跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/01 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖家宏
研究生(外文):Jia-Hung Liao
論文名稱:水解磷酸脂對牛腎上腺嗜鉻細胞中鈣離子倚賴性鉀離子通道活性及胞吐胞吞作用之調控
論文名稱(外文):Effects of Lysophospholipids on Large-conductance Ca2+-activated K+ Channels and Exo/Endocytosis in Bovine Chromaffin Cells
指導教授:潘建源
指導教授(外文):Chien-Yuan Pan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:67
中文關鍵詞:水解磷酸脂BK通道胞吐胞吞作用
外文關鍵詞:lysophospholipidBK channelexoendocytosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水解磷酸脂包括水解磷脂酸(lysophophatidic acid,LPA)和鞘胺醇1-磷酸鹽(sphingosine 1-phosphate,S1P)等,為具有細胞多樣性作用之脂質衍生物。本實驗室之前的結果顯示水解磷酸脂能減少牛腎上腺嗜鉻細胞中的鈣離子電流,在此報告中,我們將重點放在水解磷酸脂對於鈣離子倚賴性鉀離子(BK)通道以及胞吐胞吞作用的影響。首先針對BK通道不同選擇性剪接異形體設計專一性引子,利用反轉錄聚合酶連鎖反應,結果發現嗜鉻細胞中,至少有四種異形體。將嗜鉻細胞以穿孔性細胞膜組態,將電位箝制在-70 mV,隨後紀錄去極化至+80 mV時的向外鉀離子電流。結果顯示54.1 ± 5.3%的向外電流可被BK通道專一性抑制劑iberiotoxin所抑制,但在S1P或LPA一小時前處理後,能被抑制的電流分別降為27.7 ± 10.7%和26.3 ± 7.6%。改以全細胞組態,直接提高胞內鈣離子緩衝容量,會影響BK通道電流大小,但不改變BK電流比例;若直接將胞內鈣離子濃度上升至1 μM,所引發的向外電流則不會被水解磷酸脂所影響。為進一步瞭解水解磷酸脂是否也會影響胞吐胞吞作用,以穿孔性膜箝制技術,紀錄細胞電容值以代表胞吐胞吞的變化,並利用伏安法(voltammetry)偵測分泌膜囊釋放的動態性質,以水解磷酸脂前處理一小時的細胞,突波形狀較為狹窄且面積減小,顯示水解磷酸脂減少囊泡釋放容量;而clathrin的分佈,在水解磷酸脂處理後,較少的clathrin凝集光點分布於細胞膜周邊區域。本研究結果顯示水解磷酸脂藉由抑制鈣離子電流而間接調控BK通道活性,亦會影響胞吐胞吞作用。
Lysophospholipids(LPLs), including lysophosphatidic acid(LPA) and sphingosine 1-phosphate(S1P), are lipid derivatives with versatile cell functions. Our previous results have shown that LPLs attenuated the Ca2+ currents in bovine chromaffin cells. In this report, we are focused on their effects on Ca2+-activated K+ (BK)channels and exo/endocytosis. Using specific primers against BK channel alternative-splicing isoforms, four isoforms were identified using RT-PCR. Chromaffin cells were voltage-clamp in perforated patch configuration and the outward K+ currents at +80 mV were recorded. 54.1 ± 5.3% of the outward current was inhibited by BK channel specific inhibitor, iberiotoxin. The toxin sensitive currents were reduced to 27.7 ± 10.7 and 26.3 ± 7.6% of the total outward current by S1P and LPA treatment, respectively. By patching the cell in whole-cell mode, increasing Ca2+ buffering capacity affected BK current amplitude, but not the ratio to total current. However, BK evoked by elevating the [Ca2+]i to 1 μM was not affected by S1P treatment. To characterize the roles of LPLs on exo/endocytosis, cells were voltage-clamped in perforated patch mode and the membrane capacitance was recorded to reflect the changes in the exo/endocytosis. To monitor the release kinetics from each secretary vesicle, voltammetry was applied. The results showed that LPL treatment sharpens the spikes and reduces spike area, indicating that LPLs decrease vesicle quantal content. The distribution of clathrin at the subplasmalemma region was less in LPL treated groups. These results suggest that LPLs indirectly modulate BK channel activity by attenuating the Ca2+ currents and modify the exo/endocytosis kinetics.
摘要 4
Abstract 5
目錄 6
1. 前言 8
1.1水解磷酸脂之一般細胞生理功能 8
1.2水解磷酸脂對於細胞離子通道的影響 10
1.3水解磷酸脂對於細胞內鈣離子濃度的調控 11
1.4鈣離子倚賴性鉀離子通道 12
1.5嗜鉻細胞胞吐胞吞作用 14
1.6實驗目標 15
2. 材料與方法 17
2.1溶液與化學藥品 17
2.2初級牛腎上腺嗜鉻細胞培養 18
2.3藥物配製與處理 19
2.4電生理 19
2.5 RNA萃取與cDNA製備 21
2.6聚合酶連鎖反應 21
2.7細胞免疫螢光染色 22
2.8資料分析 22
3. 結果 23
3.1 Cd2+抑制向外鉀離子電流 23
3.2提高胞外鈣離子濃度增加向外鉀離子電流 23
3.3向外鉀離子電流大部分由BK通道貢獻 24
3.4嗜鉻細胞中至少表現四種BK通道a subunit剪接異變體 24
3.5 S1P減弱BK電流 25
3.6 LPA減弱BK電流 25
3.7以BAPTA提高胞內鈣離子緩衝容量影響BK通道電流 26
3.8在全細胞膜箝制組態下LPL不影響BK通道活化 27
3.9 S1P與LPA影響細胞胞吐胞吞作用 28
3.10 S1P和LPA影響細胞鈣離子內流之動力學性質 29
3.11 S1P與LPA減小囊泡釋放之量子容量 29
3.12 S1P與LPA抑制細胞胞吞作用進行 30
4. 討論 32
4.1牛腎上腺嗜鉻細胞中的BK電流成分 32
4.2 LPL對於離子通道的調控 33
4.3 LPL對於細胞胞吐胞吞作用的調控 35
4.4 LPL作用對於嗜鉻細胞的生理意義 37
5. 參考文獻 39
6. 表 46
7. 圖解 48
8. 圖 50
Chemin, J., Patel, A., Duprat, F., Zanzouri, M., Lazdunski, M., and Honore, E. (2005). Lysophosphatidic acid-operated K+ channels. J Biol Chem 280, 4415-4421.

Coste, O., Brenneis, C., Linke, B., Pierre, S., Maeurer, C., Becker, W., Schmidt, H., Gao, W., Geisslinger, G., and Scholich, K. (2008). Sphingosine 1-phosphate modulates spinal nociceptive processing. J Biol Chem 283, 32442-32451.

Cousin, M.A., and Robinson, P.J. (2001). The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24, 659-665.

Coussin, F., Scott, R.H., and Nixon, G.F. (2003). Sphingosine 1-phosphate induces CREB activation in rat cerebral artery via a protein kinase C-mediated inhibition of voltage-gated K+ channels. Biochem Pharmacol 66, 1861-1870.

Cui, J., Yang, H., and Lee, U.S. (2009). Molecular mechanisms of BK channel activation. Cell Mol Life Sci 66, 852-875.

de Diego, A.M., Arnaiz-Cot, J.J., Hernandez-Guijo, J.M., Gandia, L., and Garcia, A.G. (2008). Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells. Acta Physiol (Oxf) 194, 97-109.

Di Paolo, G., Moskowitz, H.S., Gipson, K., Wenk, M.R., Voronov, S., Obayashi, M., Flavell, R., Fitzsimonds, R.M., Ryan, T.A., and De Camilli, P. (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415-422.

Fakler, B., and Adelman, J.P. (2008). Control of K(Ca) channels by calcium nano/microdomains. Neuron 59, 873-881.

Fukushima, N., Ye, X., and Chun, J. (2002). Neurobiology of lysophosphatidic acid signaling. Neuroscientist 8, 540-550.

Ghatta, S., Nimmagadda, D., Xu, X., and O''Rourke, S.T. (2006). Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110, 103-116.

Giussani, P., Ferraretto, A., Gravaghi, C., Bassi, R., Tettamanti, G., Riboni, L., and Viani, P. (2007). Sphingosine-1-phosphate and calcium signaling in cerebellar astrocytes and differentiated granule cells. Neurochem Res 32, 27-37.

Greffrath, W., Magerl, W., Disque-Kaiser, U., Martin, E., Reuss, S., and Boehmer, G. (2004). Contribution of Ca2+-activated K+ channels to hyperpolarizing after-potentials and discharge pattern in rat supraoptic neurones. J Neuroendocrinol 16, 577-588.

Holtsberg, F.W., Steiner, M.R., Furukawa, K., Keller, J.N., Mattson, M.P., and Steiner, S.M. (1997). Lysophosphatidic acid induces a sustained elevation of neuronal intracellular calcium. J Neurochem 69, 68-75.

Hu, H., Shao, L.R., Chavoshy, S., Gu, N., Trieb, M., Behrens, R., Laake, P., Pongs, O., Knaus, H.G., Ottersen, O.P., and Storm J.F. (2001). Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21, 9585-9597.

Kajimoto, T., Okada, T., Yu, H., Goparaju, S.K., Jahangeer, S., and Nakamura, S. (2007). Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol 27, 3429-3440.

Kim, M.Y., Liang, G.H., Kim, J.A., Kim, Y.J., Oh, S., and Suh, S.H. (2006). Sphingosine-1-phosphate activates BKCa channels independently of G protein-coupled receptor in human endothelial cells. Am J Physiol Cell Physiol 290, C1000-1008.

Kishimoto, T., Matsuoka, T., Imamura, S., and Mizuno, K. (2003). A novel colorimetric assay for the determination of lysophosphatidic acid in plasma using an enzymatic cycling method. Clin Chim Acta 333, 59-67.

Lang, T., and Jahn, R. (2008). Core proteins of the secretory machinery. Handb Exp Pharmacol, 107-127.

Lovell, P.V., James, D.G., and McCobb, D.P. (2000). Bovine versus rat adrenal chromaffin cells: big differences in BK potassium channel properties. J Neurophysiol 83, 3277-3286.

Marty, A., and Neher, E. (1985). Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367, 117-141.

Maruta, T., Yanagita, T., Matsuo, K., Uezono, Y., Satoh, S., Nemoto, T., Yoshikawa, N., Kobayashi, H., Takasaki, M., and Wada, A. (2008).

Lysophosphatidic acid-LPA1 receptor-Rho-Rho kinase-induced up-regulation of Nav1.7 sodium channel mRNA and protein in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion. J Neurochem 105, 401-412.

Muraki, K., and Imaizumi, Y. (2001). A novel function of sphingosine-1-phosphate to activate a non-selective cation channel in human endothelial cells. J Physiol 537, 431-441.

Okada, T., Kajimoto, T., Jahangeer, S., and Nakamura, S. (2009). Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal 21, 7-13.

Okajima, F. (2001). Establishment of the method for the measurement of sphingosine-1-phosphate in biological samples and its application for S1P research. Nippon Yakurigaku Zasshi 118, 383-388.

Orio, P., Rojas, P., Ferreira, G., and Latorre, R. (2002). New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci 17, 156-161.

Pan, C.Y., Lee, H., and Chen, C.L. (2006). Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells. Neuropharmacology 51, 18-26.

Pan, C.Y., Wu, A.Z., and Chen, Y.T. (2007). Lysophospholipids regulate excitability and exocytosis in cultured bovine chromaffin cells. J Neurochem 102, 944-956.

Park, K.A., and Vasko, M.R. (2005). Lipid mediators of sensitivity in sensory neurons. Trends Pharmacol Sci 26, 571-577.

Poulsen, A.N., Wulf, H., Hay-Schmidt, A., Jansen-Olesen, I., Olesen, J., and Klaerke, D.A. (2009). Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues. Biochim Biophys Acta 1788, 380-389.

Prakriya, M., and Lingle, C.J. (1999). BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. J Neurophysiol 81, 2267-2278.

Prakriya, M., and Lingle, C.J. (2000). Activation of BK channels in rat chromaffin cells requires summation of Ca2+ influx from multiple Ca2+ channels. J Neurophysiol 84, 1123-1135.

Radeff-Huang, J., Seasholtz, T.M., Matteo, R.G., and Brown, J.H. (2004). G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92, 949-966.

Rappoport, J.Z. (2008). Focusing on clathrin-mediated endocytosis. Biochem J 412, 415-423.

Rivera, R., and Chun, J. (2008). Biological effects of lysophospholipids. Rev Physiol Biochem Pharmacol 160, 25-46.

Salkoff, L., Butler, A., Ferreira, G., Santi, C., and Wei, A. (2006). High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7, 921-931.

Schilling, T., Stock, C., Schwab, A., and Eder, C. (2004). Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 19, 1469-1474.

Schubert, R., and Nelson, M.T. (2001). Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol Sci 22, 505-512.

Seung Lee, W., Hong, M.P., Hoon Kim, T., Kyoo Shin, Y., Soo Lee, C., Park, M., and Song, J.H. (2005). Effects of lysophosphatidic acid on sodium currents in rat dorsal root ganglion neurons. Brain Res 1035, 100-104.

Shi, J., He, H.Q., Zhao, R., Duan, Y.H., Chen, J., Chen, Y., Yang, J., Zhang, J.W., Shu, X.Q., Zheng, P., Ji Y.H. (2008). Inhibition of martentoxin on neuronal BK channel subtype (alpha+beta4): implications for a novel interaction model. Biophys J 94, 3706-3713.

Shiono, S., Kawamoto, K., Yoshida, N., Kondo, T., and Inagami, T. (1993). Neurotransmitter release from lysophosphatidic acid stimulated PC12 cells: involvement of lysophosphatidic acid receptors. Biochem Biophys Res Commun 193, 667-673.

Smith, S.M., Renden, R., and von Gersdorff, H. (2008). Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends Neurosci 31, 559-568.

Tanaka, Y., Yamaki, F., Koike, K., and Toro, L. (2004). New insights into the intracellular mechanisms by which PGI2 analogues elicit vascular relaxation: cyclic AMP-independent, Gs-protein mediated-activation of MaxiK channel. Curr Med Chem Cardiovasc Hematol Agents 2, 257-265.

Tokumura, A., Okuno, M., Fukuzawa, K., Houchi, H., Tsuchiya, K., and Oka, M. (1998). Positive and negative controls by protein kinases of sodium-dependent Ca2+ efflux from cultured bovine adrenal chromaffin cells stimulated by lysophosphatidic acid. Biochim Biophys Acta 1389, 67-75.

Twitchell, W.A., and Rane, S.G. (1993). Opioid peptide modulation of Ca2+-dependent K+ and voltage-activated Ca2+ currents in bovine adrenal chromaffin cells. Neuron 10, 701-709.

Walsh, K.B., Wilson, S.P., Long, K.J., and Lemon, S.C. (1996). Stimulatory regulation of the large-conductance, calcium-activated potassium channel by G proteins in bovine adrenal chromaffin cells. Mol Pharmacol 49, 379-386.

Wang, J., Carbone, L.D., and Watsky, M.A. (2002). Receptor-mediated activation of a Cl- current by LPA and S1P in cultured corneal keratocytes. Invest Ophthalmol Vis Sci 43, 3202-3208.

Weiger, T.M., Hermann, A., and Levitan, I.B. (2002). Modulation of calcium-activated potassium channels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188, 79-87.

White, R.E., Schonbrunn, A., and Armstrong, D.L. (1991). Somatostatin stimulates Ca2+-activated K+ channels through protein dephosphorylation. Nature 351, 570-573.

Ye, X., Fukushima, N., Kingsbury, M.A., and Chun, J. (2002). Lysophosphatidic acid in neural signaling. Neuroreport 13, 2169-2175.

Young, K.W., and Nahorski, S.R. (2002). Sphingosine 1-phosphate: a Ca2+ release mediator in the balance. Cell Calcium 32, 335-341.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top