跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 23:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林函廷
研究生(外文):Han-Ting Lin
論文名稱:高穿透度及低透濕性混掺奈米複合材料:無溶劑光聚合壓克力/柏買石混成樹酯之研究
論文名稱(外文):High transparency low water vapor permeation polyacrylate/boehmite nanocomposite from solventless photocurable resin system
指導教授:林唯芳林唯芳引用關係
指導教授(外文):Wei-Fang Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:封裝奈米複合材料透濕性吸溼性壓克力柏買石
外文關鍵詞:encapsulationnanocompositeswater permeationwater absorptionacrylic resinboehmite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子與無機奈米粒子的複合材料可以達到良好的熱穩定性、低熱膨脹係數、優越的機械性能,以及對水氣及氧氣有好的阻絕能力及高的光穿透度,是一種極具潛力的封裝材料。本研究中我們欲開發可光聚合的奈米複合材料應用在太陽能電池的封裝,並研究奈米粒子的形狀、表面改質劑及對材料做熱處理後對奈米複合材料的性質影響。
我們在壓克力樹酯tricyclodecane dimethanol diacrylate(TCDDA)中混入7wt%以矽烷偶合劑3-trimethoxysilyl propyl methacrylate (MPS)改質的水合氧化鋁片狀奈米粒子(柏買石, 25nm x20nm x2nm),可以有效的提升材料阻絕水氣的能力,水氣穿透率和純TCDDA高分子相較降低了約44%,且能少許的提升奈米複合材料的硬度9%,但由於片狀的柏買石會散射光線,使得壓克力樹酯未能完全聚合,並造成了熱裂解溫度(Td)較純壓克力樹酯降低約3%且熱膨脹係數升高了24%。我們將奈米複合材料以100oC熱處理24小時,可以進一步改善其熱性質及機械性質,但卻影響了其光學性質:和純壓克力樹酯相比,混入7wt%MPS改質後的柏買石的光穿透度在波長400nm的位置由90%降至70%,試片在熱處理之後產生了黃化的現象。而試片之所以黃化可能是因為起始劑所產生的安息香醛自由基在熱處理之後再結合形成benzil所導致。但我們經由置換表面改質劑為具有氨基的3-aminopropyltrimethoxysilane(APTMS)後可以改善試片黃化的問題,因為其表面的氨基可以抑制benzil的生成,並降低試片黃化造成的吸收提高光穿透度達85% (400nm~900nm)。
我們以含7%重量比的APTMS改質的柏買石添加的壓克力樹酯為基本配方再混入30wt%以MPS改質的二氧化矽奈米粒子(20~25nm),相較於純壓克力樹酯,可以更有效的提升26%的硬度、降低22%的熱膨脹係數及降低達68%其水氣穿透率。若是以MPS改質的柏買石混入二氧化矽的系統中,硬度因為其改質劑表面的壓克力基可以和壓克力樹酯產生鍵結,使其在硬度方面表現更為優異(28Hv->35Hv)。在穿透式電子顯微鏡可以觀察到7wt%的片狀奈米柏買石在壓克力樹酯中分散的很好,但在添加二氧化矽奈米粒子時,其對柏買石產生了吸附的效果,形成較大卻不緊密的聚集,而隨者二氧化矽奈米粒子的量越來越多其分散在柏買石之外的壓克力樹酯中。
本研究中我們發現片狀的柏買石奈米粒子對阻擋水氣穿透具有極好的效果,而二氧化矽奈米粒子則能有效提升複合材料的機械性質及熱性質。不同的無機粒子表面改質劑因其表面官能基不同,對複合材料表現出的物性及化性也具有極大的影響。
Nanocomposite made from organic matrix and inorganic nanoparticles exhibits good thermal stability, low coefficient of thermal expansion (CTE), eminent mechanical properties, high transparency, excellent water vapor and oxygen barrier properties. They are potential materials for the applications of device encapsulation. In this research, we are developing UV curable nanocomposite for large area flexible solar cell encapsulation. We also investigated the effects of nanoparticle shape, type of the coupling agent and thermal post cure on the properties of nanocomposite.
By incorporating up to 7% by weight of 3-trimethoxysilyl propyl methacrylate (MPS) coupling agent modified platy boehmite nanoparticle (~25nm x20nm x2nm) in poly tricyclodecane dimethanol diacrylate (TCDDA), the moisture permeation of the neat polymer reduces by 44% and the hardness of the nanocomposite slightly increases by 9%. However, the boehmite scatters the light that causes the thermal decomposition temperature (Td) of neat polymer reducing by 3% and the CTE increasing by 24% from incomplete polymerization of organic matrix TCDDA. The thermal post cure at 100oC for 24 hours improves the thermal properties and hardness of the neat polymer but deteriorates its optical property. As compared with the neat polymer, the transmission at 400 nm of nanocomposite is reduced from 90% to 70% (yellowing). The yellowing maybe from the formation of benzil molecule by combining photoinitiated benzaldehyde radical during the thermal postcure process. The extent of yellowing can be reduced (~85% transmission 400nm-900nm) by replacing MPS coupling agent by 3-aminopropyltrimethoxysilane (APTMS), because the amino functionality of APTMS can inhibit the formation of benzil. By blending additional 30% by weight of MPS modified silica nanoparticle (~25 nm) into the 7% boehmite containing TCDDA, the moisture permeation of the neat polymer can be reduced by 68%, CTE reduced by 22% and the hardness increased by 26%. In contrast, the extent of hardness is increased by 54% for MPS coupling agent due to its acrylate functionality being polymerized with the acrylate matrix. The TEM investigation of the nanocomposites containg 7% by weight of boehmite shows the boehmite dispersed well in polymer matrix but it is not fully foliated. While adding silica nanoparticle to the nanocomposite, there is strong affinity between the boehmite and silica nanopartice, the nanoparticles are populated around the boehmite first to form loose aggregation then the excess nanoparticles are dispersed in the polymer matrix.
In conclusion, the platy boehmite nanoparticles are very effective moisture permeation stopper while the spheric silica nanoparticles are very effective mechanical and thermal properties enhancer. The coupling agent exhibits strong influence on the performance of nanocomposite through the chemical reaction with the photoinitiator and polymer matrix.
目 錄
中文摘要…………………………………………………………………………I
英文摘要…………………………………………………………………III
目錄……………………………………………………………………V
圖目錄…………………………………………………………………IX
表目錄……………………………………………………………………XV
第一章 緒論………………………………………………......1
1.1 前言………………………………………………………..1
1.2 研究動機與目的………………………………………………2
1.2.1有機太陽能電池面臨的問題………………………………2
1.2.2氧氣對太陽能電池的影響…………………………………2
1.2.3水氣對太陽能電池的影響……………………………………5
1.3 封裝科技簡介………………………………………………………6
1.3.1 高分子封裝材料……………………………………………7
1.4 研究方向………………………………………………………9
第二章 文獻回顧………………………………………………………10
2.1壓克力樹酯………………………………………………………10
2.1.1壓克力樹酯的聚合反應………………………………………10
2.2 有機無機混成奈米複合材料………………………………………12
2.2.1溶膠凝膠法製備奈米複合材料……………………………12
2.2.2矽烷類表面改質劑 (Silane modify agents)…………14
2.2.3 無機奈米粒子boehmite簡介……………………………16
2.2.4 Boehmite 奈米複合材料……….……………….……..18
2.3奈米複合封裝材料…………………………………………21
2.3.1片狀複合材料的光穿透度……………………….………22
第三章 實 驗……………………………………………26
3.1 實驗藥品………………………………………….…....26
3.1.1壓克力樹脂…………………………………………26
3.1.2 Silane……………………………………………………..26
3.1.3 其他藥品……………………………………...27
3.2 實驗儀器………………………………………………..28
3.3 實驗步驟…………………………………………………..30
3.3.1 實驗流程……………………………………………...30
3.3.2以MPS表面改質nano-platy boehmite (mBoe)與鑑定…….30
3.3.3 以APTMS表面改質nano-platy boehmite (aBoe) 與鑑定….31
3.3.4以MPS改質silica 奈米粒子………………………………….32
3.3.5壓克力奈米複合膠製備…………………………………33
3.3.6光聚合壓克力試片製作…………………………………33
3.4實驗測試項目、原理及條件…………………………...………35
3.4.1 熱重分析儀 Thermal Gravimetric Analyzer(TGA) ………35
3.4.2 熱機械分析儀 Thermal Mechanical Analysis(TMA) ………35
3.4.3微差掃瞄卡計 Differential Scanning Calorimetry (DSC) 36
3.4.4微硬度試驗 Microhardness Test …………............36
4.5光穿透度 Light Transmittance…….…………...…36
3.4.6水氣穿透率 Water vapor transmission rate (WVTR)37
3.4.7吸水率 Water Absorption (WA)………………37
第四章 結果與討論……………………………...……….38
4.1 片狀奈米粒子boehmite性質分析…………….……. ...…….38
4.2 Boehmite/TCDDA奈米複合材料性質分析39
4.2.1 最適化之Silane表面改質比例……….…..…….………39
4.2.2 表面改質鍵定………………………………..……….……40
4.2.3 TCDDA/mBoe複合材料性質分析……………………….……44
4.2.3.1 硬度分析…………………………………………..………44
4.2.3.2 熱性質分析…………………………………..….………45
4.2.3.3 穿透度分析………………………………………….49
4.2.3.4 奈米粒子在複合材料中之分散分析……….…………..51
4.2.3.5 吸溼性及水氣穿透率(WVTR)分析………….….….….53
4.2.4 TCDDA/aBoe複合材料性質分析……….………...….……55
4.2.4.1 硬度分析………………………………………………55
4.2.4.2 熱性質分析………………………………………………56
4.2.4.3 穿透度分析…………………………………………58
4.2.4.4 奈米粒子在複合材料中之分散分析………………..60
4.2.4.5 吸溼性及水氣穿透率(WVTR)分析…….……..…62
4.3 TCDDA / boehmite / Silica奈米複合材料性質分析…….64
4.3.1 TCDDA / mBoe / Silica奈米複合材料性質分析.………64
4.3.1.1 硬度分析……………………………………………64
4.3.1.2 熱性質分析………………………….……….65
4.3.1.3 穿透度分析…….………………………….67
4.3.1.4 吸溼性及水氣穿透率(WVTR)分析. .…….…69
4.3.2 TCDDA / aBoe / Silica奈米複合材料性質分析…………71
4.3.2.1 硬度分析…………………………71
4.3.2.2 熱性質分析……………………………….73
4.3.2.3 穿透度分析…………………………75
4.3.2.4 吸溼性及水氣穿透率(WVTR)分析……….…76
4.4不同改質劑對奈米複合材料的影響……………………………78
4.4.1 微米硬度分析……………………………………………………78
4.4.2 熱性質分析……………………………………………………79
4.4.3 吸水性質分析…………………………………………………83
4.4.4 水氣穿透率分析………………………………………………84
4.5 製程分析…………………………………………………………87
4.5.1 TCDDA/Silica之UV-DSC分析…………………………………87
4.5.2長時間之光聚合………………………………………………89
第五章 結…………………………………………………………90
第六章 未來建議與方向…………………………………………91
參考文獻……………………………………………………………92
[1] C. Andersson*, “New Ways to Enhance the Functionality of Paperboard by Surface Treatment – a Review”, Packaging technology and science,(2008).
[2] P. Actis*, A. Denoyelle, R. Boukherroub, S. Szunerits, “Influence of the surface termination on the electrochemical properties of boron-doped diamond (BDD) interfaces”, Electrochemistry Communications 10 (2008) 402–406
[3] W. Brostow*, T. Datashvili, D. Kao, J. Too, “Tribological Properties of LDPE Boehmite Composites”, Polymer Composites (2009) 1-9
[4] C. E. Corcione*, M. Frigione, D. Acierno, “Rheological Characterization of UV-Curable Epoxy Systems: Effects of o-Boehmite Nanofillers and a Hyperbranched Polymeric Modifier”, Journal of Applied Polymer Science 112 (2009) 1302-1310
[5] B. Dunn*, J. M. Miller, B.C. Dave, J. S. Valentine, J. I. Zink, “Strategies for encapsulating biomolecules in sol-gel matrice” Acta Materialia 46 (1998) 737-741.
[6] C. Decker*, “The Use of UV Irradiation in Polymerization”, Polymer International 45 (1998) 133-141
[7] G. Dennler*, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, “Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation, and integration”, Journal of Materials Research, 20 (2005) 3224-3233.
[8] R. L. Frost*, J. T. Kloprogge, S. C. Russell, J. Szetu, “Dehydroxylation of Aluminum (Oxo)hydroxides Using Infrared Emission Spectroscopy. Part II: Boehmite”, Applied Spectroscopy, 53 (1999) 572-582.
[9] Z. Guozhen*, T. Shichi, T. Zhiwei, K. Takagi, “Synthesis of a PET-Clay Hybrid Material” , Chemistry Letters (2002) 410-411
[10] M. Hanika*, H. C. Langowski, U. Moosheimer, W. Peukert, “Inorganic layers on polymeric films – influence of defects and morphology on barrier properties”, Chemical Engineer Technology 26 (2003) 5
[11] H. I. Hsiang*, M. T. Liang, H. C. Huang, F. S. Yen, “Preparation of superhydrophobic boehmite and anatase nanocomposite coating films”, Materials Research Bulletin, 42 (2007) 420–427.
[12] M. Inoue*, Y. Nakazaki, “Computational approach to estimate layer structures of organic derivatives of boehmite”, Journal of Physics and Chemistry of Solids 65 (2004) 429–434.
[13] S. Isarankura*, N. Ayutthaya, J. Wootthikkhan, “Investigation of the Photodegration behaviors of an Ethylene/Vinyl Acetate Copolymer Solar Cell Encapsulant and Effects of Antioxidants on the Photostability of the Material” , Journal of Applied Polymer Science, 107 (2008) 3853–3863.
[14] U. Jonas*, M. Kreiter, M. A lvarez, K. Koynov, “Single-Photon and Two-Photon Induced Photocleavage for Monolayers of an Alkyltriethoxysilane with a Photoprotected Carboxylic Ester”, Advance Material 20 (2008) 4563-4567.
[15] M. Jorgensen*, K. Norrman, F. C. Krebs, “Stability/degradation of polymer solar cells”, Solar Energy Materials & Solar Cells 92 (2008) 686-714.
[16] C. Kappenstein*, A. F. Popa, S. Rossignol, ”Ordered structure and preferred orientation of boehmite films prepared by the sol–gel method”, Journal of Non-Crystalline Solids 306 (2002) 169–174.
[17] J. Karger-Kocsis*, K.G. Gatos, J.G. Martı’nez Alca’zar, G.C. Psarras, R. Thomann, “Polyurethane latex/water dispersible boehmite alumina nanocomposites: Thermal, mechanical and dielectrical properties”, Composites Science and Technology 67 (2007) 157–167
[18] J. Livage* , F. Beteille , C. Roux, M. Chatry , P. Davidson, “Sol-Gel synthesis of oxide materials” Acta Materialia 46 (1998) 743-750.
[19] M. C. Laia*, K. C. Changa, W. C. Huanga, S. C. Hsua, J. M. Yeha, “Effect of swelling agent on the physical properties of PET–clay nanocomposite materials prepared from melt intercalation approach” , Journal of Physics and Chemistry of Solids 69 (2008) 1371–1374
[20] Q. Liu*, J. Ding, D. E. Chambers, S. Debnath, S. L. Wunder, G. R. Baran, “Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites”, Journal of Biomedical Materials Research, 57 (2001) 384-393.
[21] A. Marcinčin*, M. Hricová, K. Marcinčin, A. Hoferíková, J. Legéň, “Rheological Behaviour of Polypropylene/Boehmite Composites, Structure and Properties of Hybrid Fibres”, FIBRES & TEXTILES in Eastern Europe 15 (2007) 64-65
[22] L. Martin*, G. Kortaberria, A. Vazquez, M. Fermeglia, L. Martinelli, S. Sinesi, A. Jimeno, K. de la Caba, I. Mondragon, “A Comparative Study of Nanocomposites Based on a Recycled Poly(methyl methacrylate) Matrix Containing Several Nanoclays” , POLYMER COMPOSITES (2008) 782-790
[23] M. A. Mohamed*, E. A EI-Katatny, S. A Halawy, M. I Zaki, “Recovery of high surface area alumina from aluminium dross tailings”, Journal of Chemical Technology and Biotechnology 75 (2000) 394–402.
[24] R. Mulhaupt*, R. C. Streller, R. Thomann, O. Torno, “Isotactic Poly(propylene) Nanocomposites Based upon Boehmite Nanofillers”, Macromolecular. Materials. Engineering, 293 (2008) 218–227
[25] K. Norrman*, N.B. Larsen, F.C. Krebs, “Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms” , Solar Energy Materials & Solar Cells 90 (2006) 2793-2814.
[26] K. Okada*, T. Nagashima, Y. Kameshima, A. Yasumori, T. Tsukada, “Relationship between Formation Conditions, Properties, and Crystallite Size of Boehmite”, Journal of Colloid and Interface Science 253, (2002) 308–314.
[27] G. P. Panasyuk*, V. N. Belan, I. L. Voroshilov, and D. G. Shabalin,” Aluminum Hydroxide Transformations during Thermal and Vapor Heat Treatments”, Inorganic Materials, 44 (2008) 45-50.
[28] Stephen J. Picken*, Ceren O zdilek, K. Kazimierczak, “Preparation and characterization of titanate-modified Boehmite–polyamide-6 nanocomposites”, Polymer 46 (2005) 6025–6034
[29] H. Schmidt*, Z. Ahmad, M. Sarwar, H. Krug, “Preparation and properties of composites of Kevlar-Nomex copolymer and boehmite”, Die Angewandte Makromolekulare Chemie 248 (1997) 139-151.
[30] V. Smits*, P. Chevalier, D. Deheunynuck, S. Miller,” A new filler dispersion technology”, REINFORCEDplastics, Dec. (2008) 37–43.
[31] C. Tang*, J. Zhang, F. Shi, J Lin, S. Y. Wei, D. Chen, J. M. Gao, Z. Huang, X. Ding, “Nanoparticles assembly of boehmite nanofibers without a surfactant”, Materials Research Bulletin 43 (2008) 1709–1715.
[32] L. Wang*, W. F. Su, Y. M. Chang, “Influence of photo-induced degradation on the optoelectronic properties of regioregular poly(3-hexylthiophene)”, Solar Energy Materials & Solar Cells 92 (2008) 761-765.
[33] 羅喜興, “聚三己基噻吩混掺二氧化鈦奈米桿有機太陽能電池之光電性質的硏究”, 國立台灣大學材料科學與工程學系暨研究所碩士論文 2007
[34] 許勝豪, “有機無機惨合壓克力牙科填補奈米複合材料”, 國立台灣大學材料科學與工程學系暨研究所碩士論文 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊