跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾郁雯
研究生(外文):Yu-Wen Tseng
論文名稱:多元不飽和脂肪酸對豬脂肪細胞血管收縮素轉換酶2之調控
論文名稱(外文):Regulation of the expression of porcine angiotensin converting enzyme 2 by polyunsaturated fatty acids
指導教授:丁詩同丁詩同引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:血管收縮素轉換酶多元不飽和脂肪酸豬脂肪細胞
外文關鍵詞:Angiotensin converting enzyme 2polyunsaturated fatty acidsporcine adipocyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了瞭解在脂肪細胞分化過程中基因表現的改變,本研究室先前利用抑制性扣除雜合法(suppression subtractive hybridization, SSH)得到了6個在脂肪細胞的表現遠高於在脂肪前身細胞的基因。這6個基因中,有2個是身分未知的基因。本試驗利用快速增殖cDNA尾端法(rapid amplified cDNA ends, RACE)發現,這兩個基因都為血管收縮素轉換酶2(angiotensin converting enzyme 2, ACE2),由於豬ACE2基因序列全長並未被發表,本試驗利用已發表物種之序列設計引子,最後得到豬全長ACE2 cDNA序列。
多元不飽和脂肪酸(polyunsaturated fatty acid, PUFA)可被代謝成產物二十碳酸,它們具有調節血壓的功能,此外許多二十碳酸也能影響脂肪細胞的分化,所以我們假設PUFA也能調節同樣能影響血壓的ACE2基因表現。因此我們將取自藍瑞斯豬的脂肪前身細胞分化四天後,以50 μM 的共軛亞麻油酸(conjugted linoleic acid, CLA)、花生四烯酸(arachidonic acid, AA)、二十碳五烯酸(eicosapentaenoic acid, EPA)、二十二碳六烯酸(docosahexaenoic acid, DHA)或硬脂酸(stearic acid, 18:0)處理48小時,發現EPA與18:0不能改變ACE2 mRNA的表現,然而AA、CLA、DHA則會顯著減少ACE2 mRNA的表現。為進一步瞭解何種二十碳酸產物對ACE2有調控作用,我們利用n-6脂肪酸代謝酵素抑制劑clotrimazole、ETYA與indomethacin分別抑制 monooxygenase、 lipooxygenase 與 cyclooxygenase,結果發現添加三種抑制劑都可以恢復部份因AA而降低的ACE2表現量,可見這三類二十碳酸都可能參與了調控ACE2的表現。
為探討ACE2的功能,我們利用慢病毒載體過量表現ACE2於豬脂肪前身細胞,接著誘導分化三天,再分析脂肪細胞分化相關基因(CCATT/enhancer binding protein β、sterol regulatory element binding protein-1C與peroxisome proliferator-activated receptor γ)與脂肪分解相關基因(adipose triglyceride lipase and
ii
hormone sensitive lipase),結果發現過量表現ACE2並不能影響脂肪細胞分化早期相關基因與脂肪分解相關基因。
綜上所述,我們發現PUFA會透過它們的代謝產物來降低ACE2的基因表現,而ACE2對於分化早期基因與脂肪分解基因並無調控作用,所以ACE2在脂肪細胞中有無其他功能有待證實。
Using suppression subtractive hybridization technique, we found that two unkown genes (AEUG1 and AEUG3) were highly expressed in the adipocytes compared with preadipocytes. We then identified that these two genes were indicated to be angiotensin converting enzyme 2 (ACE2). We applied 3’RACE (rapid amplified of cDNA end), 5’RACE, and PCR based on primers from full length cDNA sequences of other species published on NCBI, to obtain the full length porcine ACE2 cDNA sequence.
Polyunsaturated fatty acids (PUFA) are precursors of 3 series of eicosanoids which are antiaggregators and vasoconstrictors. Because the functions of eicosanoids link PUFA to regulating blood pressure, we hypothesize that PUFA can regulate the expression of the vasodilator, ACE2. Preadipocytes from Landrace pigs were induced to differentiate for 4 days, then treated with 50 μM of different PUFA, conjugted linoleic acid (CLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or stearic acid (18:0). Addition of either EPA or 18:0 for 48 h did not change the ACE2 mRNA level, whereas the treaments of AA、CLA and DHA significantly decreased ACE2 mRNA level after 48 h. To further understand how PUFA metabolites affect ACE2 mRNA expression, we inhibited individual enzymes that involved in the eicosanoid production. The inhibitors for monooxygenase, lipooxygenase, and cyclooxygenase are clotrimazole, ETYA, and indomethacin, respectively. We found all three inhibitors could recover ACE2 expression inhibition by AA treatment, suggesting that three eicosanoids are involved in regulating the expression of ACE2. To further investigate the function of ACE2, we enhanced ACE2 expression in porcine adipocyte by using lentivirus as a vector. After overexpression of ACE2 in preadipocytes, we induced preadipocytes to differentiate into adipocytes for 3 days, then analysed
iv
differentiation marker genes (CCATT/enhancer binding protein β、sterol regulatory element binding protein-1C and peroxisome proliferator-activated receptor γ) and lipolytic genes (adipose triglyceride lipase and hormone sensitive lipase). The results showed the expression of both differentiation marker genes and lipolytic genes were not modified by overxpression ACE2. Therefore ACE2 may not have a role in regulating early stage adipocyte differentiation and lipolysis.
In conclusion, we found PUFA could down-regulate the expression of ACE2 through its metabolites in porcine adipocytes. ACE2 may not have a function on modifying the expression of early stage adipocyte differentiation gene and lipolytic genes. Taken together, PUFA can down-regulate ACE2 gene expression but the physiological modification by which ACE2 mediating requires further demonstration.
頁次
目錄............................................................... i
中文摘要.......................................................... ii
英文摘要.......................................................... iv
圖次.............................................................. vi
表次............................................................ viii
壹、文獻檢討........................................................ 1
一、前言...................................................... 1
二、脂肪細胞的分化............................................ 2
三、脂肪細胞的分泌功能........................................ 3
四、n-3與n-6多元不飽和脂肪酸................................ 7
貳、材料與方法..................................................... 14
試驗一選殖豬之血管收縮素轉換酶2 cDNA序列全長................ 14
試驗二 多不飽和脂肪酸對脂肪細胞血管收縮素系統相關基因之調.... 20
試驗三 過度表達ACE2基因於脂肪前身細胞對分化之影響.......... 31
參、結果與討論....................................................... 43
試驗一選殖豬之血管收縮素轉換酶2 cDNA序列全長................. 43
試驗二 多不飽和脂肪酸對脂肪細胞血管收縮素系統相關基因之調控.. 50
試驗三 過度表達ACE2基因於脂肪前身細胞對分化之影響.......... 57
肆、結論........................................................... 63
伍、參考文獻....................................................... 64
伍、參考文獻
章起榕、劉秉勳、丁詩同。第五章、3T3-L1脂肪前身細胞的培養及分化。丁詩同、陳保基、鄭登貴。2004。動物生長生物學研究技術專輯。
Bagga, D., L. Wang, R. Farias-Eisner, J. A. Glaspy, and S. T. Reddy. 2003. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on cox-2 expression and il-6 secretion. Proc Natl Acad Sci U S A 100: 1751-1756.
Belmonte, N., B. W. Phillips, F. Massiera, P. Villagois, B. Wdziekonski, P. Saint-Marc, J. Nichols, J. Aubert, K. Saeki, A. You, S. Narumiya, G. Ailhaud, and C. Dani. 2001. Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer binding proteins beta and -delta in preadipocytes. Mol Endocrinol 15: 2037-2049.
Berger, J., M. D. Leibowitz, T. E. Doebber, A. Elbrecht, B. Zhang, G. J. Ventre, M. S. Wu, G. D. Berger, R. Mosley, R. Marquis, C. Santini, S. P. Sahoo, R. L. Tolman, R. G. Smith, and D. E. Moller. 1999. Novel peroxisome proliferators-activated receptor(PPAR) gamma and PPAR delta ligands produce distinct biological effects. J. Biol. Chem. 274:6718-6725.
Boehm, M., and L. Nabel. 2002. Angiotensin converting enzyme 2. Anew cardiac regulator. N. Eng. J. Med. 374:1795-1797.
Brewster, U. C., and M. A. Perazella. 2004. The renin-angiotensin-aldosterone system and the kidney: Effects on kidney disease. Am J Med 116: 263-272.
Bulow, J., A. Astrop, N. J. Christensen, and J. Kastrop. 1987. Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load. Acta. Physiol. Scand 130:657-661.
Burdi, A. R., C. M. Poissonnet, S. M. Garn, M. Lavelle, M. D. Sabet, and P. Bridges, 1985. Adipose tissue growth patterns during human gestation: A histometric comparison of buccal and gluteal fat depots. Int J Obes 9: 247-256.
Carmichael, A. R. 2006. Obesity and prognosis of breast cancer. Obes Rev 7: 333-340.
Chen, H. W., C. K. Lii, W. T. Chen, M. L. Wang, and C. C. Ou. 1996. Blood pressure-lowering effect of fish oil is independent of thromboxane A2 level in spontaneously hypertensive rats. Prostaglandins Leukot Essent Fatty Acids 54: 147-154.
Clarke, S. D. 2001. Polyunsaturated fatty acid regulation of gene transcription: A molecular mechanism to improve the metabolic syndrome. J Nutr 131: 1129-1132.
Clarke, S. L., C. E. Robinson, and J. M. Gimble. 1997. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240: 99-103.
Cornelius, P., O. A. MacDougald, and M. D. Lane. 1994. Regulation of adipocyte development. Annu Rev Nutr 14: 99-129.
Crackower, M. A., R. Sarao, G. Y. Oudit, C. Yagil, I. Kozieradzki, S. E. Scanga, A. J. Oliveira-dos-Santos, J. D. Costa, L. Zhang, Y. Pei, J. Scholey, C. M. Ferrario, A. S. Manoukian, M. C. Chappell, P. H. Backx, Y. Yagil, and J. M. Penninger. 2002. Angiotensin-converting 2 is an essential regulator of heart function. Nature 417:822-828
Danilczyk, U., U. Eriksson, M. A. Crackower, and J. M. Penninger. 2003. A story of two ACEs. J Mol Med 81: 227-234.
Darimont, C., G. Vassaux, G. Ailhaud, and R. Negrel. 1994. Differentiation of preadipose cells: Paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-ii. Endocrinology 135: 2030-2036.
Ding, S. T., R. L. McNeel, and H. J. Mersmann. 2002. Modulation of adipocyte determination and differentiation-dependent factor 1 by selected polyunsaturated fatty acids. In Vitro Cell Dev Biol Anim 38: 352-357.
Donoghue, M., F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, B. Woolf, K. Robison, R. Jeyaseelan, R. E. Breitbart, and S. Acton. 2000. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin i to angiotensin 1-9. Circ Res 87: E1-9.
Engeli, S., J. Bohnke, K. Gorzelniak, J. Janke, P. Schling, M. Bader, F. C. Luft, A. M. Sharma. 2005. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45: 356-362.
Engeli, S., R. Negrel, and A. M. Sharma. 2000. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35: 1270-1277.
Engeli, S., P. Schling, K. Gorzelniak, M. Boschmann, J. Janke, G. Ailhaud, M. Teboul, F. Massiera, A. M. Sharma. 2003. The adipose-tissue renin-angiotensin-aldosterone system: Role in the metabolic syndrome? Int J Biochem Cell Biol 35: 807-825.
Evan K., M. L. Clark, and K. N. Frayn. 1999. Effects of an oral and intravenous fat load on adipose tissue and forearm lipid metabolism. Am. J. Physiol. 276:E241-E248.
Ferrario, C. M., M. C. Chappell, E. A. Tallant, K. B. Brosnihan, and D. I. Diz. 1997. Counterregulatory actions of angiotensin-(1-7). Hypertension 30: 535-541.
Frayn, K. N., F. Karpe, B. A. Fielding, I. A. Macdonald, and S. W. Coppack. 2003. Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 27:875-888.
Frenoux, J. R., E. D. Prost, J. L. Belleville, and J. L. Prost. 2001. A polyunsaturated fatty acid diet lowers blood pressre and improves antioxidant status in spontaneously hypertensive rats. J. Nutr. 131:39-45.
Gondret, F., P. Ferre, and I. Dugail. 2001. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J. Lipid Res. 42:106-113;
Goossens G. H., E. E. Blaak, W. H. Saris, and M. A. Van BAAK. 2004. Angiotensin Ⅱ induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J. Clin. Endocrinol. Metab. 89:2690-2696.
Gregoire, F. M., C. M. Smas, and H. S. Sul. 1998. Understanding adipocyte differentiation. Physiol Rev 78: 783-809.
Hall, J. E., E. D. Crook, D. W. Jones, M. R. Wofford, and P. M. Dubbert. 2002. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci 324: 127-137.
Hill, J. O., H. R. Wyatt, G. W. Reed, and J. C. Peters. 2003. Obesity and the environment: Where do we go from here? Science 299: 853-855.
Hsu, J. M., P. H. Wang, B. H. Liu, and S. T. Ding. 2004. The effect of dietary docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J Anim Sci 82: 683-689.
Hwang, L. C., C. J. Chen, and B. J. Lin. 2007. Obesity and changes in body weight related to 10-year diabetes incidence in women in taiwan. Asia Pac J Clin Nutr 16: 677-682.
Janke, J., S. Engeli, K. Gorzelniak, F. C. Luft, and A. M. Sharma. 2002. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 51: 1699-1707.
Jump, D. B., and S. D. Clarke. 1999. Regulation of gene expression by dietary fat. Annu Rev Nutr 19: 63-90.
Kim, J. B., and B. M. Spiegelman. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10: 1096-1107.
Karpe F., B. A. Fielding, V. Ilic, I. A. Macdonald, L. K. Summers, and K. N. Frayn. 2002b. Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 51:2467-2473.
Kliewer, S. A., S. S. Sundseth, S. A. Jones, P. J. Brown, G. B. Wisely, C. S. Koble, P. Devchand, W. Wahli, T. M. Willson, J. M. Lenhard, and J. M. Lehmann. 1997. Fatty acids and eicosanoids regulate genen expression through direct interaction with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA 94:4318-4323.
Lehrke, M., and M. A. Lazar. 2005. The many faces of PPAR-gamma. Cell 123:993-999.
Levy, B. D., C. B. Clish, B. Schmidt, K. Gronert, and C. N. Serhan. 2001. Lipid mediator class switching during acute inflammation: Signals in resolution. Nat Immunol 2: 612-619.
Li, Y., J. X. Kang, and A. Leaf. 1997. Differential effects of various eicosanoids on the production or prevention of arrhythmias in cultured neonatal rat cardiac myocytes. Prostaglandins 54: 511-530.
Liu, B. H., C. F. Kuo, Y. C. Wang, and S. T. Ding. 2005. Effect of docosahexaenoic acid and arachidonic acid on the expression of adipocyte determination and differentiation-dependent factor 1 in differentiating porcine adipocytes. J. Anim. Sci. 83:1516-1525.
Massiéra, F., M. Bloch-Faure, D. Ceiler, K. Murakami, A. Fukamizu, J. M. Gasc, A. Quignard-Boulange, R. Negrel, G. Ailhaud, J. Seydoux, P. Meneton, M. Teboul. 2001. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 15: 2727-2729.
Mater, M. K., D. Pan, W. G. Bergen, and D. B. Jump. 1998. Arachidonic acid inhibits lipogenic gene expression in 3T3-L1 adipocytes thrugh a prostanoid pathway. J. Lipid Res. 39:1327-1334.
Morris, M. C. 1994. Dietary fats and blood pressure. J Cardiovasc Risk 1: 21-30.
Naldini, L., U. Blomer, P. Gallay, D. Ory, R. Mulligan, F. H. Gage, I. M. Verma, and D. Trono. 1996b. In vivo gene delivery and stable transduction of nondividing cells by lentivirol vector. Science. 272:263-267.
Narce, M., J. Frenoux, V. Dardel, C. Foucher, S. Germain, M. Delachambre, and J. Poisson. 1997. Fatty acid metabolism, pharmacological nutrients and hypertension. Biochimie 79: 135-138.
Ntambi, J. M., and K. Young-Cheul. 2000. Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S.
Peach, M. J. 1977. Renin-angiotensin system: Biochemistry and mechanisms of action. Physiol Rev 57: 313-370.
Ron, D., A. R. Brasier, and J. F. Habener. 1990. Transcriptional regulation of hepatic angiotensinogen gene expression by the acute-phase response. Mol Cell Endocrinol 74: C97-104.
Saint-Marc, P., L. P. Kozak, G. Ailhaud, C. Darimont, and R. Negrel. 2001. Angiotensin Ⅱ as a trophic factor of white adipose tissue: Stimulation of adipose cell formation. Endocrinology 142: 487-492.
Schmitz G., and J. Ecker. 2008. The opposing effects of n-3 and n-6 fatty acids. Prog. Lpid Res. 147-155.
Schmittgen, T. D., B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer, and M. W. Reed. 2000. Quantitative reverse transcription-polymerase chain rection to study mRNA decay: Comparison of endpoint and real-time methods. Anal Biochem. 285:194-204
Schwab, J. M., N. Chiang, M. Arita, and C. N. Serhan. 2007. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447: 869-874.
Schweiger, M. R. Schreiber, G. Haemmerle, A. Lass, C. Fledelius, P. Jacobsen, H. Tornqvist, R. Zechner, and R. Zimmermann. 2006. Adipose Triglyceride Lipase and Hormone-sensitive Lipase Are the Major Enzymes in Adipose Tissue Triacylglycerol Catabolism. J. Biol. Chem. 281:40236-40241.
Selvarajan, S., L. R. Lund, T. Takeuchi, C. S. Craik, and Z. Werb. 2001. A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol 3: 267-275.
Shastri S., J. R. McNeill, T. W. Wilson, R. Poduri, C. Kaul, and V. Gopalakrishnan, 2001. Cysteinyl leukotrienes mediate enhanced vasoconstriction to angiotensin II but not endothelin-1 in SHR. Am. J. Physiol. Heart Circ. Physiol. 28:342-349.
Vickers, C., P. Hales, V. Kaushik, L. Dick, J. Gavin, J. Tang, K. Godbout, T. Parsons, E. Baronas, F. Hsieh, S. Acton, M. Patane, A. Nichols, P. Tummino. 2002. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277: 14838-14843.
Wang, H. C., Y. H. Ko, H. J. Mersmann, C. L. Chen, and S. T. Ding. 2006. The expression of genes related to adipocyte differentiation in pigs. J. Am. Sci. 84:1059-1066.
Weber, P. C., S. Fischer, C. von Schacky, R. Lorenz, and T. Strasser. 1986. The conversion of dietary eicosapentaenoic acid to prostanoids and leukotrienes in man. Prog Lipid Res 25: 273-276.
Wilcox, C. S., L. Lin. 1993. Vasoconstriction prostaglandins and angiotensin-dependent renovascular hypertension. J. Nephrol. 6:124-133.
Wu, Z., Y. Xie, N. L. Bucher, and S. R. Farmer. 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces ppar gamma and stimulates adipogenesis. Genes Dev 9: 2350-2363.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top