跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 09:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃聖閔
研究生(外文):Sheng-Min Huang
論文名稱:具機能性水解乳清蛋白肽之開發研究
論文名稱(外文):Development of bioactive peptides derived from whey protein
指導教授:陳明汝陳明汝引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:136
中文關鍵詞:乳清蛋白生物活性肽酵素水解
外文關鍵詞:Whey proteinbioactive peptideenzyme hydrolysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:744
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
乳清為乾酪製造時產生的副產物,其所衍生之生物活性肽 (bioactive peptide) 已被廣泛研究。目前製備乳源生物活性肽主要分為以蛋白酵素、消化酵素水解與微生物發酵。因此本研究擬利用本實驗室自克弗爾粒 (kefir grain) 中篩選出一株可分解牛乳蛋白之乳酸菌 Lactobacillus kefiranofaciens M1 (M1) 搭配蛋白酵素 (中性蛋白酶及鹼性蛋白酶) 與消化酵素 (胃蛋白酶) 水解乳清,並探討其免疫、抗氧化與抗高血壓之機能性,期能製備出具機能性水解乳清蛋白液。
分析其水解過程中的 pH 值、水分與肽濃度,顯示濃縮乳清蛋白水解液各組在水解 12 小時有最高的肽含量,新鮮製備乳清水解液各組則在水解 4 小時有最高的肽含量,且各組中以鹼性蛋白酶組之水解率最高。在免疫分析上,將乳清水解發酵液與小鼠巨噬細胞株 (RAW 264.7) 及 BALB/c 小鼠脾臟細胞進行體外 (in vitro) 共同培養試驗,發現各水解組中以鹼性蛋白酶組具顯著誘導腫瘤壞死因子-α (tumor necrosis factor (TNF)-α) 與介白素-12 (interleukin (IL)-12) 之效果。進一步試驗發現,將水解液與 M1 共同發酵後,其誘導效果更甚酵素水解組,但卻低於純以 M1 發酵乳清組 (p<0.05)。於抗過敏試驗中證實,乳清發酵液可顯著誘導致敏脾臟細胞分泌 IL-12 並抑制其分泌 IL-4 細胞激素,使其趨向 Th1 環境。經有效成分特性分析得知,發酵乳清之免疫機能性主要受 Lb. kefiranofaciens M1上之肽聚醣 (peptidoglycan) 調控。乳清水解液在抗氧化活性之研究上,大部分樣品在不同檢測系統可表現不同程度的抗氧化能力。在清除 2,2-diphenyl-1-picrylhydrazyl (DPPH) 自由基的能力上,以鮮乳清組之清除率高於濃縮乳清組,且以中性蛋白酶水解鮮乳清可得最高清除率。螯合銅離子能力則以胃蛋白酶水解組最佳,但乳清蛋白水解液各組在亞鐵離子螯合力上皆不佳。在探討乳清水解液之抗高血壓效果上,以鹼性蛋白酶水解濃縮乳清蛋白組具有最高之血管收縮素轉化酶 (angiotensin I-converting enzyme, ACE) 抑制率,將其以分子篩區分分子量大小並做活性試驗,得知水解液之肽片段分子量越小對 ACE 之抑制效果越佳,將其進一步以管柱純化後可得分子量約在 262.37 Da 之 ACE 抑制肽。
綜合上述結果得知,本實驗將乳清蛋白經不同酵素與微生物水解,可成功製備出具抗過敏、抗氧化與抗高血壓等不同機能性之水解液。未來則須經進一步純化提升其效果。
Whey is a byproduct of cheese manufacture resulting from the coagulation. Bioactive peptides derived from whey protein are widely investigated and their amino acid sequences have been identified. Fermentation by microorganisms and enzymatic hydrolysis with digestive enzymes and protease result in their release. Thus, the objective of this study was to investigate the effects of different hydrolytic reactions (alcalase, neatrase, pepsin, Lb. kefiranofaciens M1 (M1)) on in vitro biological properties, such as antihypertensive, antioxidative and immunomodulatory reaction of whey protein.
Immunomodulatory results demonstrated that whey protein hydrolysates (WPHs) from alcalase could significantly induce the production of TNF-α and IL-12 in murine macrophage cell line (RAW 264.7) and murine splenocytes. Further evaluating the effects of the WPHs obtained from combination of alcalase hydrolysis and Lb. kefiranofaciens M1 fermentation on cytokine production displayed that the secretion of cytokines induced by WPHs from Lb. kefiranofaciens M1 and combination group significantly higher than WPHs from alcalase only and whey control on both cells. In addition, Th2-polarized splenocytes revealed that milk whey fermented by Lb. kefiranofaciens M1 had IL-12 inducing and IL-4 repressing activities. These results suggest that the whey protein hydrolysates from Lb. kefiranofaciens M1 may be able to direct the Th1/Th2 balance toward Th1. The putative immunomodulin in the whey protein hydrolysates from Lb. kefiranofaciens M1 might be peptidoglycans in Lb. kefiranofaciens M1. Antioxidant results indicated that WPHs obtained from neutrase in fresh whey exhibited the highest DPPH radical-scavenging activity compared with other treatments. In addition, evaluation of chelating ion ability showed that WPHs hydrolyzed by pepsin had the highest ability of Cu2+ chelation. In angiotensin I-converting enzyme (ACE) inhibitory activity, WPHs obtained from neutrase in WPC exhibited the highest ACE inhibitory activity. Further purification by microfiltration and size exclusion chromatography, one peptide with molecular mass 262.37 Da showed the highest ACE inhibitory activity. The sequence of this peptide will be determined in the near future.
In conclusion, we successfully manufactured whey protein hydrolysates which contain antihypertention, antioxidation and immunomodulation properties by different hydrolytic reactions. In the future, the animal tests will be conducted to verify the in vitro biological effects of whey protein hydrolysates and the purified biological peptides of whey protein will be further identified to boost the biological effects.
口試委員會審定書
誌謝
目錄 I
圖目錄 V
中文摘要 i
英文摘要 iii
緒言 v
壹、 文獻檢討 1
一、 乳清蛋白簡介 1
(一) 乳清蛋白 1
(二) 乳清蛋白之組成 1
二、 生物活性肽簡介 6
(一) 肽對於生物體之重要性 6
(二) 生物活性肽之製備 6
(三) 乳清蛋白源生物活性肽之機能性 9
貳、 材料與方法 41
第一部分:乳清蛋白水解液製備及基本成分 41
第二部分:乳清蛋白水解液之免疫機能性 47
第三部分:乳清蛋白水解液之抗氧化機能性 54
第四部分:乳清蛋白水解液之抗高血壓機能性 57
參、 結果與討論 63
第一部份:乳清蛋白水解液製備及基本成分 63
一、 乳清蛋白水解液製備 63
(一) 基本組成分 63
(二) 蛋白水解酵素最佳作用溫度試驗 64
(三) 乳清蛋白水解液之 pH 值與酸度變化 65
(四) 乳清蛋白水解液之肽濃度變化 66
二、 乳清發酵液製備 72
(一) 乳清蛋白液中Lb. kefiranofaciens M1菌株之生長 72
(二) 乳清蛋白發酵液之pH值與酸度 72
(三) 乳清蛋白發酵液之肽濃度變化 73
第二部份:乳清蛋白水解液之免疫機能性分析 78
一、 乳清水解液誘導免疫細胞分泌細胞激素之影響 78
(一) 乳清水解液對 RAW 264.7細胞株上之影響 78
(二) 乳清水解液對脾臟細胞之影響 78
二、 乳清發酵液誘導免疫細胞分泌細胞激素之影響 84
(一) 乳清發酵液對 RAW 264.7 細胞株之影響 84
(二) 乳清發酵液在脾臟細胞上之影響 84
三、 乳清發酵液抗過敏試驗 89
四、 有效成分特性分析 91
(一) 確認有效物質 91
(二) 確認有效部位 91
第三部份:乳清蛋白水解液之抗氧化機能性分析 97
一、 乳清蛋白水解液清除 DPPH自由基之能力 97
二、 乳清蛋白水解液螯合亞鐵離子能力 100
三、 乳清蛋白水解液螯合銅離子能力 102
第四部份:乳清蛋白水解液之抗高血壓機能性分析 104
一、 乳清蛋白水解液抑制 ACE 能力 104
二、 鹼性蛋白酶水解液活性位置區分 106
三、 離子子交換樹脂純化 108
四、 乳清蛋白源 ACE 抑制肽分子量 111
肆、 結論 114
伍、 參考文獻 116
陸、 作者小傳 136
丁克祥。1996。SOD 生物醫學淺論。藝軒出版社。台北。台灣。pp: 73-95。
中國國家標準。1982。乳品檢驗法,CNS3443,3449,5034。經濟部國家檢驗局。台北。台灣。
文紀茹。2005。蛋殼膜膠原蛋白之萃取及其水解液機能性之研究。碩士論文。國立台灣大學畜產學系。
王翰聰。2004。瘤胃系菌纖維及蛋白質分解酵素之生產與利用。博士論文。國立台灣大學畜產學系。
林慶文。1993。乳製品之特性與機能。華香園出版社。台北。台灣。pp: 182-189。
賴滋漢、賴業超。1994。食品科技辭典。精華出版社。台北。台灣。pp: 1072-1072。
許佳憲。2006。應用序列二次規畫法開發益生菌乳錠。碩士論文。國立台灣大學畜產學系。
Abubakar, A., T. Saito, H. Kitazawa, Y. Kawai, and T. Itoh. 1998. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 81: 3131-3138.
Adler-Nissen, J. 1986. Enzymatic hydrolysis of food proteins. Elsevier applied science publisher, New Tork, pp: 201.
Agostoni, A., and M. Cicardi. 2001. Drug-Induced angioedema without urticaria: incidence, prevention and management. Drug Saf. 24: 599-605.
Anderson, M. 1981. Inhibition of lipolysis in bovine milk by proteose peptone. J. Dairy Res. 48: 247-252.
A.O.A.C. 1990. Official methods of abalysis. 928.08 Nitrogen in meet: Kjeldahl method. 15th ed. Association of Official Analytical Chemists, Washington, D. C.
Axelsson, L., A. Holck, S. E. Birkeland, T. Aukrust, and H. Blom. 1993. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl. Environ. Microbiol. 59: 2868-2875.
Beaulieu, J., C. Dupont, and P. Lemieux. 2006. Whey proteins and peptides: beneficial effects on immune health. Therapy. 3: 69-78.
Bellamy, W., M. Takase, H. Wakabayashi, K. Kawase, and M. Tomita. 1992. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Microbiol. 73: 472 - 479.
Benjakul, S., and M. T. Morrissey. 1997. Protein hydrolysates from pacific whiting solid wastes. J. Agric. Food Chem. 45: 3423–3430.
Berthou, J., D. Migliore-Samour, A. Lifchitz, J. Delettre, F. Floc’h, and P. Jolles. 1987. Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. FEBS Lett. 218: 55-58.
Blanc, W. A. 1981. Pathology of the placenta, membranes, and umbilical cord in bacterial, fungal, and viral infections in man. Monogr Pathol. 22: 67-132.
Bogdanov, I. G., P. G. Dalev, A. I. Gurevich, M. N. Kolosov, V. P. Malékova, L. A. Plemyannikova, and I. B. Sorokina. 1975. Antitumour glycopeptides from Lactobacillus bulgaricus cell wall. FEBS Lett. 57: 259-261.
Bouhallab, S., D. Mollě, and J. Léonil. 1992. Tryptic hydrolysis of caseinomacropeptide in membrane reactor: Preparation of bioactive peptides. Biotechnol. Lett. 14: 805-810.
Bouhallab, S., C. Favrot, and J. L. Maubois. 1993. Growth-promoting activity of tryptic digest of caseinomacropeptide for Lactococcus lactis subsp. Lait. 73: 73-77.
Bounous, G., and P. A. Kongshavn. 1982. Influence of dietary proteins on the immune system of mice. J. Nutr. 112: 1745-1755.
Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. Res. 28: 25-30.
Brantl, V., and H. Teschemacher. 1979. A material with opioid activity in bovine milk and milk products. Naunyn Schmiedebergs Arch. Pharmacol. 306: 301-304.
Brew, K., T. C. Vanaman, and R. L. Hill. 1968. The role of α-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc. Natl. Acad. Sci. U.S.A. 59: 491-497.
Brix, S., L. Bovetto, R. Fritsche, V. Barkholt, and H. Frokiaer. 2003. Immunostimulatory potential of β-lactoglobulin preparations: Effects caused by endotoxin contamination. J. Allergy Clin. Immunol. 112: 1216-1222.
Brunner, J. R. 1981. Cow milk proteins: twenty-five years of progress. J. Dairy Sci. 64: 1038-1054
Bucci, L.R., and L. Unlu. 2000. Protein and amino acid supplements in exercise and sport. In: Energyyielding macronutrients and energy metabolism in sports nutrition. CRC Press. 191-212.
Bullen, J. J., H. J. Rogers, P. B. Spalding, and C. G. Ward. 2005. Iron and infection: the heart of the matter. FEMS. Immunol. Med. Microbiol. 43: 325-330.
Byun, H. G., and S. K. Kim. 2002. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol. 35:239-243.
Chatterton, D. E. W., G. Smithers, P. Roupas, and A. Brodkorb. 2006. Bioactivity of ;β- lactoglobulin and α-lactabumin: Technological implications for processing. Int. Dairy J. 16: 1229-1240.
Chaturvedi, K., K. H. Christoffers, K. Singh, and R. D. Howells. 2000. Structure and regulation of opiod receptors. Biopolymers 55: 334-346.
Cheison, S. C., Z. Wang, and S. Y. Xu. 2007. Use of response surface methodology to optimise the hydrolysis of whey protein isolate in a tangential flow filter membrane reactor. J. Food Process Eng. 80: 1134-1145.
Chen, H. C., S. Y. Wang, and M. J. Chen. 2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25: 492-501.
Cheung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo, and D. W. Cushman. 1980. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 25: 401-407.
Chiang, S. H., and C. Chang. 2005. Antioxidant properties of caseins and whey proteins from colostrums. J. Food and Drug Analysis. 13: 57-63.
Church, F. C., H. E. Swaisgood, D. H. Porter, and G. L. Catignani. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66: 1219-1227.
Clare, D. A., and H. E. Swaisgood. 2000. Bioactive milk peptides: a prospectus. J. Dairy Sci. 83: 1187-1195.
Colbert, L. B., and E. A. Decker. 1991. Antioxidant activity of an ultrafiltration permeate from acid whey. J. Food Sci. 56: 1248-1250.
Coppen, P. P. 1983. Use of antioxidants in foods. J. C. Allen and R. J. Hamilton, Eds. Applied science, London. pp: 67-93.
Costa, E. L., A. R. Almeida, F. M. Netto, and J. A. R. Gontijo. 2005. Effect of intraperitoneally administered hydrolyzed whey protein on blood pressure and renal sodium handling in awake spontaneously hypertensive rats. Braz. J. Med. Biol. Res. 38: 1817-1824.
Costa, E. L., J. A. R. Gontijo, and F. M. Netto. 2007. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. Int. Dairy J. 17: 623-629.
Cross, M. L., and H. S. Gill. 1999. Modulation of immune function by a modified bovine whey protein concentrate. Immunol. Cell Biol. 77: 345-350.
Cushman, D. W., and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648.
Davidsson, L., P. Kastenmayer, M. Yuen, and B. Lönnerdal. 1994. Influence of lactoferrin on iron absorption from human milk in infants. Pediatr. Res. 35: 117-124.
Diaz-Guerra, M. J. M., M. Velasco, P. Martin-Sanz, and L. Bosca. 1996. Evidence for common mechanisms in the transcriptional control of type II nitric oxide synthase in isolated hepatocytes. J. Biol. Chem. 271: 30114-30120.
Didelot, S., S. Bordenave-Juchereau, E. Rosenfeld, I. Fruitier-Arnaudin, J. M. Piot, and F. Sannier. 2006. Preparation of angiotensin-I-converting enzyme inhibitory hydrolysates from unsupplemented caprine whey fermentation by various cheese microflora. Int. Dairy J. 16: 976–983.
Dinis, T. C. P., V. M. C. Moadeira, and L. M. Almeida. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitord of membrane lipid peroxidation and as peroxyl radical seavengers. Arch. Biochem. Biophys. 315: 161-169.
Dziarski, R. 2003. Recognition of bacterial peptidoglycan by the innate immune system. Cell. Mol. Life Sci. 60: 1793-1804.
Dziezak, J. D. 1986. Preservatives: Antioxidants. Food Tech. 40: 94-102.
Elias, R. J., J. D. Bridgewater, R. W. Vachet, T. Waraho, D. J. McClements, and E. A. Decker. 2006. Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions. J. Agric. Food Chem. 54: 9565- 9572.
Eich, R. H., R. J. Peters, R. P. Cuddy, H. Smulyan, and R. H. Lyons. 1962. The hemodynamics in labile hypertension. Am. Heart J. 63: 188.
Erdos, E. G. 1975. Angiotensin I converting enzyme. Circ. Res. 36:247-255.
Etcheverry, P., J. C. Wallingford, D. D. Miller, and R. P. Glahn. 2004. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: a comparison study. J. Dairy Sci. 87: 3629-3637.
Farmer, E. H., G. F. Bloomfield, A. Sundralingam, and D. A. Sutton. 1942. The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans. Faraday Soc. 38: 348-356.
Ferreira, I. M. P. L. V. O., O. Pinho, M. V. Mota, P. Tavares, A. Pereira, M. P. Gonçalves, D. Torres, C. Rocha, and J. A. Teixeira. 2007. Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. Int. Dairy J. 17: 481-487.
FitzGerald, R. J., and H. Meisel. 1999. Lactokinins: Whey protein-derived ACE inhibitory peptides. Die. Nahrung. 43: 165 – 167.
FitzGerald, R. J., B. A. Murray, and D. J. Walsh. 2004. Hypotensive peptides from milk proteins. J. Nutr. 134: 980-988.
Fleisher, T. A., and J. J. H. Bleesing. 2000. Immune function. Pediatr. Clin. North Am. 6: 1197-1209.
Fooks, L. J., R. Fuller, and G. R. Gibson. 1999. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 9: 53-61.
Fox, N. J., and G. W. Stachowiak. 2007. Vegetable oil-based lubricants - A review of oxidation. Tribology Int. 40: 1035-1046.
Fraga, C. G. 2005. Relevance, essentiality and toxicity of trace elements in human health. Mol. aspwccts.med. 26: 235-244.
Fujiwara, D., S. Inoue, H. Wakabayashi, and T. Fujii. 2004. The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int. Arch Allergy Immunuol. 135: 205-215.
Gattegno, L., D. Migliore-Samour, L. Saffar, and P. Jolles. 1988. Enhancement of phagocytic activity of human monocytic-macrophagic cells by immunostimulating peptides from human casein. Immunol. Lett. 18: 27-31.
Gauthier, S. F., and Y. Pouliot. 2003. Functional and biological properties of peptides obtained by enzymatic hydrolysis of whey proteins. J. Dairy Sci. 86: 78-87.
Gauthier, S. F., Y. Pouliot, and D. Saint-Sauveur. 2006. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 16: 1314-1323.
Gill, H. S., F. Doull, K. J. Rutherfurd, and M. L. Cross. 2000. Immunoregulatory peptides in bovine milk. Br. J. Nutr. 84: 111-117.
Gómez-Ruiz, J. Á., M. Ramos, and I. Recio. 2002. Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int. Dairy J. 12: 697-706 .
Gordon, W. G., and E. B. Kalan. 1974. Proteins of milk in fundamentals of dairy chemistry. The AVI Publishing company, Inc., 87-124.
Grimble, G. K., R. G. Rees, P. P. Keohane, T. Cartwright, M. Desreumaux, and D. B. Silk. 1987. Effect of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum. Gastroenterology. 92: 136-142.
Grobben, G. J., W. H. M. Van Casteren, H. A. Schols, A. Oosterveld, G. Sala, M. R. Smith, J. Sikkema, and J. A. M. de Bont. 1997. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB. Appl. Microbiol. Biotechnol. 48: 516-521.
Guerard, F., L. Dufosse, D. De La Broise, and A. Binet. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using alcalase. J. Mol. Catal., B Enzym. 11: 1051-1059.
Gutteridge, J. M. C., and B. Halliwell. 1993. Invited review free radicals in disease processes: a compilation of cause and consequence. Free Radic. Res. 19: 141-158.
Gutteridge, J. M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41: 1819-1828.
Ha, E., and M. B. Zemel. 2003. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J. Nutr. Biochem. 14: 251- 258.
Haileselassie, S. S., B. H. Lee, and B. F. Gibbs. 1999. Purification and identification of potentially bioactive peptides from enzyme-modified cheese. J. Dairy Sci. 82: 1612-1617.
Hansen, K., U. Nyman, U. W. Smitt, A. Adsersen, L. Gudiksen, S. Rajasekharan, and P. Pushpangadan. 1995. In vitro screening of traditional medicines for anti-hypertensive effect based on inhibition of the angiotensin converting enzyme (ACE). J. Ethnopharmacology. 48: 43-51.
Havenaar, R., and J. H. H. Hulis isn’t Veld. 1992. Probitics: a general view. Chapman and Hall. New York. pp: 209-224.
Heo, S. J., E. J. Park, K. W. Lee, and Y. J. Jeon. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96: 1613-1623.
Hernandez-Ledesma, B., A. Davalos, B. Bartolome, and L. Amigo. 2005. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 53: 588–593.
Hong, W. S., H. C. Chen, Y. P. Chen, and M. J. Chen. 2009. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int. Dairy J. 19: 244-251.
Hudson, M. T. 1990. Food antioxidant. Elsevierscience publishing Co. New York.
Huffman, L. M., and W. J. Harper. 1999. Maximizing the value of milk through separation technologies. J. Dairy Sci. 82: 2238-2244.
Hyman, B. N., and M. Moser. 1996. Hypertension update. Surv. Ophthalmol. 41: 79-89.
Idota, T., H. Kawakami, and I. Nakajima. 1994. Groth-promoting effects of N-acetylneuraminic acid-containing substances on Bifidobacteria. Biosci. Biotechnol. Biochem. 58: 1720-1722.
Janeka, A., J. Fichna, and T. Janecki. 2004. Opioid receptors and their ligands. Curr. Topics Med. Chem. 4: 1-17.
Jao, C. L., and W. C. Ko. 2002. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish. Sci. 68: 430-435.
Jaziri, M., D. Migliore-Samour, M. R. Casabianca-Pignede, K. Keddad, J. L. Morgat, and P. Jolle’s. 1992. Specific binding sites on human phagocytic blood cells for Gly-Leu-Phe and Val-Glu-Pro-Ile-Pro-Tyr, immunostimulating peptides from human milk proteins. Biochim. Biophys. Acta. 1160: 251-261.
Jenness, R. 1974. Biosynthesis and composition of milk. J. Invest. Dermatol. 63: 109–118.
Jenness, R. 1980. Composition and Characteristics of Goat Milk: Review 1968-1979. J. Dairy Sci. 63: 1605-1630.
Julius, S., L. Krause, N. J. Schork, A. D. Mejia, and K. A. Jones. 1991. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J. Hypertens. 9: 77-84.
Kabadjova-Hristova, P., S. Bakalova, B. Gocheva, and P. Moncheva, 2006. Evidence for proteolytic activity of Lactobacilli isolated from kefir grains. Biotechnol. Biotechnol. Equip. 20: 89-94.
Kato, I., K. Tanaka, and T. Yokokura. 1999. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-γ by mouse splenocytes. Int. J. Immunopharmacol. 21: 121-131.
Kammoun, R., S. Bejar, and R. Ellouz. 2003. Protein size distribution and inhibitory effect of wheat hydrolysates on Neutrase®. Bioresour. Technol. 90: 249-254.
Kayser, H., and H. Meisel. 1996. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Letters. 383: 18-20.
Keating, L., C. Kelly, and W. Fogarty. 1998. Mechanism of action and the substrate-dependent pH maximum shift of the α-amylase of Bacillus coagulans. Carbohydr. Res. 309: 311-318.
Kehrer, J. P. 1993. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23: 21-48.
Kelleher, S. L., D. Chatterton, K. Nielsen, and B. lonnerdal. 2003. Glycomacropeptide and α-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 77: 1261-1268.
Kim, W. S., M. Ohashi, T. Tanaka, H. Kumura, G. Y. Kim, I. K. Kwon. J. S. Goh, and K. Shimazki. 2004. Growth-promoting effects of lactoferrin on L. acidophilus and Bifidobacterium spp. Biometals 17: 279-283.
Kindt, T. J., R. A. Goldsby, B. A. Osborne, and J. Kuby. 2007. Kuby immunology. W.H. Freeman. New York.
Kinekawa, Y. I., and N. Kitabatake. 1996. Purificaiton of ß-lactoglobulin from whey protein concentrate by pepsin treatment. J. Dairy Sci. 79: 350-356.
Kittss, D. 1997. An evaluation of the multiple effects of antioxidant vitamins. Trends Food Sci. Tech. 8: 198-203.
Kochnar, S. P., and J. B. Rossel. 1990. Dection, Estimation, and evalution of autoxidnts in food systems. Ch. 2, in food antioxidant, B. J. F. Huson, Ed., Elsevier Applied Sci., London, and New York. 19-64.
Kong, B., and Y. L. Xiong. 2006. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action. J. Agric. Food Chem. 16: 6059-6068.
Korhonen, H., A. Pihlanto-Leppaelae, P. Rantamaeki, and T. Tupasela. 1998. The functional and biological properties of whey proteins: prospects for the development of functional foods. Agric. Food Sci. Finland. 7: 283-296.
Korhonen, H., and A. Pihlanto-Leppala. 2004. Handbook of Functional Dairy Products. CRC Press. New York. pp: 109-120.
Kroger, M., 1995. Quality of yourt. J. Dairy Sci. 79: 937-942.
Krinsky, N. I. 1992. Mechanism of action of biological antioxidants. Exp. Biol. Med. 200: 248-254.
Kunji, E. R. S., I. Mierau, A. Hagting, and B. Poolman. 1996. The proteotytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek. 70: 187-221.
Labuza, T. P. 1971. Kinetics of lipid oxidantion in food. CRC. Crit Rev. Food Tech. 2: 355-405.
Lacey, J. M., and D. W. Wilmore. 1990. Is glutamine a conditionally essential amino acid? Nutr. Rev. 48: 297-309.
Lambert, L. A., H. Perri, and T. J. Meehan. 2005. Evolution of duplications in the transferrin family of proteins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 142: 129-141.
Lee, Y. M., T. Skurk, M. Henning, and H. Hauner. 2007. Effect of supplementation with whey peptides on blood pressure in patients with mild hypertension. Eur. J. Nutr. 46: 21-27.
Leibach, F. H., and V. Ganapathy. 1996. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16: 99-119.
Li, E. W., and Y. Mine. 2004. Immunoenhancing effects of bovine glycomacropeptide and its derivatives on the proliferative response and phagocytic activities of human macrophagelike cells, U937. J. Agric. Food Chem. 52: 2704-2708.
Li, G. H., J. Z. Wan, G. W. Le, and Y. H. Shi. 2005. Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin-I-converting enzyme inhibitory activity. Food Sci. Technol. Int. 11: 281-287.
Li, L, J. Wang, M. Zhao, C. Cui, and Y. Jiang. 2006. Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase. Food Technol. Biotechnol. 44: 441-448.
Lo, W. M. Y., and E. C. Y. Li-Chan. 2005. Angiotensin-I-Converting enzyme inhibitory peptides from in vitro pepsin−pancreatin digestion of soy protein. J. Agric. Food Chem. 53: 3369–3376.
Lonnerdal, B. 2003. Nutritional and physiologic significance of human milk proteins. Am. J. Clin. 77: 1537-1543.
Lothian, J. B., V. Grey, and L. C. Lands. 2006. Effect of whey protein to modulate immune response in children with atopic asthma. Int. J. Food Sci. Nutr. 57: 204-211.
Lukaski, H. C. 2004. Vitamin and mineral status: Effect on physical performance. Nutrition. 20: 632-644.
Mahmud, R., M. A. Matn, and H. Otani 2004. Mitogenic effect of bovine β-lactoglobulin and its proteolytic digests on mouse spleen resting cells. Pak. J. Biol. Sci. 7: 2045-2050.
Manger, W. M., and I. H. Page. 1982. An overview of current concepts regarding the pathogenesis and pathophysiology of hypertension. Am. Heart J. 104: 365-372.
Marshall, V. M., 1987. Fermented milk and their future. I. Micrological aspects. J. Dairy Sci. 54: 559-574.
Maruyama, S., and H. Suzuki. 1982. A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agric. Biol. Chem. 5: 1393-1394.
Mata, L., L. Sanchez, and M. Calvo. 1997. Cadmium uptake by Caco-2 cells. Effect of some milk components. Chem. Biol. Interact. 100: 277-288.
Matar, C., J. Goulet, R. L. Bernier, and E. Brochu. 2000. Bioactive peptides from fermented foods: their role in the immune system. Kluwer Academic Publishers, Netherlands. 273.
Matsukawa, R., Z. Dubinsky, E. Kishimoto, K. Masaki, Y. Masuda, T. Takeuchi, M. Chihara, Y. Yamamoto, E. Niki, and I. Karube. 1997. A comparison of screening methods for antioxidant activity in seaweeds. 9: 29-35.
Mattsby-Baltzer, I., A. Roseanu, C. Motas, J. Elverfors, I. Engberg, and L. A. Hanson. 1996. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr. Res. 40: 257-262.
McComas, K. A., and S. E. Gilliland. 2003. Growth of probiotic and traditional yogurt cultures in milk supplemented with whey protein hydrolysate. J. Food Sci. 68: 2090-2095.
Meisel, H. 1998. Overview on milk protein-derived peptides. Int. Dairy J. 8: 363-373.
Meisel, H., and W. Bockelmann. 1999. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek. 76: 207-215.
Meisel, H., D. J. Walsh, B. Murray, and R. J. FitzGerald. 2006. ACE inhibitory peptides. CRC Press. New York. pp: 285-295.
Mercier, A., S. F. Gauthier, and I. Fliss. 2004. Immunomodulating effects of whey proteins and their enzymatic digests. Int. Dairy J. 14: 175-183.
Miyauchi, H., A. Kaino, I. Shinoda, Y. Fukuwatari, and H. Hayasawa. 1997. Immunomodulatory effect of bovine lactoferrin pepsin hydrolysate on murine splenocytes and Peyer’s patch cells. J. Dairy Sci. 80: 2330-2339.
Miyauchi, H., S. Hashimoto, M. Nakajima, I. Shinoda, Y. Fukuwatari, and H. Hayasawa, 1998. Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: identification of its active domain. Cell. Immunol. 187: 34-37.
Monnai, M., and H. Otani. 1997. Effect of bovine κ-caseinoglycopeptide on secretion of interleukin-1 family cytokines by P388D1, a line derived from mouse monocyte/macrophage. Milchwissenschaft. 52: 192-196.
Monteleone, I., P. Vavassori, L. Biancone, G. Monteleone, and F. Pallone. 2002. Immunoregulation in the gut: success and failures in human disease. Br. Med. J. 50: 60-64.
Mullally, M.M., H. Meisel, and R. J. FitzGerald. 1996. Synthetic peptides corresponding to α-lactalbumin and β-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity. Biol. Chem. Hoppe-Seyler 377: 259-260.
Mullally, M. M., H. Meisel, and R. J. FitzGerald. 1997. Angiotensin-I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. Int. Dairy J. 7: 299-303.
Murray, B. A., and R. J. FitzGerald. 2007. Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr. Pharm. Des. 13: 773-791.
Ogino, H., F. Watanabe, M. Yamada, S. Nakagawa, T. Hirose, A. Noguchi, M. Yasuda, and H. Ishikawa. 1999. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant pseudomonas aeruginosa PST-01. J. Biosci. Bioeng. 87: 61-68 .
Oka, Y., T. Ibuki, K. Matsumura, M. Namba, Y. Yamazaki, S. Poolec, Y. Tanaka, and S. Kobayashi. Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience. 145: 530-538.
Otani, H., M. Monnai, and A. Hosono. 1992. Bovine κ-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. Milchwissenschaft. 47: 512-515.
Otani, H., and M. Monnai. 1993. Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk κ-casein digests. Food Agric Immunol. 5: 219-229.
Otani, H., and M. Monnai. 1995. Induction of an interleukin-1 receptor antagonist-like component produced from mouse spleen cells by bovine κ-caseinoglycopeptide. Biosci. Biotechnol. Biochem. 59: 1166-1168.
Onwulata, C. I., and P. J. Huth. 2008. Whey processing, functionality and health benefits. Wiley Blackwell. 308.
Otte, J., S. M. Shalaby, M. Zakora, A. H. Pripp, and S. A. El-Shabrawy. 2007. Int. Dairy J. 17: 488-503.
Pedroche, J., M. M. Yust, J. Giron-Calle, M. Alaiz, F. Millan, and J. Vioque. 2002. Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity. Abbreviation: J. Sci. Food Agric. 82: 960-965.
Penas, E., P. Restani, C. Ballabio, G. Prestamo, A. Fiocchi, and R. Gomez. 2006. Evaluation of the residual antigenicity of dairy whey hydrolysates obtained by combination of enzymatic hydrolysis and high-pressure treatment. J. Food Prot. 69: 1707-1712.
Peña-Ramos, E. A., and Y. L. Xiong. 2003. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 64: 259-263.
Peng, X., Y. L. Xiong, and B. Kong. 2009. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem. 113: 196-201.
Permyakov, E. A., and L. J. Berliner. 2000. α-Lactalbumin: Structure and function. FEBS Lett. 473: 269-274.
Petschow, B. W., and R. D. Talbott. 1991. Response of bifidobacterium species to growth promoters in human and cow milk. Pediatr. Res. 29: 208-213.
Petschow, B. W., R. D. Talbott, and R. P. Batema. 1999. Ability of lactoferrin to promote the growth of Bifidobacterium spp. in vitro is independer of receptor binding capacity and iron saturation level. J. Med. Microbiol. 48: 541-549.
Pihlanto-Leppälä, A., T. Rokka, and H. Korhonen. 1998. Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int. Dairy J. 8: 325-331.
Pihlanto-Leppälä, A., P. Koskinen, K. Piilola, and H. Korhonen. 2000. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J. Dairy Res. 67: 53-54.
Pins, J. J., and L. M. Keenak. 2006. Effect of whey peptides on cardiovascular disease risk factors. J. Clin. Nutr. 8: 775-782.
Pintado,M. E., A. E. Pintado, and F. X. Malcata. 1999. Controlled whey protein hydrolysis using two alternative proteases. J Food Process Eng. 42: 1-13.
Puntarulo, S. 2005. Iron, oxidative stress and human health. Mol. Aspect Med. 26: 299-312.
Quaglia, G. B., and E. Orban. 1987. Enzymic solubilisation of proteins of sardine (Sardina pilchardus) by commercial proteases. J. Sci. Food Agric. 38: 263-269.
Ramarathnam, N., T. Osawa, H. Ochi, and S. Kawakishi. 1995. The contribution of plant food antioxidants to human health. Trend Food Sci. Technol. 6: 75-82.
Roth, J. A., D. E. Frank, P. Weighner, and M. Weighner. 2001. Enhancement of neutrophil function by ultrafiltered bovine whey. J. Dairy Sci. 84: 824-829.
Ryhänen, E. L., A. Pihlanto-Leppälä, and E. Pahkala. 2001. A new type of ripened, low-fat cheese with bioactive properties. Int. Dairy J. 11: 441-447.
Saint-Sauveur, D., S. F. Gauthier, Y. Boutin, and A. Montoni. 2008. Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. Int. Dairy J. 18: 260-270.
Schiffrin, E. J., D. Brassart, A. L. Servin, F. Rochat, and A Donnet-Hughes. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am. J. Clin. Nutr. 66: 515-520.
Sesoko, S., and Y. Kaneko. 1985. Cough associated with the use of captopril. Abbreviation: Arch. Intern. Med. 145: 1524-1526.
Seth, A., and R. R. Mahoney. 2001. Iron chelation by digests of insoluble chicken muscle protein: the role of histidine residues. J. Sci. Food Agric. 82: 183-187.
Shida, K., K. Nagami, and K. Takamizawa. 1992. Effect of milk components on IgA production in Peyer’s patch cell cultures from mouse. Biosci. Biotechnol. Biochem. 56: 1874-1875.
Shida, K, K. Makino, A. Morishita, K. Takamizawa, S. Hachimura, A. Ametani, T. Sato, Y. Kumagai, S. Habu, and S. Kaminogawa. 1998. Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int. J. Immunopharmacol.
Shida, K., K. Kiyoshima-Shibata, M. Nagaoka, K. Watanabe, and M. Nanno. 2006. Induction of interleukin-12 by lactobacillus strains having a rigid cell wall resistant to intracellular digestion. J. Dairy Sci. 89: 3306-3317.
Shinoda, I., M. Takase, Y. Fukuwatari, S. Shimamura, M. Koller, and W. Konig, 1996. Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci. Biotechnol. Biochem. 60: 521-523.
Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Shimizu, K., H. Matsuzawa, K. Okada, S. Tazume, S. Dosako, and Y. Kawasaki. 1996. Lactoferrin-mediated protection of the host from murine cytomegalovirus infection by a T-cell-dependent augmentation of natural killer cell activity. Arch. Virol. 141: 1875-1889.
Teschemacher, H., and H. Scheffler. 1993. Milk protein-derived opioid peptides: History and recent development. In New Perspectives in Infant Nutrition Symposium Antwerp. Thieme Medical Publishers. New York. 133-137.
Teschemacher, H., 2003. Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 9: 1331-1344.
Thiansilakul, Y., S. Benjakul, and F. Shahidi. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J. Food Biochem. 31: 266–287.
Tufano, M. A., G. Cipollaro De Lero, and R. Innielo. 1991. Protein A and other surface components of staphylococcus aureus stimulate production of IL-1α, IL-6, TNF and IFN-γ. Eur. Cytokine Netw. 2: 361.
Turgeon, S. L., and S. F. Gauthier. 1990. Whey peptide fractions obtained with a two-step ultrafiltration process: production and characterization. J. Food Sci. 55: 106-110.
Uhlig, H. 1998. Industrial enzymes and their applications. Wiley-IEEE Press. New Jersey. pp: 153.
Uchida, T., T. Oda, K. Sato, and H. Kawakami. 2006. Availability of lactoferrin as a natural solubilizer of iron for food products. Int. Dairy J. 16: 95-101.
Vegard, G. E., T. Langsrud, and C. Svennning. 2000. Mineral-binding milk proteins and peptides: Occurrence, biochemical and technological characteristics. Br. J. Nutr. 84: 91-98.
Velletri, P. A. 1985. Testicular angiotensin I-converting enzyme (EC 3.4. 15.1). Life Sci. 36: 1597-1608.
Vinderola, G., G. Perdigon, J. Duarte, D. Thangavel, E. Farnworth, and C. Matar. 2006. Effects of kefir fractions on innate immunity. Immunobiology. 211: 149-156.
Vyas, H. K., and P. S. Tong. 2004. Impact of source and level of calcium fortification on the heat stability of resconstitued skim milk powder. J. Dairy Sci. 87: 1177-1180.
Wade, A. M., and H. N. Tucker. 1998. Antioxidant characteristics of L-histidine. J. Nutr. Biochem. 9: 308-315.
Wakabayashi, H., M. Takase, and M. Tomita. 2003. Lactoferricin derived from milk protein lactoferrin. Curr. Pharm. Des. 9: 1277-1287.
Walzem, R. L., C. J. Dillard, and J. B. German. 2002. Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit. Rev. Food Sci. Nutr. 42: 353-375.
Watanabe, A., K. Okada, Y. Shimizu, H. Wakabayashi, K. Higuchi, and K. Niiya. 2000. Nutritional therapy of chronic hepatitis by whey protein (non-heated). J Med. 31: 283-302.
Whitaker, J. R. 2003. Enzymes in Protein Biosynthesis. Food Sci. Technol. Marcel Dekker. New York.
Wong, C. W., A. H. Liu, G. O. Regester, G. L. Francis, and D. L. Watson. 1997. Influence of whey and purified whey proteins on neutrophil functions in sheep. J. Dairy Res. 64: 281-288.
Wong, K. F., N. Middleton, M. Montgomery, M. Dey, and R. I. Carr. 1998. Immunostimulation of murine spleen cells by materials associated with bovine milk protein fractions. J. Dairy Sci. 81: 1825-1832.
Wu, J., and X. Ding. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res. Intern. 35: 367-375.
Xu, R. J. 1998. Bioactive peptides in milk and their biological and health implications. Food rev. int. 14: 1-16.
Yalcin, A. S. 2006. Emerging therapeutic potential of whey proteins and peptides. Curr. Pharm. Des. 12: 1637-1643.
Zapelena, M. J., I. Zalacain, M. P. De Pena, I. Astiasaran, and J. Bello. 1997. Effect of the addition of a neutral proteinase from Bacillus subtilis (Neutrase) on nitrogen fractions and texture of Spanish fermented sausage. J. Agric. Food Chem. 45: 2798-2801.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top