跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許志偉
研究生(外文):Chih-Wei Hsu
論文名稱:界面改質劑與有機添加劑對於聚己基噻吩/無機金屬氧化物太陽能電池之影響與應用研究
論文名稱(外文):Effect of interface modifier and organic additive on photovoltaic properties of poly(3-hexylthiophene)/inorganic metal oxide solar cells
指導教授:王立義
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:191
中文關鍵詞:有機太陽能電池自組裝單層膜界面改質劑二氧化鈦氧化鋅聚己基噻奈米棒狀粒子紫外光濾光層CuPc碳六十衍生物
外文關鍵詞:Organic solar cellself-assembled monolayersinterface modifiertitanium dioxideZinc oxidePoly (3-hexylthiophene)NanorodsUV cutterCuPcC60 derivative
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的研究中,我們以界面改質的方式來改質無機金屬氧化物並將其與有機導電高分子製備成太陽能電池元件,以此一有機/無機太陽能電池來做一有系統地討論界面改質劑的影響與其在太陽能電池的應用方式:
首先,我們合成出一系列含有不同共軛長度結構(T系列)與含有不同烷基長碳鏈鏈長結構(N系列)之磷酸小分子,並將其以自組裝單層膜的方法應用在一最乾淨簡單的聚己基噻吩/二氧化鈦雙層結構系統中來探討含不同化學結構之界面改質劑對於太陽電池的光伏打效應的影響: 發現這些改質劑的存在並不影響P3HT的吸光行為,但螢光焠滅效率卻隨著界面改質劑的能隙值縮減與LUMO的下降而增加,顯示有機/無機界面間電荷分離的能力受到界面改質劑的影響,並隨著界面改質劑的能隙值縮減與LUMO的下降而有所提升;而這些具有不同化學結構之界面改質劑確實會影響元件的表現行為,尤其是在於開路電壓與短路電流,開路電壓會隨著界面改質劑的能隙值縮減與LUMO的下降而變小,但幾乎不隨界面改質劑的烷基碳鏈長度而變;而短路電流卻會隨著界面改質劑的能隙值縮減、LUMO的下降與烷基碳鏈的縮短而變大。接著,我們進而將此含共軛結構之有機小分子作為界面活性劑,直接應用在溶液製程(solution process)的混掺型太陽能電池系統中以此來改善與探討在混掺型太陽能電池結構中的經界面改質劑改質之無機奈米粒子與有機導電性高分子相容性與光伏打效應的影響: 藉由TEM可發現以界面改質劑改質過之氧化鋅奈米棒狀粒子在P3HT中產生如網狀般之連續通路而沒有各自聚集的現象,由此可知其兩相之相容性變好,因此兩相的接觸面積可以大幅地提升。而藉由改質過之氧化鋅奈米棒狀粒子所製備的混掺元件與無改質的氧化鋅奈米棒狀粒子所製備的元件比較起來,其PCE值均可看出有明顯地提升,另外,我們亦可觀察到界面改質劑改質過之氧化鋅奈米棒狀粒子與P3HT混掺元件的Voc值同樣會隨著界面改質劑能隙值減少與LUMO下降而降低而Jsc值則會增加,此現象與雙層接合結構元件所表現出的現象吻合。
第三部份我們則是利用有機金屬分子copper phthalocyanine (CuPc)直接蒸鍍在太陽能電池元件結構中,利用其在300至400nm之紫外光範圍具有強吸收的特性來當成一有效的紫外光濾光層來減少氧化鋅表面hole trapping level的產生,進而以此來直接取代PEDOT:PSS以及改善元件的光伏打特性及效能。結果發現CuPc濾光層確實能夠避免氧化鋅奈米棒狀粒子因吸收了300至400nm之紫外光而產生元件漏電的現象;並且,於照光情況下我們可知在加入CuPc濾光層後元件之開環電壓與填充因子會隨著CuPc膜厚的增加而有顯著的提昇,不過我們也可觀察到隨著CuPc膜厚的增加,元件的短路電流反而越小。另外,藉由EIS量測我們可知隨著CuPc濾光層厚度的增加R2電阻(並聯電阻)也隨之增大。而根據理論公式我們可知Rp並聯電阻越大,則開環電壓值亦越大;我們的實驗結果完全符合理論公式所述。
因此,藉由以CuPc為濾光層所得的結果與概念,並且結合界面改質劑應用的構想,所以我們更進一部地利用在300至400nm之紫外光範圍具有強吸收的碳六十衍生物(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子及有機染料分子(N3 dye)作為界面改質劑及紫外光濾光器,直接將紫外光濾光層包覆在氧化鋅奈米棒狀粒子表面以期減少氧化鋅表面hole trapping level的產生,進而以此來改善元件的光伏打特性及效能。我們發現對於以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質製備的元件部份,確實有效地改善元件漏電的現象並且以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子所改質的元件所表現出的光電轉換效率比以N3 dye分子所製備的元件效能來的好,IPCE量測亦顯示(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子所改質製備之元件具有最佳的IPCE效率,可高達17.5%。
In this study, we investigate the effect of interface modification of metal oxide on photovoltaic properties of conducting polymer/metal oxide solar cells, systematically.
First, two series of organic molecules with different chemical structures, 2-oligothiophene phosphonic acid with various thiophene rings (T-series) and ω-(2-thienyl) alkyl phosphonic acid with various alkyl chain lengths (N-series), as interface modifier, to investigate the structural effect of modifiers on the performance of organic/inorganic bilayered photovoltaic devices. The results indicate the interface modifier does not affect absorption behavior of P3HT, but PL quenching efficiency as increased with energy bandgap or LUMO of interface modifier decreasing. It reveals the charge separation of organic/inorganic interface will be affected by chemical structures of interface modifier. Therefore, these interface modifiers that with different chemical structures will affect the photovoltaic properties of devices, especially in Voc and Jsc. Voc will decrease with energy bandgap or LUMO of interface modifier decreasing, but does not be affected by alkyl chain length of interface modifiers changed. In addition, Jsc will increase with energy bandgap, alkyl chain length or LUMO of interface modifier decreasing.
Second, we apply the above interface modifiers as surfactant in solution process of blend device system. TEM image indicate the modified ZnO nanorods without large scale aggregation and form a continued path way in P3HT matrix. Therefore, the increased compatibility and contact area between P3HT and ZnO nanorods has been demonstrated. PCE value of modified ZnO nanorods/P3HT polymer blend devices are higher than without modified ZnO nanorods prepared devices. Furthermore, the trends of Voc and Jsc of modified ZnO nanorods/P3HT polymer blend solar cell are consisted with above layered system.
Third, we demonstrate a low leakage current in a blend ZnO nanorods/P3HT polymer solar cell aided by an inherent UV-cutter layer (copper phthalocyanine CuPc). The power conversion efficiency is found to be appreciated from 0.15% to 0.44% and the open circuit voltage from 0.23 to 0.60 V, at post-introduction of UV-cutter, predominantly due to the growth in the shunt resistance of the device. Impedance spectroscopy studies revealed a strong negative photovoltaic effect of ZnO with UV-induced hole-trapping leading to the degradation of the solar cells performance. The incorporation of UV-cutter in the device, achieved by direct growth of CuPc layer between nr-ZnO and anode, has clearly promoted the efficiency and device operation satiability.
Finally, we synthesize a C60 derivative, (1,2-methanofullerene C60)-61,61-dicarboxylic acid, with a 300-400nm absorption region as surface UV filtered surfactant to apply in blend ZnO nanorods/P3HT polymer solar cell. The decreased leakage current behavior of blend ZnO nanorods/P3HT polymer solar cell has been demonstrated. PCE value and operation satiability of (1,2-methanofullerene C60)-61,61-dicarboxylic acid modified ZnO nanorods/P3HT devices are better than N3 dye (P type) modified devices. In addition, 17.5% IPCE value of (1,2-methanofullerene C60)-61,61-dicarboxylic acid modified ZnO nanorods/P3HT device has been revealed.
目 錄
致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 XI
表目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池種類 4
1.3 研究動機與目的 7
第二章 文獻回顧 9
2.1 共軛高分子的光伏打效應 9
2.2 太陽能電池各項參數特性分析 12
2.3 高分子太陽能電池的結構 16
2.4 自組裝單層膜...................……………….………………………………….33
2.4.1 自組裝單層膜之介紹…………………………………………………33
2.4.2 自組裝單層膜在異質界面之應用……………………………………36
第三章 二氧化鈦界面改質劑之化學結構對於聚己基噻吩/二氧化鈦雙層結構太陽能電池之光伏打特性影響 39
3.1 引言 39
3.2 實驗 43
3.2.1 化學藥品..............…………………………..…………………………43
3.2.2 實驗儀器..................………………………..…………………………48
3.2.3 實驗步驟...............…...……………………..…………………………50
3.2.3.1 2-Thienylphosphonic acid (T1)之合成.........…………………….50
3.2.3.2 2-Bithiophene phosphonic acid (T2)之合成...........…………..….52
3.2.3.3 2-Terthiophene phosphonic acid (T3)之合成...........……..……...54
3.2.3.4 6-(2-Thienyl)hexyl phosphonic acid (N6)之合成...........……..….56
3.2.3.5 10-(2-Thienyl) decyl phosphonic acid (N10)之合成...........……..58
3.2.3.6 二氧化鈦基材之製備...........………...……………………...…..60
3.2.3.7 界面改質劑之自組裝單層膜的製備...........………...……...…..61
3.2.3.8 元件製備與量測...........………...…………………………...…..61
3.3 結果與討論 62
3.3.1 界面改質劑之合成與鑑定分析 62
3.3.2 緻密二氧化鈦基材之鑑定 67
3.3.3 自組裝單層膜分析 71
3.3.4 層狀接合結構之性質分析 76
3.3.5 雙層結構元件之效率量測與分析………………………………...….79
3.4 結論 83
第四章 界面改質劑之化學結構對於聚己基噻吩/氧化鋅奈米棒狀粒子混掺結構太陽能電池之光伏打特性影響………………………..……………….….85
4.1 引言……..…………………………………………………………………...85
4.2 實驗……………………………………………………………………...…..86
4.2.1 化學藥品..............…………………………..…………………………86
4.2.2 實驗儀器..................………………………..…………………………87
4.2.3 實驗步驟...............…...……………………..…………………………89
4.2.3.1 ZnO nanorods之製備………………...........…………………….89
4.2.3.2 ZnO nanorods之改質………………...........…………………….89
4.2.3.3 元件製備與量測.......………………...........…………………….89
4.3 結果與討論……………………………………………….………………....91
4.3.1 氧化鋅奈米棒狀粒子之合成與鑑定分析….………...……..………..91
4.3.2 氧化鋅奈米棒狀粒子改質之鑑定分析….……...…………..………..94
4.3.3 以界面改質劑修飾之氧化鋅奈米棒狀粒子的分散性探討…...…….95
4.3.4 界面改質劑分子於氧化鋅奈米棒狀粒子表面吸附量之分析…..…..98
4.3.5 界面改質劑修飾之氧化鋅奈米棒狀粒子/P3HT混成材料性質分析……………………………………………………………………..100
4.3.6 界面改質劑修飾之氧化鋅奈米棒狀粒子/P3HT混掺型元件效率量測與分析……………………………………....………………..…..…..103
4.4 結論……………………………………………………………….………..107
第五章 利用CuPc紫外光濾光層來改善氧化鋅奈米棒狀粒子/P3HT混掺太陽能電池元件之漏電行為與效能之提升………………………………….….108
5.1 引言……..………………………………………………………………….108
5.2 實驗……………………………………………………………………...…110
5.2.1 化學藥品................………………………..…………………………110
5.2.2 實驗儀器..................………………………..………………………..111
5.2.3 實驗步驟...............…...……………………..………………………..111
5.2.3.1 ZnO nanorods之製備……….……...........……………..……....111
5.2.3.2 ZnO nanorods之改質………………..........…………………....112
5.2.3.3 元件製備與量測.......………………...........…………………...112
5.3 結果與討論……………………………………………….………………..114
5.3.1 Copper phthalocyanine材料之吸收鑑定…………………….…...….114
5.3.2 CuPc小分子為濾光層之混掺型元件效率量測與分析………..........115
5.3.2.1 無CuPc小分子為濾光層之混掺型元件分光量測之分析探討………....................................................................................115
5.3.2.2以CuPc小分子為濾光層之混掺型元件光量測之分析探討………....................................................................................117
5.3.3 以CuPc為濾光層之混掺型元件EIS量測之分析探討……….........121
5.3.4 ITO/CuPc/ZnO nanorods:P3HT/Al元件效率的提升..........…..…......126
5.4 結論……………………………………………………………….…..…....128

第六章 以碳六十衍生物作為P3HT/氧化鋅奈米棒狀粒子混掺太陽能電池之界面改質劑與濾光分子…………………………………………………….….130
6.1 引言……..………………………………………………………………….130
6.2 實驗……………………………………………………………………...…130
6.2.1 化學藥品................………………………..…………………………131
6.2.2 實驗儀器..................………………………..………………………..132
6.2.3 實驗步驟...............…...……………………..………………………..133
6.2.3.1 ZnO nanorods之製備……….……...........……………..……....133
6.2.3.2 ZnO nanorods之改質………………..........…………………....133
6.2.3.3 元件製備與量測.......………………...........…………………...134
6.3 結果與討論……………………………………………….………………..135
6.3.1 (1,2-methanofullerene C60)-61,61-dicarboxylic acid之合成與鑑定分析…………………….…………………………………………....….135
6.3.2 (1,2-methanofullerene C60)-61,61-dicarboxylic acid之吸收鑑定分析………………………………………………………………..........137
6.3.3以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質之氧化鋅奈米棒狀粒子之表面吸附量之分析..............................................139
6.3.4 以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質之氧化鋅奈米棒狀粒子之光學分析探討……………..................................141
6.3.5 以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質之氧化鋅奈米棒狀粒子/P3HT複合材料之表面形態探討…..…………………………………………………...……….........144
6.3.6 以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質之氧化鋅奈米棒狀粒子/P3HT複合材料之光學分析探討…..…………………………………………………...……….........145
6.3.7以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質之氧化鋅奈米棒狀粒子/P3HT混掺元件之量測探討……………......................................................................................147
6.3.8以(1,2-methanofullerene C60)-61,61-dicarboxylic acid分子改質之氧化鋅奈米棒狀粒子/P3HT混掺元件之EIS量測探討……………......................................................................................153
6.4 結論………………………………………..………………….…………....154
總結……………………………………………………………….…………...…....156
參考文獻 158
附錄 165
[1] 中華太陽能聯誼會網頁http://www.solar-i.com/know.html
[2] 太陽能學刊第五卷第一期, 楊俊英
[3] C. J. Brabec and N. S. Sariciftci, Materials Today, 2000, 3, 5.
[4]能源領域中的奈米科技研究,工業研究院 能源與環境研究所, 楊昌中
[5] P. Peumans, A. Yakimov, and S. R. Forrest, Journal of Applied Physics, 2003, 3, 3693.
[6] N. S. Sariciftci, J . Mater . Chem., 2004, 14, 1077.
[7] NEWPORT COMPANY http://www.newport.com/Einfuhrung-in-die-Sonnenstrahlung/411919/1031/catalog.aspx
[8] L. Bozano, S. A. Carter, J. C. Scott, G.. G.. Malliaras and P. J. Brock, Appl. Phys. Lett., 1999, 74, 1132.
[9] D. Wöhrle and D. Meissner, Advanced Materials, 1991, 3, 129.
[10] J. Liu, Y. Shi, and Y. Yang, Adv. Funct. Mater., 2001, 11, 420.
[11] C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. MacKenzie, R. H. Friend, and N. C. Greenham, J. Appl. Phys., 2002, 92, 4266.
[12] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374.
[13] V. D. Mihailetchi, J. Appl. Phys., 2003, 94, 10.
[14] B. A. Gregg and M. C. Hanna, J. Appl. Phys., 2003, 93, 3605.
[15] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
[16] S. Gunes and N.S. Sariciftci, Inorganica Chimica Acta., 2008, 361, 581.
[17] C. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, “Organic Photovoltaics”, SPRINGER(2003).
[18] 科學與您,http://www.c-science.com/txt/tc/te/em/20010907teem.htm.
[19] K. M. Coakly and M. D. McHehee, Chem. Mater., 2004,16,4533.
[20] J. Kanicki and P. Fedorko, Electrical and photovoltaic properties of trans-polyacetylene. J. Phys. D: Appl. Phys., 1984, 17, 805.
[21] N. D. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, Appl. Phys. Lett., 1993, 62, 585.
[22] S. Morita, A. A. Zakhidov, K. Yoshino, Jpn. J. Appl. Phys., 1993, 32, 873.
[23] N. S. Sariciftci, L. Smilowitz and A. J. Heeger, F. Wudl, Science, 1992, 258, 1474.
[24] G. Yu, K. Pakbaz and A.J. Heeger, Appl. Phys. Lett., 1994, 64, 3422.
[25] B. P. Rand, J. Genoe, P. Heremans and J. Poortmans, Prog. Photovolt: Res. Appl., 2007, 15, 659.
[26] F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2004, 83, 125.
[27] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Nature, 1995, 376, 498.
[28] G. Yua and A. J. Heeger, J. Appl. Phys., 1995, 78, 4510.
[29] J. C. Hummelen, B. W. Knight, F. Wudl, J. Yao and C. L. Wilkins, J. Org. Chem., 1995, 60, 532.
[30] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789.
[31] T. Munters, T. Martens, L. Goris, V. Vrindts, J. Manca, L. Lutsen, W. De Ceuninck, D. Vanderzande, L. D. Schepper, J. Gelan, N. S. Sariciftci and C. J. Brabec, Thin Solid Film, 2002, 403, 247.
[32] P. Schilinsky, C. Waldauf and C. J. Brabec, Appl. Phys. Lett., 2002, 81, 3885.
[33] N. S. Sariciftci, J. Mater. Res., 2004, 19, 7.
[34] A. Hadipour, B. de Boer and P. W. M. Blom, Adv. Funct. Mater., 2008, 18, 169.
[35] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
[36] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen, Nano Lett., 2005, 5, 579.
[37] F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85.
[38] W. Ma, C. Yan, X. Gong, K. Lee and A. J. Heeger, Adv.Funct. Mater., 2005, 15, 1617.
[39] N. C. Greenham, Xiaogang Peng and A. P. Alivisatos, Phy. Rev. B, 1996, 54, 17628.
[40] W. U. Huynh, X. Peng, and A. P. Alivisatos, Adv. Mater., 1999, 11, 923.
[41] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 2002, 295, 2425.
[42] K. M. Coakley and M. D. McGehee, Appl. Phys. Lett., 2003, 83, 3380.
[43] P. D. Cozzoli, A. Kornowski and H. Weller, J. Am. Chem. Soc., 2003, 125, 14539.
[44] K. M. Coakley, Y. Liu, Goh, C. and M. D. McGehee, MRS Bulletin, 2005, 30, 37.
[45] A. C. Arango, S. A. Carter and P. Brock, Appl. Phys. Lett., 1999, 74, 1698.
[46] A. J. Breeze, Z. Schlesinger, S. A. Carter and P. Brock, J. Phys. Rev. B, 2001, 64, 1252051.
[47] P. A. van Hal, M. M. Wienk, J. M. Kroon, V. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm and R. A. J. Janssen, Adv. Mater., 2003, 15, 118.
[48] W. Feng, Y. Feng and Z. Wu, J. J. Appl. Phys., 2005, 44, 7494.
[49] K. M. Coakley, Y. Liu, M. D. McGehee, K. M. Frindell, and G. D. Stucky, Adv. Funct. Mater., 2003, 13, 301.
[50] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen and D. S. Ginley, Thin Solid Films, 2006, 496, 26.
[51] A. M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O’Brien, D. D. C. Bradley, J. Nelson and J. R. Durrant, J. Mater. Chem., 2006, 16, 2088.
[52] J. Nelson and R. E. C. Chandler, Chem. Rev., 2004, 248, 1181.
[53] P. Dyreklev, O. Inganas, J. Paloheimo and H. Stubb, J. Appl. Phys., 1992, 71, 2816.
[54] L. Bozano, S. A. Carter, J. C. Scott, G.. G.. Malliaras, P. J. Brock, Appl. Phys. Lett., 1999, 74, 1132.
[55] K. S. Narayan and Th. B. Singh, Appl. Phys. Lett., 1999, 74, 3456.
[56] R. Ulbricht, X. Jiang, S. Lee, K. Inoue, M. Zhang, S. Fang, R. Baughman and A. Zakhidov, Phys. Stat. Sol. (b), 2006, 243, 3528.
[57] 東吳大學化學研究所碩士論文, 陳美滿, 民國91年
[58] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
[59] L. Yan, W. T. S. Huck and G. M. Whitesides, J. Macromol. Sci. C, 2004, 44, 2, 175.
[60] E. Jaehne, D. Ferse, G. Busch and H.-J. P. Adler, Designed Monomers and Polymers, 2002, 5, 427.
[61] D. J. Milliron, A. P. Alivisatos, C. Pitois, C. Edder and M. J. Fréchet, Adv. Mater. 2003, 15, 1, 58.
[62] P. Ravirajan, A. M. Peiro´, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant and J. Nelson J. Phys. Chem. B, 2006, 110, 7635.
[63] C. Y. Kwong, W. C. H. Choy, A.B. Djuriˇsi´c, P. C. Chui1, K. W. Cheng and W. K. Chan, Nanotechnology, 2004, 15, 1156.
[64] Y. J. Lin, L. Wang and W. Y. Chiu, J. Vac. Sci. Technol. B, 2005, 23, 6.
[65] J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, and Jean M. J. Fre´chet, J. Am. Chem. Soc. 2004, 126, 9486.
[66] Y. Liu, S. R. Scully, M. D. McGehee, J. Liu, C. K. Luscombe, J. M. J. Fre´chet, S. E. Shaheen and D. S. Ginley, J. Phys. Rev. B, 2006, 110, 3257.
[67] C. Goh, S. R. Scully and M. D. McGehee, J. Appl. Phys. , 2007, 101, 114503.
[68] J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos and J. M. J. Fre´chet, J. Am. Chem. Soc., 2004, 126, 6550.
[69] J. Boucle´, S. Chyla, M. S. P. Shaffer, J. R. Durrant, D. D. C. Bradley and J. Nelson, Adv.Funct. Mater., 2008, 18, 622.
[70] 有機電激發光材料與元件, 陳金鑫
[71] M. Textor, L. Ruiz, R. Hofer, A. Rossi, K. Feldman, G. Hähner and N. D. Spencer, Langmuir, 2000, 16, 3257.
[72] B. Adolphi, E. Jähne, G. Busch and X. Cai, Anal. Bioanal. Chem., 2004, 379, 646.
[73] F. Caruso, T. Serizawa, N. Furlong and Y. Okahata, Langmuir, 1995, 11, 1546.
[74] A. Watanabe and A. Kasuya, Thin Solid Film, 2005, 483, 358.
[75] C.L. Huisman, A. Goossens and J. Schoonman, Synthetic Metals, 2003, 138, 237.
[76] C. Pacholski, A. Kornowski, H. Weller, Angew. Chem., Int. Ed. 2002, 41, 1188.
[77] W. J. E. Beek, L. H. Slooff, M. M. Wienk, J. M. Kroon and R. A. J. Janssen, Adv.Funct. Mater., 2005, 15, 1703.
[78] G. Agarwal and R. F. Speyer, J. Electrochem. Soc., 1998, 145, 2920.
[79] L. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, S. A. Elliff and M. Coulter, Appl. Phys. Lett., 2003, 82, 1096.
[80] N. Yamazoe, Sensors Actuators B, 1991, 5, 7.
[81] J. T. Hu, T. W. Odom, C. M. Lieber, Acc Chem. Res., 1999, 32, 435.
[82] 成大化工所碩士論文, 黃松輝, 民國95年
[83] T. Zhang, Z. Xu, D. L. Tao, F. Teng, F. S. Li, M . J. Zheng and X. R. Xu, Nanotechnology, 2005, 16, 2681.
[84] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai and P. Yang, Nano Lett., 2005, 5, 1231.
[85] Y. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie and J. W. P. Hsu, Nano Lett., 2005, 5, 1501.
[86] B. O''Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, Adv. Mater., 2000, 12, 1263.
[87] Waldo J. E. Beek, Martijn M. Wienk, and René A. J. Janssen, Adv.Funct. Mater., 2006, 16, 1112.
[88] L. J. A. Koster, W. J. van Strien, W. J. E. Beek and P. W. M. Blom, Adv.Funct. Mater., 2007, 17, 1297.
[89] Waldo J. E. Beek, Martijn M. Wienk, and René A. J. Janssen, Adv. Mater., 2004, 16, 1009.
[90] van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A., J. Lumin. 2000, 87, 454.
[91] van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A., J. Lumin. 2000, 90, 123.
[92] A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B, 2000, 104, 1715.
[93] D. W. Bahnemann, C. Kormann and M. R. Hoffmann, J. Phys. Chem., 1987, 91, 3789.
[94] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang and R. A. J. Janssen, J. Phys. Chem. B, 2005, 109, 9505.
[95] P. A. C. Quist, W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, T. J. Savenije and L. D. A. Siebbeles, J. Phys. Chem. B, 2006, 110, 10315.
[96] W. J. E. Beek, L. H. Slooff, M. M. Wienk, J. M. Kroon and R. A. J. Janssen, Adv.Funct. Mater., 2005, 15, 1703.
[97] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy : Theory, Experiment and Applications, 2nd ed. Wiley Interscience Publications 2005.
[98] W. Huang, J. Peng, L. Wang, J. Wang and Y. Cao, Appl. Phys. Lett., 2008, 92, 013308.
[99] C. H. Ku and J. J. Wu, Appl. Phys. Lett., 2007, 91, 093117.
[100]F. Mansfeld, J. Appl. Electrochem., 1995, 25, 187.
[101]A. Amirudin and D. Thierry, Progress in Organic Coatings., 1995, 26, 1.
[102] C. Y. Huanga, Y. C. Hsua, J. G. Chena, V. Suryanarayanana, K. M. Leeb and K. C. Hoa, Sol. Energy Mater. Sol. Cells, 2006, 90, 2391.
[103] S. Yoo, B. Domercq and B. Kippelen, J. Appl. Phys. , 2005, 97, 103706.
[104] 太陽電池技術入門,林明獻
[105] J. C. Bernède, J. Chil. Chem. Soc., 2008, 53, 1549.
[106] G. D. Sharma, P. Balaraju, S. K. Sharma and M. S. Roy, Synthetic Metals, 2008, 158, 620.
[107] C. H. Chang, T. K. Huang, Y. T. Lin, Y. Y. Lin, C. W. Chen, T. H. Chu and W. F. Su, J . Mater . Chem., 2008, 18, 2201.
[108] I. Lamparth and A. Hirsch, J. Chem. Soc., Chem. Commun., 1994, 1727.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊