跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/04 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛惠今
研究生(外文):Huei-Chin Hsueh
論文名稱:木材塑膠再生複合材之潛變與耐候特性探討
論文名稱(外文):Creep and Weathering Properties of Wood Plastic Composites Made from Recycled Materials
指導教授:王松永王松永引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:潛變性能撓曲耐候性能木材塑膠複合材
外文關鍵詞:Creep propertyDeflectionWeathering propertyWood Plastic Composite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:551
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗目的為探討長時間載重之下,不同塑膠基材(PP, polypropylene; RPP, recycled polypropylene)、不同塑膠與木粉比例(30/70, 50/50, 70/30)、不同載重水準(30%, 50%, 70%)以及不同的耐候條件(室外耐候5、9個月與加速耐候360, 1080, 2040 hr)對於混煉後射出成型的木材塑膠複合材的標準試片之潛變量、機械性質、明亮度與粗糙度的影響。
試驗結果顯示:在長時間的重複載重模式下,潛變量的總變化會隨著重複載重次數的增加而呈現對數趨勢上升,並且受材料中的黏彈性部份影響較大;在長時間載重至破壞的模式下,不同塑膠基材潛變量的變化有顯著差異,當塑膠基材與木粉比例為50/50時,強度皆能保持在700 kgf/cm2左右;不同塑膠木粉比例潛變量的變化會隨著木粉比例的增加,潛變撓曲會呈現下降的趨勢,強度則以木粉比例佔50%時能保有最高強度(708 kgf/cm2),而木粉比例佔70%時殘餘的強度最低(523 kgf/cm2);不同載重水準潛變量的變化會隨著載重水準的增加,潛變撓曲會呈現上升的趨勢。
此外,耐候試驗對於木材塑膠複合材的性質影響包含:在室外耐候試驗及加速耐候試驗初期,明亮度皆有明顯的增加;試片之抗彎、抗拉強度皆會隨著木粉含量的增加,而降低其強度。在粗糙度的比較,試片在經過加速耐候試驗之後,其粗糙度皆會隨著加速耐候時間的增加,而呈現顯著的增加。
The purpose of this study is to discuss different factors of long-term loading, including different plastic bases (PP, polypropylene; RPP, recycled polypropylene), ratios of plastic/wood flour (30/70, 50/50, and 70/30), load levels (30%, 50%, and 70%), and conditions of weathering (5 and 9 months outdoor weathering; 360, 1080, and 2040 hours accelerated weathering), affect on creep deflections, mechanical properties, lightness, and roughness of wood plastic composites’ standard test specimens by injection machine.
The results of the experiment showed: under the creep recovery model, creep and creep recovery increase along with the number of repeat loading times in fixed time, and present the logarithm relationships. Besides, the viscoelasticity of the material has much influence to the creep deflections. Under the creep rupture model, creep deflections have significant difference between different plastic bases. When the ratio of plastic/wood flour is 50/50, residual MOR can keep at about 700 kgf/cm2. The contents of wood flour have negative relationship with creep deflections. When the content of wood flour is 50%, residual MOR can keep at the highest about 708 kgf/cm2. And residual MOR keep at the lowest about 523 kgf/cm2 when the content of wood flour is 70%. The load level has positive relationship with creep deflections.
In addition, the affections of weathering to the wood plastic composites’ properties showed: lightness increase obviously in the initial periods of out-door weathering and accelerated weathering. MOR and tensile strength have negative relationship with the contents of wood flour. Roughness have positive relationship with the time of accelerated weathering.
誌謝 i
摘要 ii
Abstract iii
第一章、前言 1
第二章、前人研究 5
2.1 潛變 5
2.2 耐候 9
2.2.1 紫外線 10
2.2.2 濕度 11
2.2.3 材料表面微觀的變化 12
第三章、材料與方法 13
3.1 試驗材料與藥品 13
3.1.1 塑料 13
3.1.2 木料 13
3.1.3 添加劑 13
3.2 試驗方法 13
3.2.1 材料準備 13
3.2.2 混煉 14
3.2.3 射出成型 14
3.3 木塑材各項性質試驗 15
3.3.1 抗拉試驗(ASTM D638) 15
3.3.2 抗彎試驗(ASTM D4761) 15
3.3.3 潛變試驗(ASTM D6112) 15
3.3.4 耐候試驗 17
3.3.4.1 室外耐候試驗(CNS 8909) 17
3.3.4.2 加速耐候試驗(CNS 8910) 17
3.3.5 表面性質 17
3.3.6 計算固碳量 18
第四章、結果與討論 19
4.1 長時間載重 19
4.1.1 重複載重 19
4.1.2 破壞載重 23
4.1.2.1 不同塑膠基材之影響 23
4.1.2.2 塑膠與木粉不同比例之影響 25
4.1.2.3 不同載重水準之影響 27
4.1.2.4 抗彎強度殘留率 29
4.2 耐候試驗 31
4.2.1 明亮度與粗糙度 31
4.2.1.1 明亮度(L*) 31
4.2.1.2 粗糙度(Ra) 37
4.2.1.3 掃描式電子顯微鏡觀察(SEM) 39
4.2.2 強度 40
4.2.2.1 抗彎強度 40
4.2.2.2 抗拉強度 43
4.3 室外耐候試驗後之破壞潛變 45
4.3.1 不同塑膠基材之影響 45
4.3.2 塑膠與木粉不同比例之影響 46
4.3.3 抗彎強度殘留率 49
4.4 木塑試材之固碳量 51
第五章、結論 52
第六章、參考文獻 53
王松永、唐潤秋、J. N. Lee、陳柏璋、羅盛峰 (1995) 用膠量與載重水準對柳杉及杉木定向粒片板之潛變性質影響。林產工業。14(2):1−16。
雷彩紅、雷芳、陳福林 (2007) 戶外木塑複合材料的研究進展。塑料。36 (1):22−26。
林建中 (1998) 高分子化學原理。歐亞書局有限公司。212頁
胡德 (1990) 高分子物理及機械性質。國立編譯館主編。pp. 321.
孫占英、李大綱、吳正元、葛錦 (2006) 自然氣候條件下木塑材複合材料性質的變化。木材工業。20(3):17–19。
CNS 8909 (1982) 塑膠建築材料室外暴露檢驗法。經濟部標準檢驗局。
CNS 8910 (1994) 塑膠建築材料加速曝露試驗法。經濟部標準檢驗局。
JIS A 5741 (2006) 木材塑膠再生複合材。日本規格協會。
Arruda, E. and M. Boyce (1993a) Evolution of plastic anisotropy in amorphous polymers during finite straining. International Journal of Plasticity. 9: 697−720.
Arrruda, E. and M. Boyce (1993b) A three-dimensional constitutive model of the large stretch behavior of rubber elastic materials. Journal of Mechanics and Physics of Solids. 41.
ASTM D6112 (2005) Standard Test Methods for Compressive and Flexural Creep and Creep-Rupture of Plastic Lumber and Shapes. ASTM International.
Balatinecz, J. J. and B. D. Park (1997) The effects of temperature and moisture exposure on the properties of wood fiber thermoplastic composite. Journal of Thermoplastic Composite Materials. 10 (9): 476–487.
Bodig, J. and A. J. Benjamin (1982) Mechanics of Wood and Wood Composites. Van Nostrand Reinhold Company. p. 216.
Bowis, M. E., D. Bhattacharyya and M. V. Uprichard (1996) In Progress in Advanced Materials and Mechanics. Tzuchiang, W.; Chou, T. W., Eds.; Peking University Press: Beijing. p. 956.
Boyce, M., D. Parks and A. Argon (1988) Large inelastic deformation of glassy polymers. Part Ⅰ: Rate dependent constitutive model. Mechanics of Materials. 7: 15−33.
Carroll, D. R., R. B. Stone, A. M. Sirignano, R. M. Saindon, S. C. Gose and M. A. Friedman (2001) Structural properties of recycled plastic/sawdust lumber decking planks. Resources, Conservation and Recycling. 31: 241–251.
Chandra, P. K. and P. J. A. Sobral (2000) Calculation of viscoelastic properties of edible films: application of three models. Ciênc. Tecnol. Aliment. Vol. 20, No. 2.
Clemons, C. (2002) Wood-plastic composites in the United States - The interfacing of two industries. Forest Products Journal. 52 (6): 10−18.
Clemons, C. A. and R. E. Ibach (2004) Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Products Journal. 54 (4): 50–57.
DeFosse, M. (2003) Wood composites are expanding among sectors. Modern Plastics. 80 (1): 25−30.
Dinwoodie, J. M., B. H. Paxton, P. W. Bonfield and J. S. Mundy (1995) Fatigue and creep in chipboard-Part 2. The influence of slow cyclic fatigue on the creep behavior of chipboard at a range of stress levels and moisture contents. Wood Science and Technology. 29: 64−76.
Falk, R. H., T. Lundin and C. Felton (2000) The effects of weathering on wood-thermoplastic composites intended for outdoor applications. Madison: Durability and Disaster Mitigation in Wood-frame Housing. pp. 175–179.
Faruk, O., A. K. Bledzki and L. M. Matuana (2007) Microcellular foamed wood-plastic composites by different processes: a review. Macromolecular Materials and Engineering Journal. 292: 113−127.
Guo, W. and M. Ashida (1993) Dynamic viscoelasticities for short-fiber thermoplastic elastomer composites. Journal of Applied Polymer Science. 50 ( 8 ): 1435−1443.
Haque, M. N., T. A. G. Langrish, L. B. Keep and R. B. Keey (2000) Model fitting for visco-elastic creep of Pinus radiate during kiln drying. Wood Science and Technology. 34: 447−457.
Joseph, K., S. Thomas and C. Pavithran (1995) Effect of aging on the physical and mechanical properties of sisal-fiber reinforced polyethylene. Composites Science and Technology. 53 (1): 99–101.
Kazayawoko, M. and J. J. Balatinecz (1995) Adhesion Mechanisms in Wood Fiber-Polypropylene Composites. Forest Products Society: Madison, WI. p. 81.
Kobbe, R. G. (2005) Creep Behavior of a Wood-Polypropylene Composite. Master of Science in Civil Engineering. Washington State University. p. 3.
Kollmann, F.F.P. and W.A. Cote Jr. (1968) Principles of Wood Science and Technology. Ι: Solid wood. Springer-Verlag, New York. pp. 315−316.
Lampo, R. G., T. J. Nosker and R. W. Renfree (1996) Design considerations for the use of plastic lumber in structural applications, materials for the new millennium. Proceedings of the Fourth Materials Engineering Conference, Washington DC, 10–14 November. p. 1492−00.
Lee, S. Y., H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim and J. N. Lee (2004) Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures. 65: 459−469.
Lin, Q., X. Zhou and G. Dai (2002) Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour filled polypropylene composites. Journal of Applied Polymer Science. 85 (14): 2824–2832.
Lu, J. P. and R. H. Leicester (1997) Mechano-sorptive effects on timber creep. Wood Science and Technology. 31: 331−337.
Lundin, TM. S. Thesis.(2001) Effect of accelerated weathering on the physical and mechanical properties of natural-fiber thermoplastic composites. University of Wisconsin-Madison, Madsin, W. I.
Matuana, L. M., D. P. Kamdem and J. Zhang (2001) Photoaging and stabilization of rigid PVC /wood fiber composites. Journal of Applied Polymer Science. 80 (11): 1943–1950.
Matuana, L. M. and D. P. Kamdem (2002) Accelerated ultraviolet weathering of PVC/ wood flour composites. Polymer Engineering and Science. 42 (8): 1657–1666.
McLaren, M. G. (1995) Recycled plastic lumber and shapes design and specifications, restructuring — America and beyond. Proceedings of Structures Congress XIII, Boston, MA 2−5 April. p. 819−833.
Mohanty, A. K., M. Misra and G. Hinrichsen (2000) Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering. 276: 1−24.
Muasher, M. and M. Sain (2006) The efficacy of photostabilzers on the color change of wood felled plastic composites. Polymer Degradation and Stability. 91(5): 1156–1165.
Nabi, Z. U. and S. Hashemi (1999) Influence of short glass fibres and weld lines on the mechanical properties of injection-moulded acrylonitrile-styrene-acrylate copolymer. Journal of Material Science. 33 (12): 2985−3000.
Norma, E. M and M. A. Villar (2003) Thermal and Mechanical Characterization of Linear Low-Density Polyethylene/Wood Flour Composites. Journal of Applied Polymer Science. Vol. 90, pp. 2775−2784.
Nuñez, A. J., P. C. Sturm, J. M. Kenny, M. I. Aranguren, N. E. Marcovich and M. M. Reboredo (2003) Mechanical Characterization of Polypropylene-Wood Flour Composites. Journal of Applied Polymer Science. Vol. 88, pp. 1420−1428.
Nuñez, A. J., N. E. Marcovich, and M. I. Aranguren (2004) Analysis of the Creep Behavior of Polyproplene-Woodflour Composites. Polymer Engineering and Science. Vol. 44, No.8: 1594−1603.
Park, B. D. and J. J. Balatinecz (1997) A comparison of compounding processes for wood-fiber/thermoplastic composites. Polymer Composites. 18 (3): 425−431.
Pilarski, J. M. and L. M. Matuana (2005) Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling. Part Ⅰ. Rigid PVC matrix. Journal of Vinyl and Additive Technology. 11(1): 1–8.
Pilarski, J. M. and L. M. Matuana (2006) Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling. Part Ⅱ.High density polyethylene matrix. Journal of Applied Polymer Science. 100(1): 35–39.
Pritchard, J., M. P. Ansell, R. J. H. Thompson and P. W. Bonfield (2001) Effect of two relative humidity environments on the performance properties of MDF, OSB and chipboard. Part1: MOR, MOE and fatigue life performance. Wood Science and Technology. 35: 295−403.
Rangaraj, S. V. and L. V. Smith (2000) Effect of moisture on the durability of a wood / thermoplastic composite. Journal of Thermoplastic Composite Materials. 13 (3): 140–161.
Rowell, R. M., S. E. Lange and R. E. Jacobson (2000) Weathering performance of plant-fiber thermoplastic composites. Molecular Crystals and Liquid Crystals. 353: 85–94.
Stark, N. (2001) Influence of moisture absorption on mechanical properties of wood-flour polypropylene composites. Journal of Thermoplastic Composite Materials. 14 (5): 421–432.
Stark, N. M. and L. M. Matuana (2002) Photostabilization of wood flour filled HDPE composites. San Francisco. CA: ANTEC, Society of Plastics Engineers. pp. 2209–2213.
Stark, N. M. and L. M. Matuana (2003) Ultraviolet weathering of photostabilized wood flour filled high-density polyethylene. Journal of Applied Polymer Science. 90 (10): 2609–2617.
Stark, N. M. and L. M. Matuana (2004) Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering. Journal of Applied Polymer Science. 94(6): 2263–2273.
Stark, N. M., L. M. Matuana and C. M. Clemons (2004) Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. Journal of Applied Polymer Science. 93(3): 1021–1030.
Stark, N. M. (2006) Effect of weathering cycle and manufacturing method on performance of wood flour and high-density polyethylene composites. Journal of Applied Polymer Science. 100 (4): 3131–3140.
Verhey, S. A., P. E. Laks and P. L. Richter (2003) Use of field stakes to evaluate the decay resistance of wood-fiber-thermoplastic composites. Forest Products Journal. 53 (5): 5–8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top