形過程及岩層破裂前後的變形。本研究主要針對增積岩體的前緣增積行為進行分析,增積岩體為板塊聚合作用中重要的地質作用區域,在不同的地質條件下,存在影響增積岩體的變形行為不同的因素。經由實驗室尺度的模型設計,本研究更改部分參數以進行模擬,包括底部摩擦係數(μb)、傾角(β)以及原始弱面存在深度等參數;本研究並利用PIV(Particle Image Velocimetry,質點影像測速儀)技術分析砂箱實驗過程中的顆粒動態位移場,並將前緣的增積變形行分成逆衝斷層初始(thrust initiation)階段、俯衝(underthrusting)階段及再活化(re-activaction)階段,結合傳統的砂箱實驗分析方法探討各個參數主要的作用結果。本研究使用之底部摩擦係數為0.55及0.31,底部摩擦係數對於前緣增積行為的影響,最大差異發生於斷層俯衝階段。低底部摩擦係數時,底部滑脫作用不易將逆斷層下盤物質帶入增積岩體內,而使得背衝斷層漸次向後方發展,以維持臨界錐角,主要抬升區域集中於前緣;高摩擦係數時,底部互鎖作用造成逆衝斷層下盤物質受俯衝作用帶入楔形體,造成主要抬升區域分布於後方。傾角的變化在本研究中分別由0度測試至8度,傾角的增加直接加強了重力平行於滑脫面之作用,造成斷層俯衝作用顯著;而傾角加上摩擦係數影響,則由底部摩擦係數高低決定是否有疊瓦狀構造或是大型背衝斷層,例如,高摩擦係數下易形成疊瓦狀構造,低摩擦係數下則易形成大型背衝斷層。本研究使用之砂層厚度為4公分,並利用較弱之玻璃微珠層模擬原始弱面,深度則由1.5公分至3.5公分。深度於1.5~2.5公分時,由主要前衝斷層前端之玻璃微珠層形成小型逆衝斷層,造成俯衝作用的間斷,並且此小型逆衝斷層屬於主要斷層之分支,而造成間斷後俯衝作用的加強;而深度於3~3.5公分時,則由玻璃微珠層形成新的一組滑脫面,整體變形特性受到玻璃微珠層的摩擦係數影響,屬於含有背衝斷層之低底部摩係數特性。因此,整體而言,摩擦係數可被認為是否有背衝斷層及決定主要抬升區域之指標,傾角則直接反映重力作用,原始弱面於淺部可產生斷層分支作用並加強俯衝作用,於深部會成為滑脫面。綜合此三種參數分析結果可以發現,俯衝作用的階段為不同參數在前緣增積循環中造成最主要差異之部分,因此日後我們可以利用研究此作用階段的特性,當作定義不同參數影響之重要階段。
Simulation of geological structures by physical modeling provides real-time observations on the geometry and evolution of deformed structures. Based on the granular flow characteristics of quartz sand, sandbox experiments are frequently used to model non-linear deformation behavior and rock failure in the upper crustal deformation. This study focuses on the deformation behavior of frontal accretion in accretionary wedges using sandbox experiments. In order to investigate the influence of different parameters on the development of accretionary wedges, including basal friction coefficient (μb), basal detachment dip (β) and the depth of inherited weak layer, a series of sandbox experiments with proper scaling are performed. Particle Image Velocimetry (PIV) analysis is applied to the images of sandbox results to visualize the spatial and temporal deformation patterns for each experiment. Combined with conventional analysis method of sandbox experiments, the influences of the tested parameters are discussed. The frontal accretion cycle observed in the sandbox analogue experiments of accretionary wedges can generally be divided into three stages: thrust initiation, underthrusting and reactivation.
In this study, basal friction coefficients are designated 0.31 and 0.55 by using plastic and sandpaper belt, respectively. The main difference between the contrasting basal frictions is the deformation within the underthrusting stage. When basal friction is lower, the footwall material beneath the frontal thrust can not be easily displaced into wedge due to low coupling between sands and basement. This leads to reterowedge-directed development of backthrusts backwards to maintain critical taper and main uplift is located in the deformation front. In contrast, when basal friction is high, footwall material is underthrusted into wedge due to strong basal coupling and main uplift located in the rear wedge. The detachment dip is designed with 0, 3, 6 and 8 degree. With increasing β angle, the underthrusting process becomes more dominant because of increasing gravity component parallel to the basal detachment. In high β angle cases, the value of basal friction determines whether imbricate structure or large-scale backthrust is dominant. For example, imbricate structures are always observed in high basal friction cases and large-scale backthrusts in the low basal friction cases. To investigate the difference of varying depths of inherited weak horizon, experiments are set with 0.1 cm glass microbeads layer as weak layer are added into the 4cm sand layer. The depth of weak layer ranges from 1.5cm to 3.5cm. For cases of layer depth in 1.5cm, 2cm and 2.5cm, the main thrust event is paused in the underthrusting stage when the external small thrusts are generated from the glass microbeads layer. However, the development of external thrusts will increase the degree of later underthrusting when the main thrust becomes reactivation. For the cases of weak layer level in 3.0 and 3.5 cm, the glass microbeads layer becomes a detachment, in stead of detachment in the base on other experiments. The deformation features within these cases are similar to that within low basal friction cases.
In summary, basal friction is the factor to influence the existence of imbricate thrust or large-scale backthrust and the location of uplift region. The β angle has a direct influence on gravity component. The shallower weak layer would be the location to generate external small thrusts and enhance the role of later underthrusting. The deep weak layer would become a shallower detachment, not in the base. Comprehensive results of influences from these three parameters indicate that underthrusting is the most important stage to evaluate the parameter effects in the context of frontal accretion cycle. Consequently, in the future we can focus on studying the differences of deformation patterns and behaviors induced by parameter change in the underthrusting stage to evaluate the impact of different factors to the development of accretionary wedge.
口試委員審定書 I
誌謝 II
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 XI
表目錄 XIV

一、前言 1
1.1 研究動機 1
1.2 研究背景 2
1.3 研究目的 10
1.4 本文內容 11

二、研究方法 12
2.1 砂箱模擬簡介 12
2.1.1 主要的影響條件: 12
2.1.2 實驗砂的性質: 13
2.1.3 實驗的相關器材介紹 14
2.1.4 實驗的記錄方式 14
2.2 PIV分析 22
2.2.1 PIV軟體介紹: 22
2.2.2 PIV 軟體處理過程: 22
三、模型設定 27
3.1 模型基本設定 27
3.2 參數—底部摩擦係數 29
3.3 參數—滑脫面傾角 30
3.4 原始弱面深度 30
3.5 實驗名稱設定 30

四、實驗結果 32
4.1 砂箱實驗影像結果(定性分析) 32
4.1.1 實驗HF0B 32
4.1.2 實驗HF3B 34
4.1.3 實驗HF6B 34
4.1.4 實驗HF8B 34
4.1.5 實驗LF0B 38
4.1.6 實驗LF3B 38
4.1.7 實驗LF6B 38
4.1.8 實驗LF8B 42
4.1.9 實驗M15L 42
4.1.10 實驗M20L 42
4.1.11 實驗M25L 46
4.1.12 實驗M30L 46
4.1.13 實驗M35L 46
4.2 砂箱實驗統計結果(定量分析) 50
4.2.1 表面坡度分析 50
4.2.2 變形帶前緣分析 50
4.3 PIV影像分析結果(定量分析) 54
4.3.1實驗HF0B 56
4.3.2 實驗HF3B 56
4.3.3 實驗HF6B 59
4.3.4 實驗HF8B 59
4.3.5 實驗LF0B 59
4.3.6 實驗LF3B 63
4.3.7 實驗LF6B 63
4.3.8 實驗LF8B 66
4.3.9 實驗M15L 66
4.3.10 實驗M20L 69
4.3.11 實驗M25L 69
4.3.12 實驗M30L 72
4.3.13 實驗M35L 72

五、討論與結論 75
5.1 底部摩擦係數 75
5.1.1 構造演化過程 75
5.1.2 前緣加積循環過程 75
5.1.3 參數影響討論 76
5.2 滑脫面傾角 82
5.2.1 構造演化過程 82
5.2.2 前緣加積循環過程 82
5.2.3 參數影響討論 83
5.3 原始弱面深度 90
5.3.1 構造演化過程 90
5.3.2 前緣加積循環過程 90
5.3.3 玻璃微珠與剪應變之關係 91
5.3.4 參數影響討論 91
5.4斷層面傾角探討 99
5.5 結論 102

參考文獻 103
Adam, J., Lohrmann, J., Hoth, S., Kukowski, N. and Oncken, O., 2002. Strain variation and partitioning in thrust wedges: High-resolution data from scaled sandbox experiments by 2D-3D PIV analysis. Bollettino di Geofisica teorica ed applicarta, 42, 123-126.
Adam, J., Urai, J.L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth S., van der Zee, W. and Schmatz, J., 2005. Shear localisation and strain distribution during tectonic faulting—new insights from granular-flow experiments and high-resolution optical image correlation techniques. Journal of Structural Geology, 27, 283-301.
Bernard, S., Avouac, J.P., Dominguez, S. and Simoes, M., 2007. Kinematics of fault-related folding derived from a sandbox experiment. J. Geophys. Res., 112, B03S12, doi:10.1029/2005JB004149.
Burbidge, D.R. and Braun, J., 2002. Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method. Geophysical Journal International, 148, 542-561.
Chapple, W.M., 1978. Mechanics of the fold and thrust belts. Geol. Soc. Am. Bull., 89, 1189-1198.
Dahlen, F.A., 1984. Noncohesive critical Coulomb wedges: An exact solution, Journal of Geophysical Research, 89, 10125-10133.
Dahlen, F.A., Davis, D. and Suppe, J., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive coulomb wedges theory. Journal of Geophysical Research, 89, 10087-10101.
Dahlen, F.A. and Suppe, J., 1988. Mechanics, growth, and erosion of mountain belts. Geological Society of America Special Paper, 218, 161-178.
Dahlen, F.A., 1990. Critical taper model of fold-and thrust belts and accretionary wedges. Annual Reviews of Earth and Planeray Sciences, 18, 55-99.
Davis, D., Suppe, J. and Dahlen, F.A., 1983. Mechanics of fold and thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153-1172.
Dominguez, S., Lallemand, S., Malavieille, J., and Schnurle, P., 1998. Oblique subduction of the Gagua Ridge beneath the Ryukyu accretionary wedge system: Insights from marine observations and sandbox experiments. Marine Geophysical Researches, 20,383-402, doi:10.1023/A:1004614506345
Dominguez, S., Malavieille, J. and Lallemand, S.E., 2000. Deformation of accretionary wedge in response to seamount subduction. Insights from sand-box experiments. Tectonics, 19, 182-196.
Dominguez, S., Avouac, J.P. and Michel, R., 2003. Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan. J. Geophys. Res., 108(B2), 2083.
Heermance, R.V. and Evans, J.P., 2006. Geometric evolution of the Chelungpu fault, Taiwan: the mechanics of shallow frontal ramps and fault imbrication. Journal of Structural Geology, 28, 929-938.
Hoth, S., Hoffmann-Rothe, A. and Kukowski, N., 2007. Frontal accretion: An internal clock for bivergent wedge deformation and surface uplift.J. Geophys. Res., 112, B0640810, doi:10.1029/2006JB004357
Hubbert, M.K., 1937. Theory of the scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48, 1459-1520.
Hubbert, M. and Rubey, W., 1959. Role of fluid pressure in mechanics of overthrust faulting. Geological Society of America Bulletin, 70, 115–166.
Klinkmuller, M., Rosenau, M., Boutelier, D., Kemnitz, H. and Schreurs, G., 2008. Properties benchmark of granular and viscous analogue materials. Abstract for the GeoMod 2008 pre-conference workshop "Analogue and numerical modelling of crustal processes", Villa La Pietra, Firenze.
Konstantinovskaia, E. and Malavieille, J., 2005. Erosion and exhumation in accretionary orogens: experimental and geological approaches. Geochemistry Geophysics Geosystems, 6, 1-25, doi:10.1029/2004GC000794.
Kukowski, N., Lallemand, S.E., Malavieille, J., Gutscher, M.A. and Reston, T.J., 2002. Mechanical decoupling and basal duplex formation observed in sandbox experiments with application to the Mediterranean Ridge accretionary complex. Mar. Geol., 186, 29-42.
Lallemand, S.E., Schnürle, P. and Malavieille, J., 1994. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion. J. Geophys. Res., 99, 12033-12055.
Lohrmann, J., Kukowski, N., Adam, J. and Oncken, O., 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. Journal of Structural Geology, 25, 1691-1711.
Malavieille, J., 1984. Modélisation expérimentale des chevauchements imbriqués: Application aux chaıcicr;nes de montagnes, Bull. Soc. Geol. Fr., 26, 129-138.
Mair, K., Frye, K.M. and Marone, C., 2002. Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res., 107, B10, 2219, doi:10.1029/2001JB000516
Marone, C., 1998. Laboratory-derived friction laws and their application to seismic faulting. Ann. Rev. Earth Planet. Sci., 26, 643–696.
McIntosh, K., Nakamura, Y., Wang, T.K., Shih, R.C., Chen, A. and Liu, C.S., 2005. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401, 23-54.
Schellart, W.P., 2000. Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics, 324, 1-16.
Suppe, J., 2007. Absolute fault and crustal strength from wedge tapers. Geology, 35, 1127-1130, doi: 10.1130/G24053A.1.
Tseng, C.H., Hu, J.C., Chan, Y.C., Chu, H.T., Lee, J.F., Wei, J.Y. and Lu, C.Y., 2008. Non-catastrophic landslides induced by the Mw 7.6 Chi-Chi earthquake in central Taiwan as revealed by PIV analysis. Tectonophysics, revised.
White, D.J., Take, W.A. and Bolton, M.D., 2001. Measuring soil deformation in geotechnical models using digital images and PIV analysis. 10th International Conference on Computer Methods and Advances in Geomechanics, 997-1002.
White, D.J., Take, W.A. and Bolton, M.D., 2003. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53, 619-631.
Yui, T.F. and Chu, H.T., 2000. ‘Overturned’ marble layers: evidence for upward extrusion of the Backbone Range of Taiwan. EPSL, 179, 351-361.
Yue, L.F., Suppe, J. and Hung, J.H., 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan(MW=7.6). Journal of Structural Geology, 27, 2058-2083.
王芳琳,2006,利用二維離散元素法探討增積岩體的變形模式。國立台灣大學海洋研究所碩士論文,共133頁。
張國楨,1998,台灣西部基盤高區對鄰近主要新構造影響之三維模擬,國立台灣大學地質研究所碩士論文,共134頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top