跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林雅慧
研究生(外文):Ya-Hui Lin
論文名稱:柳杉栽植距離試驗之林分斷面積生長與收穫
論文名稱(外文):Stand Basal Area Growth and Yield of Japanese Cedar in a Spacing Trail
指導教授:關秉宗
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:柳杉種內競爭栽植距離試驗生長
外文關鍵詞:Cryptomeria japonicaintraspecific competitionspacing trailgrowth
相關次數:
  • 被引用被引用:4
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以台大實驗林溪頭營林區173號柳杉(Cryptomeria japonica)造林地內之栽植距離試驗林分為試驗區,採用非線性混合效應模式結合2個含有3個參數的Logistic 生長模式,分析2m×2m、3m×3m、4m×4m及 5m×5m等不同栽植距離之小區胸高斷面積(BA)生長資料。第一個生長模式公式為 ,BA(t)為t時間的胸高斷面積(m2 0.1-ha-1),asymp (m2 0.1-ha-1)為模式之漸近線,b 為形數參數,rc (year-1)為生長速率參數。第二個生長模式公式為 ,BA(t)為t時間的胸高斷面積,asymp為模式之漸近線,b1為到達反曲點的時間,b2為從反曲點到達3/4漸近線所花的時間。
分析結果為漸近線(asymp)在兩個模式下皆為混合效應。在第一個模式下,栽植距離對漸近線及形數參數b有顯著影響,但不影響速率參數rc。在第二個模式下,栽植距離對於漸近線及b1有顯著影響,但不影響b2。兩個模式所預測的漸近線結果一致。55年生時,2m栽植距離下平均胸高斷面積為最大(7.29 m2 0.1-ha-1),5m栽植距離下平均胸高斷面積為最小(4.32 m2 0.1-ha-1)。根據第二個模式,四個栽植距離下到達反曲線的時間分別是試驗建立後的第16、19、22及24年,初始的栽植密度愈密,愈早到達生長反曲點。無論在哪一種栽植距離下,林木的內在增殖率皆為0.13,且從反曲點到達3/4漸近線的時間為8年,且各種栽植距離至50年後,胸高斷面積年生長量都接近0。
研究的結果表示最適宜的栽植密度為每公頃2500至3000株,疏伐宜於15至20年施行,輪伐期約為30年,和現今對於柳杉的撫育及經營慣例相似。
Using a nonlinear mixed-effects modeling approach, this study analyzed the basal area (BA) growth of a long-term Japanese cedar (Cryptomeria japonica, aka sugi) spacing trial in Sitou District of the Experimental Forest, National Taiwan University. The spacings analyzed were 2m×2m, 3m×3m, 4m×4m, and 5m×5m. To reveal different aspects of BA growth, two 3-parameter logistic growth models were used to analyze the data. The first model was the traditional logistic model with the form , where BA(t) is the BA (m2 per 0.1 ha) at time t (year), asymp (m2) is the asymptote of the model, b is a scale parameter, rc (year-1) is the rate parameter. The second model had the form , where BA(t) is the BA at time t, asymp is the asymptote of the model, b1 (year) is the time need to reach the inflection point, and b2 (year) is the time needed to reach approximately 3/4 of the asymptote after reaching the inflection point.
The results showed that only the asymptote (asymp) in both two models should be considered as a mixed-effect. For the first model, spacing had a significant effect on both asymptote and the scale parameter b, but not on the rate parameter, rc. For the second model, spacing had a significant effect on both asymp and b1, but not on b2. The asymptote estimates from the two models were consistent. After 55 years, the narrowest spacing had the highest average BA per unit area (7.29 m2 per 0.1 ha), whereas the widest spacing had the lowest value (4.32 m2 per 0.1 ha). Based on the results from the second logistic model, the inflection point for the four spacings was reached around 16, 19, 22, and 24 years after the establishment of the spacing trial. The closer the initial spacing, the earlier the inflection point was reached. Regardless of the initial spacing, the estimated rate parameter was 0.13, and the time needed to reach 3/4 of the estimated maximum BA growth was 8 years after reaching the respective inflection points. After 50 years, the annual BA growth was close to 0, regardless of the initial spacing.
This study confirmed the current silvicultural and management practices prescribed for the species, that is, the optimal planting density should be between 2500 to 3000 trees ha-1, thinning should commence between age 15 and 20, and the rotation period of the species should be around 30 years.
目錄
中文摘要…………………………………………………………………i
英文摘要…………………………………………………………………ii
目錄………………………………………………………………………iv
表目錄……………………………………………………………………v
圖目錄……………………………………………………………………vi
附錄目錄………………………………………………………………vii
壹、前言…………………………………………………………………1
貳、前人研究……………………………………………………………3
參、研究材料與方法……………………………………………………15
第一節 研究材料……………………………………………………15
第二節資料處理與分析………………………………………………18
肆、結果…………………………………………………………………25
伍、討論…………………………………………………………………54
陸、結論…………………………………………………………………58
柒、參考文獻……………………………………………………………60
附錄………………………………………………………………………65

表目錄
表一:L ogistic Model Ⅰ之G及R矩陣參數95%信賴區間.........42
表二:Logistic Model Ⅰ胸高斷面積預測模式.................43
表三:Logistic Model Ⅰ模式參數之95%信賴區間..............44
表四:Logistic ModelⅡ之G及R矩陣參數95%信賴區間...........47
表五:Logistic Model Ⅱ胸高斷面積預測模式.................48
表六:Logistic Model Ⅱ模式參數之95%信賴區間..............49
表七:Logistic Model Ⅰ和Logistic Model Ⅱ的比較..........50

圖目錄
圖一:Olindan及Southeastern林分在不同栽植距離下林木株數樹高胸徑變化圖…..5
圖二:Olindan及Southeastern林分在不同栽植距離下林木胸高斷面積材積變化圖..7
圖三:Olindan及Southeastern林分在不同栽植距離下平均胸高斷面積材積變化圖..8
圖四:Olindan及Southeastern林分不同栽植距離下,林木的生長趨線........................9
圖五:使用混合效應模式及生長模式,四種處理下火炬松平均材積生長之差異圖.13
圖六:173號造林地內之栽植距離試驗林分樣區配置圖.............................................15
圖七:胸高斷面積示意圖...............................................................................................16
圖八:173號造林地內之栽植距離試驗林分總胸高斷面積圖.....................................19
圖九:Logistic ModelⅠ之示意圖...................................................................................20
圖十:Logistic Model Ⅱ之示意圖.................................................................................21
圖十一:Logistic ModelⅠ胸高斷面積觀測值及預測值的線性迴歸...........................30
圖十二:Logistic ModelⅠ常態分布分位數散布圖.......................................................31
圖十三:Logistic ModelⅠ標準機差和估計值的散布圖...............................................32
圖十四:Logistic ModelⅠ機差的自相關圖...................................................................33
圖十五:Logistic ModelⅠ模式的預測圖.......................................................................34
圖十六:Logistic Model Ⅱ胸高斷面積觀測值及預測值的線性迴歸.........................35
圖十七:Logistic Model Ⅱ常態分布分位數散布圖.....................................................36
圖十八:Logistic Model Ⅱ標準機差和估計值的散布圖.............................................37
圖十九:Logistic Model Ⅱ機差的自相關圖.................................................................38
圖二十:Logistic Model Ⅱ模式的預測圖.....................................................................39
圖二十一:Logistic ModelⅠasymp參數逢機效應的差異圖........................................41
圖二十二:Logistic Model Ⅱasymp參數逢機效應的差異圖......................................46
圖二十三A:173號造林地內之栽植距離試驗林分林木絕對生長速率圖.................52
圖二十三B:173號造林地內之栽植距離試驗林分之胸高斷面積預測圖...............53
王子定 (1966) 應用育林學。國立編譯館。
王子定、戴廣耀、焦國模、施慶芳 (1966) 柳杉栽植距離之研究。台灣大學農學 院專刊 17:1-48。
王子定 (1978) 不同齡級柳杉林樹木生物量之測定。中華農學會報 102:59-76。
王子定、施慶芳 (1980) 修枝對柳杉生長之影響。台大農學院研究報告 20(1):23-55。
行政院農業委員會林務局 (2007)台灣林務局局誌-續編。行政院原住民委員會。
林世宗 (1989) 不同栽植距離下柳杉林分之生長及其養分動態之研究。國立台灣大學森林研究所博士論文。
林淑華 (1994) 台灣栽植柳杉之栽植距離對其原木、製材品等及製材彎曲強度性質影響之研究。國立台灣大學森林學研究所林產組碩士論文。
施慶芳、劉金淓、陳放生 (1997) 柳杉栽植距離之研究-46年生時之結果。台大實驗林研究報告 11(2):81-109。
郭寶章 (1989) 育林學各論。國立編譯館。
劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。台灣商務印書館。
劉慎孝 (1975) 台灣柳杉林分理想立木度之查定研究。中興大學農林學報 24:129-142。
Andres, B. O., S. Hubert, R. Miren, and B. Felipe. 2006. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. Forest Ecology and Management 222:88-98.
Barnes, B. V., D. R. Zak, S. R. Denton, and S. H. Spurr. 1998. Forest Ecology. Fourth edition. John Wiley, New York.
Bernardo, A. L., M. G. F. Reis, G. G. Reis, R. B. Harrison, and D. J. Firme. 1998. Effects of spacing on growth and biomass distribution in Eucalyptus camaldulensis, E. pellita and E. urophylla plantations in southeastern Brazil. Forest Ecology and Management 104:1-13.
Buford, M. A. 1991. Performance of four yield models for predicting stand dynamics of a 30-year-old loblolly pine (Pinus taeda L.) spacing study. Forest Ecology and Management 46:23-38.
Crawley, M. J. 1986. Plant Ecology. Blackwell Science, Cambridge.
DeBell, D. S., W. R. Harms, and C. D. Whitesell. 1989. Stockability : a major factor in productivity differences between Pinus taeda plantations in Hawaii and the Southeastern United States. . Forest Science 35:708-719.
Fang, Z. and R. L. Bailey. 2001. Nonlinear mixed effects modeling for Slash pine dominant height growth following intensive sivicultural treatments. Forest Science 47:287-300.
Ford, E. D. 1975. Competition and stand structure in some even-aged plant monocultures. Journal of Ecology 63:311-333.
Fowler, N. 1981. Competition and coexistence in a north carolina grassland: II. The effects of the experimental removal of species. Journal of Ecology 69:843-854.
Gough, C., J. Seiler, and C. Maier. 2004. Short-term effects of fertilization on loblolly pine(Pinus taeda L.) physiology. Plant Cell Environment 27:76-88.
Guan, B. T., T.-Y. Chang, P.-C. Shih, and S.-T. Lin. 2006. Application of a nonlinear mixed-effects model to assess the effects of nursery nitrogen fertilization on seeding height growth of Taiwan yellow false cypress. Taiwan Journal Forest Science 21:63-74.
Guan, B. T., S. T. Lin, Y. H. Lin, and Y. S. Wu. 2008a. No initial size advantage for Japanese cedars in crowded stands. Forest Ecology and Management 255:1078-1084.
Guan, B. T., S. T. Lin, Y. H. Lin, and Y. S. Wu. 2008b. Growth efficiency-survivorship relationship and effects of spacing on relative diameter growth rate of Japanese cedars. Forest Ecology Management 255:1713-1723.
Hall, D. B. and M. Clutter. 2004. Multivariate multilevel nonlinear mixed effects models for timber yield predictions. Biometrics 60:16-24.
Harms, W. R., C. D. Whitesell, and D. S. DeBell. 2000. Growth and development of loblolly pine in a spacing trial planted in Hawaii. Forest Ecology and Management 126:13-24.
Hunt, R. 1982. Plant growth curves-the functional approach to plant growth analysis. Arnold, London
Hunt, R. 1990. Basic growth analysis. Unwin Hyman, London.
Khamis, A. and Z. Ismail. 2004. Comparative study on nonlinear growth model to tobacco leaf growth data. Journal of Agronomy 3:147-153.
Lin, S. T., B. T. Guan, and T. Y. Chang. 2007. Fitting photosynthesis irradiance response curves with nonlinear mixed-effects models. Taiwan Journal Forest Science 23:55-69.
Littell, R., G. Milliken, W. Stroup, and R. Wolfinger. 1996. SAS system for mixed models. SAS Institute, NC.
Long, J. N. and F. W. Smith. 1984. Relation between size and density in development stands : a description and possible mechanisms. Forest Ecology and Management 7:191-206.
Meskimen, G. and E. C. Franklin. 1978. Spacing effects on Eucalyptus grandis in southern Florida. Southern African Forestry Journal 1:31-37.
Moser, E., A. Saxton, and S. Pezeshki. 1990. Repeated measures analysis of variance: application to tree research. Canadian Journal of Forest Research 20:24-35.
Panwar, S., A. Kumar, S. Singh, and N. Jaggi. 2006. Fitting nonlinear gompertz curve to banana growth data.in SCRA 2006-FIM XIII-thirteenth international conference of the forum for interdisciplinary mathematics on interdisciplinary mathematical and statistical techniques., Lisbon-Tomar, Portugal.
Pinheiro, J. C. and D. M. Bates. 2000. Mixed-effects models in S and S-Plus. Springer, New York.
Reineke, L. H. 1933. Perfecting a stand density index for even-aged forests. Journal of Agricultural Research 46:627-638.
Schoener, T. W. 1983. Field experiments on interspecific competition. American Naturalist 122:240-285.
Schwinning, S. and J. Weiner. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447-455.
Shih, P. C. and B. T. Guan. 1998. Nursery nitrogen fertilization of Taiwan cypress: A case study on statistical analyses of fertilization experiments. Quarterly Journal of Chinese Forestry 31:349-360.
Sun, H. G., J. G. Zhang, A. G. Duan, and C. Y. He. 2007. A review of stand basal area growth models. Forestry Studies in China 9:85-94.
Tang, S. Z. and J. S. Du. 1999. Determining basal area growth process of thinned even-aged stands by crown competition factor. Scientia Silvae Sinicae 35:35-41.
Thornley, J. H. M. and I. R. Johnson. 2000. Plant and crop modelling. The Blackburn Press, Caldwell.
Vonesh, E. F. and V. M. Chinchilli. 1997. Linear and nonlinear models for the analysis of repeated measurements. Marcel Dekker, New York.
Waring, R. H. 1983. Estimating forest growth and efficiency in relation to canopy leaf area. Advances in Ecological Research 13:327-354.
Yoda, K., T. Kira, H. Ogawa, and K. Hozumi. 1963. Self-thinning in overcrowded pure stands under cultivation and natural conditions. Jounal of Biology, Osaka City University 14:107-129.
Zhao, D., M. Wilson, and B. E. Borders. 2005. Modeling response curves and testing treatment effects in repeated measures experiments: a multilevel nonlinear mixed-effects model approach. Canadian Journal of Forest Research 35:122-132.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top