跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐偉鈞
研究生(外文):Wei-Chun Hsu
論文名稱:以苯并吡啶為主體具不同側鏈及主鏈之低能隙導電高分子合成及其特性研究
論文名稱(外文):Synthesis, Characterization of Low Band Gap Quninoxaline-Based Conducting Polymer Containing Different Side Chain and Main Chain Moeities
指導教授:戴子安戴子安引用關係
指導教授(外文):Chi-An Dai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:共軛低能階隙共聚高分子Stille偶合反應Yammamoto偶合反應分子內電荷轉移
外文關鍵詞:conducting polymerdonor-acceptorlow band gapcharge transferquinoxaline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討二維電子施體、電子受體交替共聚高分子的光電特性,我們藉由Stille偶合反應及Yammamoto偶合反應合成PHQT、PFQT、PFQT2、PFQT3四種高分子。利用在側鏈引入不同基團 (茀或4-己基苯基)觀察側鏈與主鏈之間的交互作用,還有改變主鏈上電子施體 (噻吩)所佔之比例,研究主鏈上共軛長度對高分子光學、電化學性質的影響:紫外-可見光吸收光譜分成兩個區域,一個在300 nm~400 nm為單體π→π*的吸收範圍;另一個在500 nm~700 nm間是高分子鏈上分子內電荷轉移 (intramoleculars charge transfer)所造成的吸收,高分子能帶隙大約在1.75 eV~1.90 eV之間,其最高佔有分子軌域 (highest occupied molecular orbital, 簡稱HOMO)能階值大約在-5.27 eV~-5.13 eV之間。此系列高分子擁有不錯的熱穩定性,其熱裂解溫度大約都在400 ℃上下;利用廣角X光繞射測量高分子鏈在不同溫度下(100)結晶面間的距離,約為2.5 nm,隨著溫度升高,此距離亦隨之增加至2.8 nm。綜合以上所述,此系列高分子具有應用在光電元件活性層的可能性。
Two-dimensional donor-acceptor (D-A) structured conducting polymers, PHQT, PFQT, PFQT2, PFQT3, were designed and synthesized by introducing electron-deficient quinoxaline (acceptor) as core with electron-rich alky-fluorene or 4-hexylbenzene as its side chain and thiophene/oligo-thiophene (donor) in the main chain. Benefited from the D-A structures, the polymers possess low bandgaps with energies of 1.79 eV, 1.85 eV, 1.89 eV, and 1.76 eV for PHQT, PFQT, PFQT2, PFQT3, respectively, and show a broad absorption band in the visible region: the shoter wavelength absorption peak at ca. 300 nm~400 nm attributed mainly to the conjugated side chains and the longer wavelength absorption peak (charge transfer CT peak) between 500 nm and 700 nm ascribed to the absorption of the conjugated D-A main chains. The polymers are electrochemically active in oxidation and the corresponding cyclic voltammetry (CV) measurements show that the HOMO level of the polymers is ca. -5.31 eV~ -5.13 eV which is significantly lower than that of the conventional and most studied conducting polymer of poly 3-hexyl thiophene (P3HT). Powder X-ray diffraction analysis confirms that monodispersed PFQT shows a crystalline order plane of (100). The TGA analysis reveals that the temperature at which all polymers degrades was higher than 400 ℃. In summary, these polymers show potential for use as an active material in optoelectronic devices.
目錄
目錄 I
中文摘要 II
英文摘要 III
圖目錄 IV
表目錄 VII
第一章 序論 1
1-1導電高分子 1
1-2太陽能光譜與大氣質量(air mass) 4
1-3 太陽能之優缺點 6
1-4 太陽能電池的發展與分類 7
1-5 有機太陽能電池的工作原理 8
1-6 太陽能元件的種類 13
1-7 太陽能電池的基礎知識 14
1-8分子設計:低能帶隙施體-受體共軛高分子 (low band gap donor-acceptor conjugated polymers) 17
第二章 結果與討論 22
2-1 分子合成策略 22
2-2 光學性質探討 32
2-3 電化學性質之探討 40
2-4熱化學性質之探討 45
2-5 高分子PFQT系列之廣角X光繞射 47
第三章 結論 48
第四章 實驗部分 49
4-1 實驗儀器和藥品 49
4-2 合成步驟 50
參考文獻 63
附錄 66

圖目錄
圖(1.1)1,3-丁二烯分子結構與軌域示意圖…………….………...……….1
圖(1.2)(a)β-胡蘿蔔素 (b)維他命A 結構式…………….………………..1
圖(1.3)共軛結構數目與能帶關係示意圖………………………..……….2
圖(1.4)合成聚乙炔(PA)之反應式………………………………….……..2
圖(1.5)能帶示意圖………………………………………………………...3
圖(1.6)導電高分子之結構圖……………………………………………...3
圖(1.7)不同溫度的普朗克黑體輻射分佈………………………..……….4
圖(1.8)太陽能光譜………………………………………………………...5
圖(1.9)大氣質量示意圖…………………………………………………...5
圖(1.10)太陽能電池按照材料之分類………………………………….…7
圖(1.11)p-n junction示意圖……………………………………………….8
圖(1.12)空乏區形成示意圖……………………………………………….9
圖(1.13)(a)p-n結光伏效應能帶結構圖......................................................9
(b)太陽能電池工作簡圖………………………………………..10
圖(1.14)有機太陽能電池光電轉換及損失流程圖……..…….……..…..10
圖(1.15)電荷分離示意圖……………………………….………………..11
圖(1.16)金屬與半導體界面的能階圖 (a)界面接觸前的能階 (b)Schottky (c)Ohmic contact……………………….…………………….….12
圖(1.17)有機薄膜太陽能電池元件結構示意圖……..………………….14
圖(1.18)理想太陽能電池等效電路圖………………..…………...……..14
圖(1.19)實際太陽能電池等效電路圖……………………..…………….15
圖(1.20)I-V曲線中Voc、Isc及FF示意圖………………………………16
圖(1.21)太陽輻照度、光子數目與波長對應圖……...………………….17
圖(1.22)電子施體與電子受體分子軌域交互作用圖………..………….18
圖(1.23)電子施體-受體交替低能帶隙高分子示意圖.………………….18
圖(1.24)(a)常見施體結構圖 (b)常見受體結構圖.………….…………..19
圖(1.25)二維的施體-受體共軛高分子………….…………….……...….20
圖(1.26)高分子PCQT及PThQx(diPh)………………………………..20
圖(1.27)目標高分子結構圖…………………………………...…………21
圖(2.1)高分子逆合成圖………………………………………………….22
圖(2.2)化合物11逆合成圖………………….………………………...…22
圖(2.3)化合物8、9逆合成圖……………….….………………………..23
圖(2.4)化合物4與5之逆合成圖………….……..……………………...23
圖(2.5)化合物1、2、3之合成圖………………………………………..24
圖(2.6)化合物4、5之合成圖…………………………………………….24
圖(2.7)化合物7之合成圖…………………………….………………….25
圖(2.8)化合物 8、9之合成圖……………………………………………25
圖(2.9)化合物10之合成圖………………………………………………26
圖(2.10)化合物11與三溴、四溴化合物副產物……………………...…26
圖(2.11)改良化合物11之合程圖……….……………………………….27
圖(2.12)化合物12之合成圖……………….…………………………….27
圖(2.13)高分子PHQT、PFQT、PFQT3之合成圖…………………...28
圖(2.14)噻吩氧化聚合示意圖…………………….……………………..28
圖(2.15)PFQT2氧化聚合失敗示意圖………….……………………….28
圖(2.16)高分子PFQT2之合成圖……………………………………….29
圖(2.17)(a)各高分子GPC ri圖...................................................................30
(b)各高分子GPC uv圖.................................................................30
(c)高分子PFQT系列 GPCri圖..................................................31
(d)高分子PFQT系列GPC uv圖..…………………....………...31
圖(2.18)化合物8、9、10、11之紫外-可見光吸收光譜………………….33
圖(2.19)化合物8、9、10、11之螢光放射光譜…………………………34
圖(2.20)化合物10在不同極性溶劑中的螢光放射光譜…….………….34
圖(2.21)化合物11在不同極性溶劑中的螢光放射光譜……….………35
圖(2.22)溶劑對螢光放射波長影響示意圖……………………..……….36
圖(2.23)高分子化合物PHQT、PFQT、PFQT2、PFQT3的溶液態紫外-可見光吸收光譜………..………………………….………….37
圖(2.24)化合物9、10與高分子PFQT、PFQT2、PFQT3的溶液態紫外-可見光吸收光譜…………………………..………………..38
圖(2.25)化合物8與高分子PHQT的溶液態紫外-可見光吸收光譜.…38
圖(2.26)不同分子量之高分子PFQT的溶液態紫外-可見光吸收光譜...................................................................................................39
圖(2.27)高分子UV吸收峰對應能量與重複單元數倒數關係圖……...40
圖(2.28)三電極測量裝置圖……………………………………………...40
圖(2.29)化合物8、9、10、11之循環伏安圖比較圖………………………42
圖(2.30)PHQT、PFQT、PFQT2、PFQT3之循環伏安圖比較圖……….44
圖(2.31)化合物10與PFQT、PFQT2、PFQT3循環伏安比較圖…….44
圖(2.32)化合物8與高分子PHQT循環伏安比較圖………………...…45
圖(2.33)(a)高分子PHQT、PFQT、PFQT2、PFQT3熱重分析比較圖 (b)高分子不同分子量PFQT系列熱重分析比較圖……………..46
圖(2.34)高分子PFQTc變溫廣角X光繞射圖……………………...…..47





表目錄
表(1.1)不同太陽入射角的大氣質量……………………………………...6
表(1.2)一些金屬的功函數……………………………………………….13
表(2.1)高分子化合物之分子量與分子量分佈….….…..….………...….29
表(2.2)化合物8、9、10、11之光譜性質………………………………….32
表(2.3)高分子化合物溶液態之紫外-可見光吸收光譜數據….……...…36
表(2.4)高分子PFQT系列溶液態之紫外-可見光吸收光譜數據…...…39
表(2.5)高分子PFQT系列UV吸收峰對應能量值及重複單元數據…..39
表(2.6)化合物8、9、10、11之氧化還原電位值……………………...…..42
表(2.7)高分子PHQT、PFQT、PFQT2、PFQT3溶液態氧化電位及其HOMO、LUMO能階……………………………………………..43
表(2.8)高分子化合物之熱分析數據……………………………....…….45
1.陳壽安, 導電高分子:新世代光電材料. 物理雙月刊,中華民國物理學會, 2001年4月. 廿三卷(二期): p. 312-321.
2.Ajayaghosh, A., Donor-acceptor type low band gap polymers: polysquaraines and related systems. Chemical Society Reviews, 2003. 32(4): p. 181-191.
3.Shirakawa, H., The discovery of polyacetylene film: The dawning of an era of conducting polymers (Nobel lecture). Angewandte Chemie-International Edition, 2001. 40(14): p. 2575-2580.
4.Boudreaux, D.S., et al., New Class of Soliton-Supporting Polymers - Theoretical Predictions. Physical Review B, 1985. 31(1): p. 652-655.
5.Bredas, J.L., et al., Abinitio Effective Hamiltonian Study of the Electronic-Properties of Conjugated Polymers. Journal of Chemical Physics, 1982. 76(7): p. 3673-3678.
6.Heeger, A.J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture). Angewandte Chemie-International Edition, 2001. 40(14): p. 2591-2611.
7.MacDiarmid, A.G., "Synthetic metals": A novel role for organic polymers (Nobel lecture). Angewandte Chemie-International Edition, 2001. 40(14): p. 2581-2590.
8.張正華、李陵嵐、葉楚平、楊平華, 有機與塑膠太陽能電池. 2007, 台北: 五南.
9.沈輝, 太陽能光電技術. 2008, 台北: 五南.
10.李申生編, 太陽能. 1988, 北京: 人民教育出版社.
11.王君一、徐任學等編著, 農村太陽能實用技術. 1993, 北京: 金盾出版社.
12.Spanggaard, H. and F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells, 2004. 83(2-3): p. 125-146.
13.Winder, C. and N.S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. Journal of Materials Chemistry, 2004. 14(7): p. 1077-1086.
14.劉恩科等編著, 光電池及其應用. 1989, 北京: 科學出版社.
15.陳振興主編, 高分子電池材料. 2005, 北京: 化學工業出版社.
16.Thompson, B.C. and J.M.J. Frechet, Organic photovoltaics - Polymer-fullerene composite solar cells. Angewandte Chemie-International Edition, 2008. 47(1): p. 58-77.
17.Bundgaard, E. and F.C. Krebs, Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells, 2007. 91(11): p. 954-985.
18.Dhanabalan, A., et al., Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Advanced Functional Materials, 2001. 11(4): p. 255-262.
19.Yu, G., et al., Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789-1791.
20.Jayakannan, M., P.A. Van Hal, and R.A.J. Janssen, Synthesis and structure-property relationship of new donor-acceptor-type conjugated monomers and polymers on the basis of thiophene and benzothiadiazole. Journal of Polymer Science Part a-Polymer Chemistry, 2002. 40(2): p. 251-261.
21.Kitamura, C., S. Tanaka, and Y. Yamashita, Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chemistry of Materials, 1996. 8(2): p. 570-578.
22.Meier, H., U. Stalmach, and H. Kolshorn, Effective conjugation length and UV/vis spectra of oligomers. Acta Polymerica, 1997. 48(9): p. 379-384.
23.Lin, S.C., et al., Electropolymerization of bis(2-cyano-2-alpha-thienylethenyl)arylenes. Journal of Organic Chemistry, 1998. 63(15): p. 5059-5063.
24.Zotti, G., et al., In situ conductivity of a polythiophene from a branched alkoxy-substituted tetrathiophene. Enhancement of conductivity by conjugated cross-linking of polymer chains. Chemistry of Materials, 1997. 9(3): p. 791-795.
25.Sivula, K., et al., Enhancing the thermal stability of polythiophene: Fullerene solar cells by decreasing effective polymer regioregularity. Journal of the American Chemical Society, 2006. 128(43): p. 13988-13989.
26.Yamamoto, T., et al., pi-conjugated donor-acceptor copolymers constituted of pi-excessive and pi-deficient arylene units. Optical and electrochemical properties in relation to CT structure of the polymer. Journal of the American Chemical Society, 1996. 118(43): p. 10389-10399.
27.Bundgaard, E., et al., Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole. Solar Energy Materials and Solar Cells, 2007. 91(17): p. 1631-1637.
28.Huang, J., et al., Novel electroluminescent polymers derived from carbazole and benzothiadiazole. Macromolecules, 2002. 35(16): p. 6080-6082.
29.Zhu, Y., R.D. Champion, and S.A. Jenekhe, Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer: Synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers. Macromolecules, 2006. 39(25): p. 8712-8719.
30.Liu, C.L., et al., New Didecyloxyphenylene-Acceptor Alternating Conjugated Copolymers: Synthesis, Properties, and Optoelectronic Device Applications. Macromolecules, 2008. 41(19): p. 6952-6959.
31.Huo, L.J., et al., Novel two-dimensional donor-acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part a-Polymer Chemistry, 2008. 46(12): p. 4038-4049.
32.Tsami, A., et al., Alternating quinoxaline/oligothiophene copolymers - synthesis and unexpected absorption properties. Journal of Materials Chemistry, 2007. 17(14): p. 1353-1355.
33.盧昂志, 利用Stille連結聚合法合成含咔唑側之低能隙電子施體/受體導電高分子及其特性研究與應用, in 國立台灣大學碩士論文. 民國97年, 國立台灣大學碩士論文.
34.Lee, B.L. and T. Yamamoto, Syntheses of new alternating CT-Type copolymers of thiophene and pyrido[3,4-b]pyrazine units: Their optical and electrochemical properties in comparison with similar CT copolymers of thiophene with pyridine and quinoxaline. Macromolecules, 1999. 32(5): p. 1375-1382.
35.Taranekar, P., et al., Structure and band-gap design of a new series of light-emitting poly(cyanofluorene-alt-o/m/p-phenylenevinylene)-based copolymers for light-emitting diodes. Macromolecules, 2006. 39(11): p. 3848-3854.
36.Chen, S.Y., et al., New organic light-emitting materials: Synthesis, thermal, photophysical, electrochemical, and electroluminescent properties. Journal of Physical Chemistry C, 2007. 111(2): p. 1029-1034.
37.Hawkins, V.F., M.C. Wilkinson, and M. Whiting, Mild and Selective Synthesis of an Aryl Boronic Ester by Equilibration of Mixtures of Boronic and Borinic Acid Derivatives. Organic Process Research & Development, 2008. 12(6): p. 1265-1268.
38.Hou, J.H., et al., Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. Journal of the American Chemical Society, 2006. 128(14): p. 4911-4916.
39.Shen, K., et al., What are the pKa values of C-H bonds in aromatic heterocyclic compounds in DMSO? Tetrahedron, 2007. 63(7): p. 1568-1576.
40.Renkema, K.B., et al., The preparation of the mixed alkali metal silanolate K4Li4(OSiMe(3))(x)(OCMe(3))(8-x) (8>=x>=5.7) and the effects of mixed alkali metals on the anion induced ring opening polymerization of octamethylcyclotetrasiloxane. Inorganica Chimica Acta, 1996. 244(2): p. 185-190.
41.Li, Y.N., G. Vamvounis, and S. Holdcroft, Tuning optical properties and enhancing solid-state emission of poly(thiophene)s by molecular control: A postfunctionalization approach. Macromolecules, 2002. 35(18): p. 6900-6906.
42.Pomerantz, M., et al., Processable Polymers and Copolymers of 3-Alkylthiophenes and Their Blends. Synthetic Metals, 1991. 41(3): p. 825-830.
43.Yasuda, T., T. Imase, and T. Yamamoto, Synthesis, characterization, and optical and electrochemical properties of new 2,1,3-benzoselenadiazole-based CT-type copolymers. Macromolecules, 2005. 38(17): p. 7378-7385.
44.Ho, T.I., et al., Highly fluorescent N,N-dimethylaminophenylethynylarenes: Synthesis, photophysical properties, and electrochemiluminescence. Journal of Physical Chemistry B, 2005. 109(18): p. 8626-8633.
45.趙君傑, 含苝環之小分子與高分子之合成、性質探討及其在太陽能電池上的應用, in 國立台灣大學博士論文. 民國九十六年, 國立台灣大學博士論文.
46.Tsami, A., et al., Alternating Fluorene-di(thiophene)quinoxaline Copolymers via Microwave-Supported Suzuki Cross-Coupling Reactions. Journal of Polymer Science Part a-Polymer Chemistry, 2008. 46(23): p. 7794-7808.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 硬桿-柔曲與硬桿-硬桿共軛雙區段共聚高分子自組裝行為之探討及在奈米混成系統之應用
2. 以原位聚合方式合成之聚(3,4-乙烯二氧噻吩)/3-噻吩甲酸複合膜電阻式一氧化氮感測器
3. 合成核殼型奈米顆粒及其應用於剪切增稠流體之研究探討
4. 藉由格林納置換鏈成長聚合法合成全共軛硬桿-硬桿雙嵌段共聚高分子PPP-P3BT及其自組裝行為探討與奈米混成系統之研究
5. 氧化鋅/聚己烷噻吩高分子與氧化鋅/雙嵌段共聚高分子奈米原位混成系統:自組裝、特性及光電應用之探討
6. 硬桿/柔曲嵌段共聚高分子之陰離子合成,自組裝行為與超分子結構研究
7. 新穎性生態工程材料之研發及應用
8. 高導電度EDOT/Aniline混成共聚高分子:原位氧化聚合、特性及其應用之研究
9. 功能性聚對二甲苯之物理特性及鍍膜基材選擇性
10. 綠色再生資源於水路建材之應用
11. 氧化鋁及核殼型奈米顆粒應用於剪切增稠流體之研究探討
12. 二茂鐵衍生物接枝於尾端具有羥基之聚丁二烯之合成與性質探討
13. 以格林鈉反應合成全共軛雙嵌段共聚高分子PPP-P3HT及與碳六十衍生物PCBM/ICBA混摻研究:混摻型態、光電性質與太陽能電池元件應用之探討
14. 藉由格林納反應合成共軛-共軛雙嵌段共聚高分子及其自組裝行為探討和奈米混成系統之應用
15. 以原位聚合法合成導電高分子複合膜應用於二氧化碳氣體感測器之研究