跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡永坤
研究生(外文):Yung-Kun Tsai
論文名稱:半導體微影製程疊對量測模擬系統之研製
論文名稱(外文):Research and Design of Semiconductor Lithography Overlay Metrology Simulation System
指導教授:吳文中
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:數值模擬微影疊對量測疊對標記近場遠場模擬軟體
外文關鍵詞:lithographynumerical simulationoverlay metrology simulationlighttoolsFDTD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:640
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在半導體製程中,微影技術是決定半導體線寬尺寸的關鍵技術,而覆蓋誤差量的控制又是微影製程的關鍵。隨著半導體製程的發展,積體電路的元件線寬越來越小,覆蓋誤差(Overlay error)量的控制也越來越重要。產生覆蓋誤差的原因是光罩之對位不正以及光源經過透鏡组與光罩後,因為電磁場與表面結構之近場交互作用的效應以及遠場之光學像差影響,造成晶圓表面的光學量測幾何圖案偏移與變形。為了能有效控制覆蓋誤差量,除了利用測量儀器做精確定位以減少對位產生之誤差之外,對於圖案線寬小於波長等級之結構,使用數值模擬的方法在電腦上進行計算,以事先了解光罩圖案在近場因繞射效應產生之圖案變形,做最佳之光罩圖樣設計以減少覆蓋誤差量是較經濟且有效的做法。
本論文採用OptiFDTD軟體,使用時域有限差分法之運算方式,將空間直接格點化,藉由時間變化疊代出每個時間的場變化,可以得到暫態以及穩態之結果,在運算上與實際狀況較為符合。而本論文除了利用OptiFDTD軟體模擬近場的空間格點電磁波性質外,在遠場部份則採用LightTools軟體來模擬計算。LightTools可以取代傳統在遠場使用繁複的傅立葉轉換積分計算,以非序列光線追蹤的方式,使用非常龐大的光線數量來計算光在遠場的光強分佈,兩種軟體之間的結合則以VBA做為媒介。藉由模擬 業界廣泛使用的BiB疊對標記圖樣與實驗的驗證,來建立一個可以自行開發的微影疊對量測模擬平台。最後我們發現以線(line)來做光罩標的圖樣會比溝槽(trench)來的好。
Photolithography is the key technology driving the advancement of the semiconductor industry and directly influences the critical dimension (CD) of Ultra-Large Scale Integration chips. The reduction of CDs creates more strictly overlay control requirements. In order to control and minimize overlay metrology errors, we have to deal with a number of design parameters both on the metrology tools and on the overlay targets. For speeding the rate of performance improvement, optical simulation can be used to model the effects of target designs on the ultimate metrology performance. Optical simulation on the computer can aid R&D efforts to improve metrology methods.
In this thesis, a overlay metrology simulation platform will be presented, developed in-house. The main idea of this platform is to simulate the overlay metrology which integrating with finite difference time domain and non-sequential ray tracing software package. Finite difference time domain method program is used to calculate the overlay target as an amplitude/phase-object in the near-field. And non-sequential ray tracing method program is used to calculate the power of the overlay target in the far-field. The simulation validation test with simulation standard overlay mark BiB(Bar-in-Bar)will also be detailed in this thesis..
誌謝…....................................i
中文摘要.................................ii
英文摘要................................iii
目錄.....................................iv
圖目錄...................................vi
表目錄...................................ix
第一章 緒論..............................1
1.1前言...................................1
1.2研究動機...............................1
1.2文獻回顧...............................2
1.3.1微影疊對量測簡介.....................2
1.3.2微影疊對量測模擬技術.................6
1.3 論文架構及概要.......................12
第二章 模擬與實驗原理介紹...............14
2.1光學成像原理..........................14
2.1.1光的數學表示式......................14
2.1.1基本成像原理........................15
2.2 OptiFDTD理論介紹.....................20
2.2.1 FDTD 的基本架構.................21
2.2.2 Yee的FDTD演算法.................22
2.2.3穩定準則.........................26
2.2.4激發源...........................27
2.2.6 吸收邊界(Absorbing Boundary Condition)的處理....29
2.3 LightTools 之理論介紹...............................41
2.3.1光的反射與折射…....................42
2.3.2輻射度學(Radiometry)與光度學(Photometry).......43
2.3.3非序列性光線追蹤(Non-sequential Ray Tracing).....46
第三章 系統模擬架構與結果...............47
3.1模擬實施架構..........................47
3.2模擬近場光學行為......................50
3.3模擬遠場光學行為......................64
3.4模擬結果比較..........................68
3.5模擬實務的疊對標記圖樣................71
第四章 實驗架構與結果分析...............73
4.1實驗方法..............................73
4.1.1晶圓軌道機(Track)掃瞄機(Scanner)整合系統......73
4.1.2疊對(Overlay)量測機台運作原理...................77
4.2實驗結果與分析........................79
第五章 結論與未來展望...................86
5.1結論..................................86
5.2未來展望..............................87
參考文獻.................................88
附錄…….................................94
1 Gregory L. Wojclk, David K. Vaughan, John Mould, Jr. Francisco Leon, Qi-De Qian, Michael A. Lutz “Laser Alignment Modeling Using Rigorous Numerical Simulations, SPIE Vol. 1463 Optical/Laser Microlithography IV, pp.291-303, 1991
2 Gregory L Wojcik, John Mould, Jr. Weidlinger Associates, Los Altos, Robert J. Monteverdet, Jaroslav J. Prochazka, John R. Frank, Jr, “Numerical Simulation of Thick Line Width Measurements by Reflected Light,” SPIE Vol. 1464 Integrated Circuit Metrology, Inspection, and Process Control V, pp.187-203, 1991
3 A. Wong, T. Doi, D. Dunn, and A. Neureuther “Experimental and Simulation Studies of Alignment Marks,” SPIE Vol. 1463 Optical/Laser Microlithography IV, pp.315-323, 1991
4 Gregory L. Wojcik, John Mould Jr., Egon Marxt, Mark P. Davidson, “Numerical Reference Models for Optical Metrology Simulation,” SPIE Vol. 1673 Integrated Circuit Metrology, Inspection, and Process Control VI, pp.70-82, 1992
5 Joel L. Seligson, Boris Golovanevsky, Jorge M. Poplawski, Mike E. Adel, Richard M. Silver, “Overlay metrology simulations,” Proceedings of SPIE Vol. 5038, pp.61-69, 2003
6 Joel L. Seligson*a, Boris Golovanevskya, Jorge M. Poplawskia, Mike E. Adela, Richard M. Silver, “Overlay metrology simulations - Analytical and experimental validations,” Proceedings of SPIE Vol. 5038, pp.61-69, 2003
7 Yariv Simovitch, Shahar Gov, “Usage of Overlay Metrology Simulator in Design of Overlay Metrology Tools for the 65nm Node and beyond,” Proceedings of SPIE Vol. 5375, pp.254-265, 2004
8 Aviv Frommer, Joel L. Seligson, “Overlay mark performance: a simulation study,” Proc. of SPIE Vol. 5752, pp.449-458, 2005
9 袁琪葦, “奈米壓印對位系統之研製:影像檢測技術與雷射干涉儀於多層壓印機台之應用”, 國立台灣大學工程科學及海洋工程研究所碩士論文,2005年。
10 Nyyssonen, D., “Theory of optical edge detection and imaging of thick layers,” J. Opt. Soc. Am., 72, pp. 1425-1436,1982.
11 Kirk, C. P., and Nyyssonen, D., “Modeling the Optical Microscope Images of Thick Layers for the Purpose of Linewidth Measurement, ” SPIE 538, pp.179-187, 1985.
12 Yuan, C., and Strojwas, A. J., “Modeling the Optical Alignment and Metrology Schemes Used in Integrated Circuit Manufacturing,” SPIE 1264, pp.203-218, 1990.
13 William B. Howard, and Darren Taylor, “Application-Specific Methods for Creating Simulation Masks, ” Proceedings of SPIE Vol. 5040, pp.986-997, 2003.
14 Tomoyuki Matsuyama, Yasuhiro Ohmura, David M. Williamson, “The Lithographic Lens: its history and evolution, ” Proc. of SPIE Vol. 6154, pp.24-37, 2006
15 K. S. Yee,“Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,”IEEE Trans. Antenna and Propagat., vol.14, No.3, pp.300-307, May 1966.
16王震宇, “使用時域有限差分法及完全吸收層探討高速電路之傳送信號品質”, 國立台灣海洋大學電機工程學系碩士學位論文 , 2000.
17 A. Taflove, Computational Electrodynamics The Finite Difference Time-Domain Method, 1995.
18 John B. Schneider, Member, IEEE, Christopher L. Wagner, and Omar M. Ramahi, “Implementation of Transparent Sources in FDTD Simulations”, IEEE Transactions On Antennas And Propagation, Vol. 46, No. 8, pp.1159-1168, August 1998.
19 Z. Bi, K. Wu, C. Wu, and J. Litva,“A dispersive boundary condition for microstrip component analysis using the FD-TD method,”IEEE Trans. Antenna. and Propagat., vol. MTT-40, no. 4, pp.774-777, Apr. 1992.
20O. M. Ramahi, “Complementary operators: A method to annihilate artificial reflections arising from the truncation of computational domain in the solution of partial differential equations,” IEEE Trans. Antenna. and Propagat., vol.43, pp.697-704, Jul. 1995.
21 J. P. Benerger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. .Phys., vol. 114, pp185-200, 1994.
22 Z. S Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as absorbing boundary condition,” IEEE Trans. Antenna. and Propagat., vol.43, pp.1460-1463, Jul. 1995.
23 G. Mur,“Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations, ” IEEE Trans. Electromagnetic Compatibility, vol.EMC-23, pp.377-382, Nov.1981.
24 R. L. Higdon,“Absorbing Boundary Conditions for Difference Approximations to the Multi-Dimensional Wave equations, ”Mathematics of Computation. Vol. 47, No. 176, pp. 437-459, Oct. 1986.
25 S. D. Gedney, “ An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices ”IEEE Trans. AP., vol. 44, No. 12, pp. 1630-1639, Dec. 1996.
26張皓翔, ”LED液晶顯示器背光模組之光學最佳化設計”,國立清華大學光電工程研究所碩士論文,2007。
27趙凱華、鍾錫華,“光學”,儒林圖書有限公司,1992 年 8 月初版。
28陳正寰,“顯示光學”,財團法人光電科技工業協進會,平面顯示科技人才,培訓講義,中華民國九十二年八月。
29陳勇嘉,滾壓式製程於中尺寸導光板之模擬與製程研究,國立中興大學精密工程研究所碩士論文,2006。
30 Hong Xiao 著, 羅正忠、張鼎張 譯, 半導體製程技術導論, 歐亞書局, 2001。
31 TOKYO ELECTRON(TEL)官方網頁, Semiconductor Production Equipment: Coater/Developer, CLEAN TRACK LITHIUS/LITHIUSi+
(http://www.telusa.com/eng/product/ct/ctlithiusiplus.htm)
32 Fujikom Corporation 官方網頁, 中古半導體裝置 (For Sale): TEL Lithius Coater & Developper (300mm)
(http://www.fujikom.com/sale/P05279%20TEL%20Clean%20Track%20Lithius.pdf)
33Gene Fuller, “Immersion ArF Lithography, ” Nikon DNS Lithography Breakfast Forum, July 13, 2004
(http://www.dnse.com/Semicon2004/LBF2004_All_Presentations/LBF2004_5_Nikon%20Scanner.pdf)
34Nikon官方網頁, Product & Support > Precision Equipment > NSR-S308F
(http://www.nikon.com/products/precision/lineup/nsr/arf/nsr_s308f/index.htm)
35Nikon官方網頁, Product & Support > Precision Equipment > NSR-S308F
(http://www.nikon.com/products/precision/lineup/nsr/arf/nsr_s308f/pdf/NSR-S308Fe.pdf)
36Semiconductor International 網頁, “2007 Editors’ Choice Best Product Awards-KLA-Tencor, ” (http://www.semiconductor.net/article/CA6455487.html)
37 ”半導體科技”網頁:半導體科技>雜誌導讀>技術專文,次世代微影疊對量測技術,2005
http://ssttpro.acesuppliers.com/semiconductor/Magazine_Details_Index_Id_44.html
38 Christopher J. Raymond, “Scatterometry for Semiconductor Metrology,” Handbook of Silicon Semiconductor Metrology, Chapter 18, 2001
39 Hsu-Ting Huang et al, “Scatterometry-based Overlay Metrology,” SPIE vol 5038, p126, 2003.
40 Weidong Yang et al, “Novel diffraction-based spectroscopic method for overlay metrology,” SPIE vol 5038, p200, 2003
41 Matthew Sendelbach et al, “Scatterometry measurement precision and accuracy below 70 nm,” SPIE vol 5038, p224, 2003
42 Eytan Barouch et al, “Scatterometry as a Practical in situ Metrology Technology,” SPIE vol 5038, p559, 2003
43 Christopher J. Raymond et al, ”Applications of angular scatterometry for the measurement of multiply-periodic features,” SPIE vol 5038, p577, 2003
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top