跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉忠誠
研究生(外文):Chung-Chen Liu
論文名稱:福衛二號衛星多光譜影像推估南灣海域水深分佈
論文名稱(外文):Determination of Water Depth at Nanwan from Formosat-2 Multispectral Image
指導教授:劉倬騰劉倬騰引用關係
指導教授(外文):Cho-Teng Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:船載測深儀福衛二號多光譜影像底部反射率水體反射率
外文關鍵詞:ship-board echo sounderFormosat-2multispectral imagebottom albedowater reflectance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對海洋研究者而言,海底地形的分佈是一項重要且必知的資訊,最常見的測深方式為使用船載測深儀,但是在船隻不易到達或深度太淺的沿岸區域因為有觸礁的危險,未能有實測的深度資料。而沿岸區域水深因受沉積與侵蝕影響,深度變化比例較大,而且該區域的各種用途使用頻率較高,所以如何能方便且安全得到沿岸水深資料也就更顯重要。
本文利用福衛二號衛星多光譜影像來推估台灣南端南灣海域中三個沿岸區域 (後壁湖、南灣及墾丁) 的水深分佈。光線進入水中後,剩餘的輻射值會隨著深度的增加而呈指數遞減,當輻射值碰到底部物質反射向上,衛星接收到經由底部物質反射向上的輻射值,接收到的水體輻射值的多寡與當地水深有密切的關係。因為沿岸地區波浪效應較明顯,波浪會增加各波段在海面的反射率,由於近紅外波段幾乎沒有來自水體的輻射,因此可以利用近紅外波段增加的輻射值估算因波浪增加的藍綠光。水體吸收綠光的能力較吸收藍光強,因此綠光進入水體後衰減的速度較藍光快,利用來自水體兩波段反射率的比值,比值的改變代表深度的變化。雖然不同的底部物質會改變藍綠波段底部反射率,但是改變的比例相近,而深度的改變同樣也會造成水體反射率的變化,且深度改變影響的程度遠大於底部物質的改變,兩個波段的水體衰減係數差值對不同類型的水體基本保持恆定。因此利用兩個波段水體反射率的比值來計算水深,可以減少因底部物質不同對推估結果的影響,所以本研究方法採用藍綠兩波段水體反射率的比值計算水深分佈。
利用三波段推算得到的水深大都較實測深度為淺,因為衛星接收到的輻射值主要來自於深度較淺的區域,這個遙測水深的方法可以應用在沒有實測水深資料的區域。因為水中的懸浮物質會改變藍綠波段間反射率的比值,所以,此方法適用水質清澈、水深小於 30 公尺的區域。
The bathymetry is important and necessary for oceanographer. The common method for measuring water depth uses ship-board echo sounder. For remote area that is not easily accessible by surveying boats and there is no in situ data. The bathymetry at costal area is affected by sediment and collapse and the percentage of change is large. The utility rate at costal area is higher than deep area, so it’s more important to get the bathymetry safe and convenience at costal area.
We use the Formosat-2 multispectral image to calculate the bathymetry at Nanwan area, the bay at the southern tip of Taiwan. The radiance is exponential decay when the light penetrates into the water and reflects with bottom materials. The upward radiance is received by satellite and the radiance is relation to water depth. The wave amplitude is higher in costal region and it increases the surface reflectance towards the satellite. Because near infrared band has almost no reflection from the water body, and wave-induced reflectance is the same for all bands, any increase of near infrared radiance may be used to estimate the wave-contribution in blue and green band radiance. The water absorption is higher at green band than blue band so green light decays faster than blue light. The difference in radiance ratio of blue band to green band represents the changes in depth. A change in bottom albedo affects both bands similarly, but changes in depth affect the high absorption band more. Accordingly, the change in ratio because of depth is much greater than that caused by change in bottom albedo. The difference in attenuation coefficient between blue and green band is a constant with different water. We use the ratio to reduce effect on bottom albedo and then calculate depth.
Most of the depth data calculated with three bands are shallower than in situ data. The reason is that most of the radiance received by satellite is radiated from shallowest part in a pixel. The application of this method can easily be extended to regions without in situ depth data. This method is suitable for the regions where depth is shallower than 30 m and water is clear, otherwise the attenuation of light varies with type and concentration of suspension material.
頁碼
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vii
方程式目錄 viii
詞彙表 x
符號表 xi
第一章 緒論 1
1-1 研究背景與動機 1
1-2 測水深的方法 2
1-2.1 船載測深儀 2
1-2.2 空載光達 3
1-2.3 衛星測海面高度 4
1-3 前人相關研究 4
1-3.1 可見光在水中的傳輸 4
1-3.2 線性方程關係式推算水深 8
1-3.3 線性回歸方程推算水深 10
第二章 福爾摩沙衛星二號簡介 17
2-1 被動式與主動式衛星 19
2-2 衛星成像模式 21
2-3 衛星影像解析度 23
2-4 衛星影像處理等級 24

第三章 研究區域與使用資料 26
3-1 研究區域 26
3-2 使用資料 29
第四章 研究方法 30
4-1 影像前處理 32
4-2 影像數位值與輻射值的轉換 35
4-3 衛星接收能量的來源 35
4-3.1 波浪反射輻射值 (Lg) 37
4-3.2 天光輻射值 (Lsky) 39
4-3.3 海面下水體反射輻射值 (Lw-) 40
4-4 由衛星光學影像計算水深 40
4-4.1 單一波段 40
4-4.1 三波段應用 43
第五章 結果與討論 46
5-1 線性回歸方程式 47
5-1.1 線性回歸方程推算水深與電子海圖比較 47
5-1.2 線性回歸方程與實測資料檢驗 53
5-2三波段應用 55
5-2.1 三波段應用推算水深與電子海圖比較 56
5-2.2 三波段應用與實測資料檢驗 62
第六章 未來展望 65
參考文獻及網站 67
參考文獻

Blyth, K., 1981: Remote Sensing in Hydrology. Report No. 74, Institute of Hydrology, Wallingford.

Caruso, M. J., G. G. Gawarkiewicz and R. C. Beardsley, 2006: Interannual variability of the Kuroshio intrusion in the South China Sea. J. Oceanogr., 62, 559-575.

Cazenave, A. and J.Y. Royer, 2001: Satellite Altimetry and earth Sciences. Edited by L.-L. Fu and A. Cazenave. San Diego: Academic Press , 407–439.

Doak, E., J. Livisay, D. R. Lyzenga, J. Ott and F.C. Polcyn, 1979: Landsat offshore
studies along the western coast of Libya, ERIM report No. 30700-1-F.

Gross, M. Grant, 1992: Oceanography: A View of Earth, 6th ed., Prentice-Hall, 446.

Huang, S. J., C. R. Ho and N. J. Kuo, 2008: Satellite Remote Sensing of South China Sea. Edited by A. K. Liu, C. R. Ho and C. T. Liu. Tingmao Publish Company Press, 125-134.

Jerlov, N. G., 1951: Optical studies of ocean waters. Rep. Swedish Deep-Sea Exped. 1947-48, 3, Fasc. 1, 3-59.

Lubin, D., W. Li, P. Dustan, C. Maxel and K. Stamnes, 2001: Spectral signatures of coral reefs: Features from space. Remote Sens. Environ. 75, 127-137.

Lyzenga, D. R., 1978: Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 17, 379-383.

Lyzenga, D. R., 1985: Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens. 6, 115-125.

Natural Resources Canada, 2007: Fundamentals of Remote Sensing. A Canada Centre for Remote Sensing Remote Sensing Tutorial.

Philpot, W. D., 1989: Bathymetric mapping with passive multispectral imagery. Appl. Opt. 28, 1569-1578.
Polcyn, F. C. and D. R. Lyzenga, 1973: Proceedings, Symposium on Significant Results from ERTS-1, NASA Spec. Publ. SP-327.

Robert, H. Stewart, 2007: Introduction To Physical Oceanography. September 2007 Edition.

Sandwell, D. T., and W. H. F. Smith, 2001: Satellite Altimetry and Earth Sciences. Edited by L.-L. Fu and A. Cazanave. Academic Press, San Diego, 441–457.

Stumpf, R. P., Kristine Holderied, 2003: Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr., 48
(1, part 2), 547-556.

Tanis, F. J. and W. A. Hallada, 1984: Evaluation of Landsat Thematic Mapper Data for Shallow Water Bathymetry, Proceedings of the Eighteenth International Symposium on Remote Sensing of Environment, Paris, France, 629-643.

Tanis, F. T. and H. J. Byrne, 1985: Optimization of Multispectral Remote Sensing for Bathymetry Applications. Proceedings 19''th ISRSE, Ann Arbor, Michigan, 865-874.

Tapley, B.D. and M. C. Kim, 2001: Satellite Altimetry and Earth Sciences. Edited by L.-L. Fu and A. Cazenave. Academic Press, San Diego, 371–406.

呂黎光,2004,捷鳥衛星影像應用於墾丁淺海水域之測繪分析,航測及遙測學刊,9, 23 – 42.

張雅華,李瑞陽,張國楨 (2005),福爾摩沙衛星二號影像應用於國土利用現況調查,2005年台灣地理資訊學會年會暨學術研討會論文集,1 – 13.

楊純明,陳榮坤 (2007),由近地面高解析光譜模擬之不同衛星光譜資料對水稻生長估測及產量預測產量上之差異,航測及遙測學刊,12, 93 – 105.

網站

墾丁國家公園管理處
http://www.ktnp.gov.tw/index.aspx

內政部營建署
http://www.cpami.gov.tw/web/index.php

台大空間資訊中心
http://140.112.64.178/sirc/index.asp

中央大學太空及遙測研究中心
http://www.csrsr.ncu.edu.tw/08CSRWeb/ChinVer/index.php

國家太空中心
http://www.nspo.org.tw/2008c/

Global Warming Art
http://www.globalwarmingart.com/

NASA
http://www.nasa.gov/

SPOT IMAGE
http://www.spot.com

U.S. Geological Survey
http://www.usgs.gov/

Wikipedia
http://en.wikipedia.org/wiki/Main_Page
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top