跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許如秀
研究生(外文):Ru-Siou Hsu
論文名稱:單官能基之聚醚胺鹽插層蒙脫土之機制探討及其原油吸附應用
論文名稱(外文):End Group Effect on Widening Clay Layered Spacing by Polyoxyalkylene Amine-Salts and Their Application on Crude Oil Adsorption
指導教授:林江珍
指導教授(外文):Jiang-Jen Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:54
中文關鍵詞:聚醚胺鹽插層層狀黏土蒙脫土原油吸附
外文關鍵詞:Poly(oxypropylene)amineIntercalationLayered SilicateAmphiphilicMontmorillonite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:833
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以單官能基之聚醚胺(Poly(oxypropylene)-monoamine)為插層劑,進而探討在末端官能基對於天然蒙脫土之層間距變化影響,並與實驗室早期以發表之雙官能基之聚醚胺(Poly(oxypropylene)-diamine)插層蒙脫土進行比較。此外,也將其應用於有機物質或原油吸附上,皆具良好之應用特性。
利用親油性單官能基之聚醚胺POP-M2000對天然蒙脫土進行改質後發現,在相同分子量以及相似的主鍊結構下,單官能基之聚醚胺鹽插層蒙托土之層間距可高達74 Å,而雙官能基之聚醚胺鹽插層蒙脫土則僅達到52 Å。其主要原因為雙官能基之聚醚胺鹽之酸化與未酸化官能基,彼此之間具有氫鍵之作用力存在,導致經由雙官能基插層之蒙脫土層間距較低,且無法再經由添加物提高其層間距。反觀單官能基之聚醚胺鹽在層間可產生一強烈之親油相,與親水性之蒙脫土表面具有一定之排斥力,且無雙官能基之氫鍵影響,因此層間距較高;且若再經由親油性物質的添加,其層間距可再提升約10 Å。此外,經改質後的蒙脫土可自我排列於甲苯與水界面並形成薄膜,利用掃描式電子顯微鏡(TEM)與穿透式電子顯微鏡(SEM)可觀察到次序性的排列結構。
利用有機黏土應用於原油吸附上已發展有一段時間,但皆未深入探討不同改質黏土及其環境溫度對於有機黏土吸附原油之影響。在本研究結果中發現,具有50 wt% 親油性插層劑之含量,可擁有最大之吸附能力,且其吸附過程主要有兩階段所造成。而有機黏土之聚集程度、插層劑主鏈性質以及環境溫度皆為影響吸附結果之主要原因。此外,為了有效回收吸附後之有機黏土,藉由添加些許磁性有機混合物,則可以在保有其最大吸附力下,仍具有一良好之磁性並可加速回收過程及速度。
Poly(oxypropylene)-segmented monoamine salts (POP-monoamine) of different molecular weights including 600, 1000, and 2000 g/mol were first time used for ionic exchange reaction with sodium montmorillonite (Na+-MMT) to probe the clay intercalation mechanism. The expansion of the clay layered spacing was more substantial for achieving 74 Å XRD d spacing than the analogous di-amine salts of POP-2000 Mw blocks (52 Å). Hydrophobic effect may create a separated phase in the silicate plate interlayer by the influence of amine end groups. As a result, monoamine is different from diamine and expanding the MMT spacing more than 10 Å than the diamine. The modified clay could self-assemble at the toluene/water interface to form film, exhibiting an aligned an ordered structure as revealed by TEM and SEM. The POP-intercalated MMT (or POP-MMT) is considered to be organic-inorganic amphiphiles possessing organic solvent dispersing affinity as well as a unique property of lower critical aggregation temperature (LCAT) in water. The poly(oxypropylene) segment is exhibiting its hydrophobic phase aggregation in accordance with the amine functionalities through different noncovalent bonding interactions.
The potential application for adsorbing crude oil spills is demonstrated. The maximum adsorption capacities of crude oil occurred at the POP/MMT weight ratio of 50 wt % and responded to the environmental temperature or a “lower critical aggregation temperature (LCAT)” property. The adsorption of crude oil occurred in two stages. The first order adsorption is the formation of POP/MMT interaction with crude oil through the MMT layer spacing by an increasing d spacing. The second order adsorption is a micelle-like aggregation of POP/MMT/oil units into a large oil lump. Further addition of 10 wt % magnetic Fe3O4 nanoparticles enabled the adsorbed oil lumps to be removable under a magnetic field.
Contents
口試委員會審定書……………………………………………….……………………...i
Acknowledgements…………………………………………………...……...…………ii
摘要……………………………………………………………...……………….……..iii
Abstract……………………………………………………………….……….……….iv
Table of Content……………………………………………………………..…………vi
List of Tables………………………………………………………………………...…xi
List of Figures………………………………………………………………………....xii


Chapter 1 Introduction
1.1 Types of Nano-Materials by Geometric Shape and Aspect Ratio……………………1
1.2 Structure and Property of Type of Layered Silicate……………….………………….2

Chapter 2 Literature review
2.1 Intercalation Profile for Organically Modified Layered Silicate……………….……6
2.2 Tailoring Basal Spacings of Montmorillonite by Poly(oxyalkylene)-Diamine Intercalation……………………………………………………………………………...7
2.3 Critical Conformational Change of Poly(oxypropylene)diamines in Layered
Aluminosilicate Confinement……………………………………………………………8
2.4 Conformational Change of Trifunctional POP-amines Intercalated within a Layered Silicate Confinement…………………………………………………………………...10
2.5 The Crude Oil Adsorbed by Inorganoic Materials/Organoclay……….……………12
2.6 Preparation of the Layered Silicate/Iron oxide composites…………...……………13

Chapter 3 Experimental sections
3.1 Materials…………………………………………………........................................15
3.2 Instruments…………………………………………………………………………17
3.3 Experimental Sections………………...……………………………………………19

Chapter 4 Results and Discussion
4.1-1 Intercalation of Hydrophobic POP-Amine Salts into Layered Structure of MMT……………………………………………………………………………………21
4.1-2 End Group of Intercalating Agent on Intercalation………………………………24
4.1-3 Another Intercalation Mechanism by Inducing Hydrophobic phase…………….28
4.1-4 Templates for Micelles Formation and Self-Associating Properties…….…….…31
4.2-1 Removal of Oil From Water by Modified Montmorillonite ..…………………...35
4.2-2 The Properties in Simulated Oil-Spill Cleanup conditions………………………37
4.2-3 The Mechanism of Crude Oil Adsorption……………………………………….40
4.2-4 Application by Different Types of Organoclay…………………………………..46

Chapter 5 Conclusion…………….……………………………………………………………….47
References……………………………………………………………………………...49
Notes…………………………………………………………………….……………...53











List of Tables
Table 2-1. Basal Spacing and Property of Na+-MMT Intercalated by POP- and POE-diamines……………………………………………………………………………7
Table 3-1. The Structures of Poly(oxyalkylene)-Amines..…………………………….16
Table 4-1. Basal Spacing, Composition and Solvophilicity of MMT Intercalated by Polyoxyalkylene Amines……………………………………………………………….22
Table 4-2. Basal Spacing, Composition and Solvophilicity of MMT…………………29
Table 4-3. Particle Size of POP-M2000/MMT (10-3 wt %) in Toluene and D.I. water at Different Temperature…………………………………………………………………..32
Table 4-4. Basal Spacing, Composition and Ability of Adsorption by Organoclay…...36
Table 4-5. Basal Spacing, Composition, Density of layer space and Ability of Adsorption by 0.42 CEC POP-D2000/MMT…………………………………………..40








List of Figures
Figure 1-1. Morphology of nanomaterials (a) carbon nanotube, (b) layered silicate, (c) metal nanoparticle………………………………………………………………………..1
Figure 1-2. Structure of tetrahedral and octahedral-site sheet…………..........................3
Figure 2-1. Intercalation by alkyammonium salts………………………………………6
Figure 2-2. Representation of Nat-MMT intercalation by hydrophilic POE2000 versus hydrophobic POP2000 amine……………………………………………………………8
Figure 2-3. Schematic illustration of POP-amine self-assembly in silicate confinements…………………………………………………………………………….9
Figure 2-4. Conceptual representation of conformations for POP-T5000 intercalation at H+/NH2) 1/3, 2/3, and 3/3……………………………………………………………...11
Figure 2-5. Mechanism of oil droplet removal fro water, and related problems, by activated carbon and organoclay……………………………………………………...12
Figure 2-6. TEM micrograph and particle size distribution……………………..…….13
Figure 2-7. TEM micrographs of organoclay-iron oxide (83/17 by weight ratio)……..14
Figure 4-1. X-ray diffraction patterns………………………………………………….22
Figure 4-2. TEM micrograph of POP-M2000/MMT (1.0 CEC)………………………23

Figure 4-3. Conceptual representation of varied conformations for different intercalating agents……………………………………………………………………..26
Figure 4-4. TEM micrograph of POP-M2000/MMT (1.0 CEC)………………………27
Figure 4-5. Conceptual induce force by the hydrophobic phase for different intercalating agents……………………………………………………………………..30
Figure 4-6. Comparison of surface tension reductions of POP-M2000 and POP-M2000/MMT at 5 ℃……………………………………………………………..32
Figure 4-7. Comparison of interfacial tension reductions of POP-M2000/MMT at different CEC…………………………………………………………………………...33
Figure 4-8. SEM micrographs of a film surface, self-assembled from POP-M2000/MMT (1.0 CEC) at the toluene/water surface……………………………34
Figure 4-9. The influence of hydrophobic property……………………………………37
Figure 4-10. The organic content verse the ability of crude oil adsorption……………38
Figure 4-11. Lower critical aggregation temperature of POP-M2000/MMT, POP-D2000/MMT and POP-D4000/MMT…………………………………………….39
Figure 4-12. The mechanism of the adsorption (a) the first order adsorbed unit (b) the secondary micelle-like aggregation…………………………………………………….41
Figure 4-13. The changing of organoclay by increasing the crude oil………………...42
Figure 4-14. The conceptual scheme for POP-D2000/MMT as crude oil adsorption....43
Figure 4-15. The hydrophobic tendency of backbone and the influences…….……….45
Figure 4-16. The adsorption of petroleum crude oil and an efficient removal from the water slurry (a) adding 10 wt % iron oxide particles (b) adding 10 wt % magnetic organoclay………………………………………………………………………………46
References
[1] Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312-1319.
[2] Stupp, S. I.; LeBonheur, V.; Walker, K.; Li. L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276, 384-389.
[3] Wang, C.; Shim, M.; Sionnest, P. G. Science 2001, 291, 2390-2392.
[4] Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Science 1999, 286, 945-947.
[5] Muthukumar, M.; Ober, C. K.; Science 1997, 277, 1225-1232.
[6] Thostensona, E. T.; Ren, Z.; Choua, T. W. Composites Science and Technology 2001, 61, 1899-912.
[7] Zanetti, M., Lomakin, S.; Camino, G. Macromal. Mater. Eng. 2000, 279, 1-9.
[8] Giannelis, E. P. Advanced Mateials 1996,. 8, 29-35..
[9] Alexandre, M.; Dubois, P. Materials Science and Engineering 2000, 28, 1-63.
[10] Glael, H. J.; Bauer, F.; Ernst, H.; Findeisen, M.; Hartmann, E.; Langguth, H.; [11] Mehnert, R.; Schubert, R. Macromolecular. Chemistry Physics 2000, 201, 2765-2770.
[12] Olphen, H. V. in A Introduction to Clay Colloid Chemistry (New York John Wiley & Sons, 1977).
[13] Theng, B. K. G. in Formation and Properties of Clay-Polymer Complexes (Elsever, 1979).
[14] Velde. B. in Introduction to Clay Minerals (Chapman & Hall New York, 1992).
[15] Theng, B. K. G. In The Chemistry of Clay-Organic Reactions (Wiley. New York, 1974).
[16] Wilson, M. J.; Bigham, J. M. in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Chapman Hall, 1994).
[17] Horch, R. A.; Golden, T. D.; D''Souza, N. A.; Riester, L. Chemistry of Materials 2002, 14, 3531-3538.
[18] Pinnavaia, T. J.; Beall, G. W. in Polymer-Clay Nanocomposites (Wiley. New York, 2000).
[18] Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807-813.
[19] Triantafillidis, C. S.; Lebaron, P. C.; Pinnavaia, T. J. Chemistry of Materials 2002, 14, 4088-4095.
[20] Pinnavaia, T. J. Science 1983, 220, 365-371.
[21] Lan, T.; Kavairatna, P. D.; Pinnavaia, T. J. Journal of Physics and Chemistry Solids 1996, 57, 1005-1010.
[22] Giannelis, E. P. Appied. Organometallic. Chemistry 1998, 12, 675-680.
[23] Timea P., Agnes P., Otto B., Imre D., Colloids and Surfaces 1998, 137,373-384 .
[24] Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Yoshiaki, F.; Kurauchi, T.; Kamigaito, O. Journal of Materials.Research.1993, 8,1174-1187.
[25] Lin, J. J.; Chen, I. J.; Wang, R.; Lee, R. Macromolecules 2001, 34, 8832-8834.
[26] Lin, J. J.; Chen, I. J.; Chou, C. C, Macromolecular Rapid Communcation 2003,, 24, 492-495.
[27] Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J., Macromolecules 2001, 37, 473-477.
[28] Buckley, J.S.; Liu, Y. Journal of Petroleum Science & Engineering 1998, 20,155-160.
[29] George, R. Waste Management 1995, 15, 8, 623-628.
[30] Pierre, M. K. Clay and Clay Minerals 1992, 40, 586-592.
[31] Zou, J.; Pierre, A. C. Jounal of Materials Science Letter 1992, 11, 664-665.
[32] Pierre, A. C.; Ma, K.; Barker, C. Jounal of Materials Science 1995, 30, 2176-2181.
[33] Galindo-Gonzalez, C.; deVicente, J.; Ramos-Tejada, M. M.; Lopez-Lopez, M. T.; Galindo-Gonzalez, F., Duran ,J. D. G. Langmuir 2005, 21, 4410-4419.
[34] Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korosi, L.; Galbacs, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dekany, I. Nanotechnology 2007, 18, 285602.
[35] Oliveira, L. C. A.; Bios, R. V. R. A.; Fabris, J. D.; Sapag, K.; Grap, V. K.; Lago, R. M. Applied Clay Science 2003, 22, 169-177.
[36] Greenwell, H. C.; Bowden, A. A.; Chen, B.; Boulet, P.; Evans, J. R.; Peter, G.; Coveney, V.; Whiting, A. Journal of Materials and Chemisry 2006, 16, 1082–1094.
[37] Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Scanlon, L. G.; Giannelis, E. P. Advanced Materials 1995, 7, 154–156.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊