跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉益宏
研究生(外文):Yi-Hung Liu
論文名稱:臘狀芽孢桿菌C1L菌株誘導百合系統性抗灰黴病菌之研究
論文名稱(外文):Studies on Bacillus cereus C1L-induced systemic resistance against Botrytis elliptica in Lilium
指導教授:陳昭瑩陳昭瑩引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:151
中文關鍵詞:根圈細菌誘導系統性抗病過氧化氫細胞死亡差異性表現抗氧化作用離層酸
外文關鍵詞:Rhizobacteriainduced systemic resistancehydrogen peroxideplant cell deathantioxidationabscisic acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知施用臘狀芽孢桿菌C1L菌株之菌液於葵百合及臺灣百合根圈,可有效地降低灰黴病之發病嚴重度,本論文研究C1L菌株誘導百合之抗病機制,並推測可能之訊息傳遞路徑。首先利用抑制性扣減雜交(suppression subtractive hybridization, SSH)技術,於臺灣百合上鑑定出預先處理C1L菌株而有差異性表現的基因LfGRP1、LfMT1、LfPsbR等。其中LfMT1為正調控表現,LfGRP1及LfPsbR呈負調控表現;在葵百合上,同源性基因之表現亦有有相同趨勢,推測C1L菌株由改變百合之基因表現,影響百合之生理功能,致使百合對灰黴病菌具有抵抗性,其作用機制與水楊酸誘導表現的抗病機制不同。其次,觀察到C1L菌株可促使葵百合抑制由灰黴病菌感染所造成之過氧化氫累積及百合細胞過度氧化及細胞死亡的情形。由活性氧(reactive oxygen species, ROS)抑制劑之作用及北方雜合分析之結果推測LfGRP1及LfPsbR基因的負調控表現與ROS代謝途徑有關。再者,利用乙烯及甲基茉莉酸處理葵百合時,LfGRP1及LfPsbR基因有增量表現,但預先處理離層酸時,此二基因之表現則會受到抑制,指出C1L菌株誘導百合對灰黴病產生抗病性,可能參與離層酸訊息傳遞路徑。另一方面,於葵百合葉片上單獨接種灰黴病菌24小時,與對照組比較之下,以Evan blue染色可以偵測到高含量的細胞死亡,而預先處理C1L菌株再接種灰黴病菌 24小時,可抑制百合葉片過氧化氫累積及細胞死亡。此外,以C1L菌株處理百合時,百合葉之過氧化酶活性,於處理後48小時達到最高,單一接種灰黴病菌 24小時,過氧化酶活性最強,但48小時即呈現負調控;預先處理C1L菌株24小時後再接種灰黴病菌時,過氧化酶活性並不會增加。另一方面,分析β-1,3-葡聚糖酶基因之表現,預先處理C1L菌株24小時再接種灰黴病菌,可提早於接種後48小時偵測到β-1,3-葡聚糖酶基因之表現,可能與百合葉抗灰黴病菌感染的能力有關。為進一步分析C1L菌株誘導百合抗灰黴病之作用機制,利用cDNA-AFLP技術在不同處理中共獲得葵百合之104個cDNA片段,以半定量反轉錄聚合酶鏈鎖反應偵測基因之表現,發現C1L菌株處理百合根系,可經由鈣離子的訊息傳遞,啟動抗病反應,而此過程會帶動與離層酸或似離層酸訊息路徑有關之清除活性氧物質的抗氧化反應。本研究並發現C1L菌株可誘導麩醯胺酸合成酵素基因之表現,其可能減輕灰黴病菌感染對百合細胞的毒化作用,因而降低灰黴病之嚴重度。
Application of Bacillus cereus C1L suspension in the rhizosphere of Lilium formosanum and lily cv. Star Gazer to reduce gray mold severity has been demonstrated. In this dissertation, the mechanism of induced systemic resistance (ISR) was approached to figure out the signaling pathway involved. Firstly, differentially expressed genes in strain C1L-treated L. formosanum were identified to be LfGRP1, LfMT1, and LfPsbR, by the use of suppression subtractive hybridization method. When L. formosanum was treated with strain C1L, LfMT1 was up-regulated. However, LfGRP1 and LfPsbR were down-regulated. The expression patterns of the 3 homologues in oriental lily cv. Star Gazer were identical to those of LfGRP1, LfMT1 and LfPsbR. When using ethylene and methyl jasmonate to treat lily cv. Star Gazer, LsGRP1 and LsPsbR were up-regulated. On the contrary, these genes were down-regulated by the treatment of abscissic acid (ABA), indicating that ABA signaling pathway is involved in the systemic resistance induced by strain C1L. When ‘Stra Gazer’ lily plants were treated with strain C1L 24 hours before inoculation with B. elliptica, accumulation of hydrogen peroxide and cell death in the leaves was suppressed as compared to those exhibited in the plant singly inoculated with B. elliptica. The peroxidase activity was not increased in the leaves inoculated with B. elliptica post strain C1L treatment, unlike that inoculated with B. elliptica singly. On the other hand, strain C1L induced early expression of LpGlu1 (β-1,3-glucanase) in response to B. elliptica infection post strain C1L treatment as compared to that inoculated with B. elliptica singly. In order to dissect the mechanism of ISR activated by strain C1L, cDNA-AFLP was analyzed and 104 cDNA clones representative of differentially expressed genes of lily were obtained. Expressions of selected genes were analyzed by semi-quantitative reverse-transcription polymerase chain reaction. The results showed that strain C1L could induce systemic resistance via calcium ion signaling pathway and ABA signaling pathway, followed by anti-oxidative response. Additionally, strain C1L induced expression of glutamate synthase of lily which might decrease cellular toxicity caused by B. elliptica and therefore reduced the disease severity.
中文摘要..................................................5
英文摘要..................................................7
前 人 研 究............................................9
 壹、應用根圈細菌誘導植物抗病性之研究....................9
 貳、活性氧與植物抗病之關係.............................14
 參、植物抗氧化反應.....................................16
 肆、百合灰黴病.........................................18
第一章 臘狀芽孢桿菌誘導百合系統抗病性之驗証及基因表現分析.......................................................21
 壹、中文摘要...........................................21
 貳、英文摘要...........................................22
 參、前  言...........................................23
 肆、材料與方法.........................................25
  一、供試植物與菌株...................................25
  二、百合灰黴病罹病度之計量...........................25
  三、臘狀芽孢桿菌 C1L菌株群聚於百合根系試驗...........26
  四、3-(3,4-dichlorophenyl)-1,1-dimethylurea ( DCMU)處理對百合之影響.............................................26
  五、臺灣百合GRP基因之選殖............................26
  六、百合葉片全RNA之萃取..............................27
  七、百合葉片訊息RNA之萃取............................27
  八、臘狀芽孢桿菌C1L菌株處理百合之SSH cDNA基因庫之製備.......................................................28
  九、DNA 黏接反應.....................................30
  十、大腸桿菌勝任細胞製備.............................31
  十一、大腸桿菌細胞轉形反應...........................31
  十二、菌落PCR........................................31
  十三、百合cDNA探針製備...............................32
  十四、以雜合點漬分析篩選差異性表現之cDNA.............32
  十五、序列分析.......................................33
  十六、核酸探針製備...................................33
  十七、北方雜合分析...................................33
 伍、結  果...........................................35
  一、臘狀芽孢桿菌C1L菌株之生物防治潛力................35
  二、選殖臘狀芽孢桿菌 C1L菌株誘導之百合差異性表現基因.......................................................35
  三、LfGRP1、LfMT1及LfPsbR基因分析....................36
  四、百合防禦相關基因之表現...........................37
  五、DCMU抑制百合灰黴病之抗性及影響基因之表現.........38
 陸、討  論...........................................39
 柒、圖 表 集.........................................42
  表一、臘狀芽孢桿菌C1L菌株於葵百合根系減少灰黴病之發生.......................................................43
  表二、臘狀芽孢桿菌C1L菌株誘導臺灣百合基因之差異性表現.......................................................44
  圖一、臘狀芽孢桿菌C1L菌株抑制臺灣百合灰黴病之發生....45
  圖二、臘狀芽孢桿菌C1L群聚臺灣百合根系之族群量........46
  圖三、電泳分析SSH之cDNA產物..........................47
  圖四、LfGRP1之核苷酸及預測胺基酸序列.................48
  圖五、LfMT1之核苷酸及預測胺基酸序列..................49
  圖六、葵百合LsMT1及臺灣百合LfMT1之核苷酸序列比對.....50
  圖七、葵百合LsPsbR及臺灣百合LfPsbR之核苷酸序列比對...51
  圖八、百合葉LfGRP1及LsGRP1基因表現之北方雜合分析.....52
  圖九、百合葉MT1及PsbR基因表現之北方雜合分析..........53
  圖十、施用DCMU抑制灰黴病在葵百合葉造成之病斑數目.....54
  圖十一、DCMU處理葵百合之全RNA北方雜合分析............55
第二章 臘狀芽孢桿菌誘導百合葉抗灰黴病之分子機制探討......56
 壹、中文摘要...........................................56
 貳、英文摘要...........................................57
 參、前 言.............................................58
 肆、材料與方法.........................................61
  一、供試植物及菌株...................................61
  二、灰黴病菌對過氧化氫之感受性試驗...................61
  三、植物抑制劑處理...................................61
  四、植物荷爾蒙誘導百合抗病性試驗.....................62
  五、百合葉組織化學試驗...............................62
  六、過氧化氫之萃取與定量.............................64
  七、過氧化酶之萃取與定量.............................64
  八、葵百合葉全RNA之萃取..............................64
  九、北方雜合分析.....................................65
 伍、結  果...........................................67
  一、觀察灰黴病菌誘發百合細胞死亡之情形...............67
  二、灰黴病菌對過氧化氫之耐受性試驗...................67
  三、臘狀芽孢桿菌C1L菌株抑制灰黴病菌感染葵百合造成之過氧化氫累積.................................................68
  四、臘狀芽孢桿菌C1L菌株抑制LsGRP1及LsPsbR基因之表現.......................................................68
  五、百合中過氧化氫參與LsGRP1及LsPsbR基因之表現.......69
  六、臘狀芽孢桿菌C1L菌株誘導百合抗病反應參與著離層酸訊息傳遞路徑.................................................70
  七、臘狀芽孢桿菌C1L菌株抑制百合細胞死亡..............70
  八、臘狀芽孢桿菌C1L菌株誘發百合葉過氧化酶活性增加....71
  九、臘狀芽孢桿菌C1L菌株誘發百合抗灰黴病與促使β-1,3-葡聚糖酶提早表現有關.........................................71
 陸、討  論...........................................72
 柒、圖 表 集.........................................77
  圖一、觀察灰黴病菌誘發葵百合細胞死亡之情形...........78
  圖二、過氧化氫對灰黴病菌孢子發芽及菌絲生長影響.......79
  圖三、葵百合葉過氧化氫之累積.........................80
  圖四、於不同時間點分析不同處理之葵百合葉過氧化氫含量.......................................................81
  圖五、葵百合葉LsGRP1及LsPsbR基因表現之時間模式分析...82
  圖六、DPI及CAT處理之葵百合葉LsGRP1及LsPsbR基因表現之北方雜合分析...............................................83
  圖七、DPI及CAT處理之葵百合葉過氧化氫含量.............84
  圖八、ROS抑制劑及C1L菌株處理降低葵百合灰黴病之發病程度.......................................................85
  圖九、ACC、MeJA及ABA影響葵百合葉LsGRP1及LsPsbR基因表現之時間模式分析...........................................86
  圖十、葵百合葉之酚化物累積觀察.......................87
  圖十一、葵百合葉細胞死亡計量.........................88
  圖十二、葵百合葉過氧化酶活性之時間模式分析...........89
  圖十三、葵百合葉β-1,3-glucanase基因表現分析..........90
第三章 臘狀芽孢桿菌誘導百合葉抗氧化反應以抗灰黴病菌之感染.......................................................91
 壹、中文摘要...........................................91
 貳、英文摘要...........................................92
 參、前  言...........................................93
 肆、材料及方法.........................................95
  一、供試植物及菌株...................................95
  二、 cDNA-AFLP分析之植物處理.........................95
  三、化學物質處理.....................................95
  四、葵百合葉全RNA之萃取..............................96
  五、葵百合葉訊息RNA之萃取............................97
  六、構築cDNA-AFLP(Amplified Fragment Length Polymorphism)基因庫.....................................97
  七、cDNA-AFLP電泳分析................................98
  八、半定量反轉錄聚合酵素連鎖反應(Semi-quantitative reverse transcription polymerase chain reaction, sqRT-PCR)....................................................99
  九、葵百合核酸探針製備..............................100
  十、北方雜合分析....................................100
 伍、結 果............................................101
  一、 葵百合cDNA-AFLP及分子選殖......................102
  二、 葵百合差異性表現cDNAs驗証......................103
  三、 葵百合差異性表現cDNAs之分群....................103
  四、 以sqRT-PCR分析葵百合基因之差異性表現...........104
  五、 化學物質對百合受灰黴病菌感染及其麩醯胺酸合成酶基因表現之影響..............................................105
 陸、討  論..........................................105
 柒、圖 表 集........................................112
  表一、cDNA-AFLP定序分析.............................112
  表一(續)、cDNA-AFLP定序分析.......................114
  表一 (續)、cDNA-AFLP定序分析......................116
  表二、DPI , ABA, CaCl2及LaCl3對灰黴病菌感染百合之影響......................................................120
  圖一、cDNA-AFLP之cDNAs選殖..........................121
  圖二、以cDNA-AFLP技術分析不同處理之葵百合葉片基因表現......................................................122
  圖三、cDNA-AFLP之cDNA選殖株之電泳分析...............123
  圖四、驗証cDNA-AFLP之cDNA選殖株的基因差異性表現.....124
  圖五、不同處理下之葵百合葉差異性表現基因之分群......125
  圖六、以sqRT-PCR分析不同處理後之葵百合葉基因表現....126
  圖七、以sqRT-PCR分析不同處理後葵百合葉麩醯胺酸合成酵素(GS)基因之表現..........................................127
  圖八、臘狀芽孢桿菌誘導百合抗病路徑模式圖............128
參考文獻................................................129
1.邱安隆. 2002. 防治百合灰黴病生物製劑之研發及作用機制探討. 國立臺灣大學植物病理與微生物學研究所博士論文. 臺灣. 臺北. 135頁。
2.黃祥恩. 1997. 水楊酸誘導百合系統性抗灰黴病之研究. 國立台灣大學植物病理學研究所碩士論文. 臺北. 臺灣. 66頁。
3.路幼妍. 2003. 葵百合誘導抗病性之研究. 國立台灣大學植物病理學研究所博士論文. 臺北. 臺灣. 115頁。
4.楊耿豪. 2007. 臘狀芽孢桿菌C1L菌株誘導玉米系統性抗葉枯病之應用研究. 國立臺灣大學植物病理與微生物學研究所碩士論文. 臺灣. 臺北. 79頁。
5.劉益宏. 2004. 臺灣百合根圈細菌之篩選及灰黴病防治應用研究. 國立臺灣大學植物病理與微生物研究所碩士論文. 臺北. 臺灣. 68頁。
6.謝廷芳,黃振文. 1998. 百合灰黴病之發生條件與病勢進展. 植物保護學會會刋 40: 227-240。
7.Ahn, I. P., Lee, S. W., and Suh, S. C. 2007b. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1. Mol. Plant-Microbe Interact. 7: 759-768.
8.Akashi, K., Nishimura, N., Ishida, Y., and Yokota, A. 2004. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem. Biophys. Res. Commun. 323:72–78.
9.Allahverdiyeva, Y., Mamedov, F., Suorsa, M., Styring, S., Vass, I., and Aro, E. M. 2007. Insights into the function of PsbR protein in Arabidopsis thaliana. Biochim. Biophys. Acta 1767:677-85.
10.Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054.
11.Allen, L. J., MacGregor, K. B., Koop, R. S., Bruce, D. H., Karner, J., and Bown, A. W. 1999. The relationship between photosynthesis and a mastoparan-induced hypersensitive response in isolated mesophyll cells. Plant Physiol. 119: 1233-42.
12.Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., and Kazan, K. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signalling pathways modulates defence gene expression and disease resistance in Arabidopsis. Plant Cell 16: 3460-3479.
13.Apel, K., and Hirt, H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
14.Audenaert, K., Pattery, T., Cornelis, P., and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15: 1147-1156.
15.Bakker, P. A. H. M., Ran, L. X., Pieterse, C. M. J., and van Loon, L. C. 2003. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can. J. Plant Pathol. 25: 5-9.
16.Banerjee, A. K., Mandal, A., Chanda, D., and Chakraborti, S. 2003. Oxidant, antioxidant and physical exercise. Mol. Cell Biochem. 253: 307-312.
17.Berggren, I., van Vuurde, J. W. L., and Mårtensson, A. M. 2001. Factors influencing the effect of deleterious Pseudomonas putida rhizobacteria on initial infection of pea roots by Rhizobium leguminosarum pv. viceae. Appl. Soil Ecol. 17: 97-105.
18.Bergman, B. H. H., Beijersbergen, J. C. M., Overeem, J. C., and Kaars Sijpesteijn, A. 1967. Isolation and identification of α-methylene-β- butyrolactone, a fungitoxic substance from tulips. Rec. Trav. Chim. Pays-Bas. 86: 709-714.
19.Bevan, M., and Walsh, S. 2006. The Arabidopsis genome: A foundation for plant research. Genome Res. 15: 1632–1642.
20.Binet, M. N., Humbert, C., Lecourieux, D., Vantard, M., and Pugin, A. 2001. Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiol. 125: 564–572.
21.Borden, S., and Higgins, V. J. 2002. Hydrogen peroxide plays a critical role in the defense response of tomato to Cladisporium fulvum. Physiol. Mol. Plant Pathol. 61: 227-336.
22.Bradley, D. J., Kjellborn, P., and Lamb, C. J. 1992. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein. Cell 70: 21-30.
23.Brencic, A., and Winans, S. C. 2005. Detection of and response to signals involved in host-microbe interactions by plantassociated bacteria. Microbiol. Mol. Biol. Rev. 69: 155-194.
24.Buchanan-Wollaston, V. 1994. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus (Identification of a gene encoding a senescence-specific metallothionein-like protein). Plant Physiol. 105: 839-846.
25.Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der, L. T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705.
26.Cameron, R. K., Dixon, R., and Lamb C. 1994. Biologically induced systemic acquired resistancein Arabidopsis thaliana. Plant J. 5:715-725.
27.Cartieaux, F., Thibaud, M.-C., Zimmerli, L., Lessard, P., Sarrobert, C., David, P., Gerbaud, A., Robaglia, C., Somerville, S., and Nussaume, L. 2003. Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J. 36: 177-188.
28.Carver, T. L. W., Lyngkjaer, M. F., Neyron, L., and Strudwicke, C. C. 1999. Induction of cellular accessibility and inaccessibility and suppression and potentiation of cell death in oat attacked by Blumeria graminis f. sp. avenae. Physiol. Mol. Plant Pathol. 55: 183-196.
29.Chakraborty, U., Chakraborty, B., and Basnet, M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46: 186–195
30.Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., van Montagu, Jr. M., Inzé, D., and van Camp, W. 1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. U.S.A. 95: 5818-5823.
31.Chandra, S., Stennis, M., and Low, P. S. 1997. Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J. Biol. Chem. 272: 28274–28280.
32.Chang, Y. C., Grace-Martin, K., and Miller, W. B. 2004. Efficacy of exogenous calcium application for reducing upper leaf necrosis in Lilium ‘Star Gazer’. Hort. Sci. 39: 272-275.
33.Chakraborty, U., Chakraborty, B., and Basnet, M. 2006. Plant growth promotion and induction of resistance. in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46: 186–195
34.Chastagner, G. A., and Riley, K. 1990. Occurrence and control of benzimidazole and dicarboximide resistant Botrytis spp. on bulb crops in Western Washington and Oregon. Acta Hort. 266: 437-445
35.Chen, C., Bélanger, R. R., Benhamou, N., and Paulitz, T. 2000. Defense enzymes induced in cucumber roots by treatment with growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 56:13-23.
36.Chen, J., Jacobson, L. M., Handelsman, J., Goodman, R. M. 1996. Compatibility of systemic acquired resistance and microbial biocontrol for suppression of plant disease in a laboratory assay. Mol Ecol. 5:73–80.
37.Chiou, A. L., and Wu, W. S. 2001. Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily. J. Phytopathol. 149: 319-324.
38.Chiou, A. L., and Wu, W. S. 2003. Formulation of Bacillus amyloliquefaciens B190 for control of lily grey mould (Botrytis elliptica). J. Phytopathol. 151:13-18.
39.Choi, D., Kim, H. M., Yun, H. K., Park, J.-A., Kim, W. T., and Bok, S. H. 1996. Molecular Cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol. 112: 353–359.
40.Compant, S., Duffy, B., Nowak, J., Clément, C., and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959.
41.Conrath, U., Beckers, G. J. M., Flors, V., Garcı´a-Agustı´n, P., Jakab, G., Mauch, F., Newman M-A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071.
42.Conrath, U., Pieterse, C. M. J., and Mauch-Mani, B. 2002. Priming in plant- pathogen interactions. Trends Plant Sci. 7: 110-116.
43.Cosgrove, D. J. 1997. ¬Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol. 1997. 13: 171-201.
44.Coupe, S. A., Taylor, J. E., and Roberts, J. A. 1995. Characterization of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigra L. Planta 197: 442–447.
45.Dauch, A. L., and Jabaji-Hare, S. H. 2006. Metallothionein and bZIP transcription factor genes from velvetleaf and their differential expression following Colletotrichum coccodes infection. Phytopathology 96: 1116-1123.
46.Davletova, S., Rizhsky, L., Liang, H., Shenggiang, Z., Oliver, D. J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. 2005. Cytolosic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17: 268-281.
47.De Boer, M., Bom, P., Kindt, F., Keurentjes, J. J. B., van der Sluis, I., van Loon, L. C., and Bakker, P. A. H. M. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93: 626-632.
48.De Las Rivas, J., Heredia, P. and Roman, A. 2007. Oxygen-evolving extrinsic proteins (PsbO,P,Q,R): Bioinformatic and functional analysis. Biochim. Biophys. Acta 1767: 575-582.
49.De Meyer, G., Audenaert, K., and Höfte, M. 1999. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105: 513-517.
50.de Oliveira, D. E., Seurinck, J., Inzé, D., van Montagu, M., and Botterman, J. 1990. Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2: 427-436.
51.Dixon, R. A., and Harrison, M. 1990. Activation, structure and organization of genes involved in microbial defense in plants. Adv. Genet. 28:165-234.
52.Doss, R. P., Chastagner, G. A., and Riley, K. L. 1984. Techniques for inoculum production and inoculation of lily leaves with Botrytis elliptica. Plant Dis. 68: 854-856.
53.Doss, R. P., Chrisitian, J. K., and Chastagner, G. A. 1988. Infection of Easter lily leaves from conidia Botrytis elliptica. Can. J. Bot. 66: 1204-1208.
54.Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., and Lemanceau, P. 1998. Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r. and by nonpathogenic Fusarium oxysporum Fo47. Eur. J. Plant Pathol. 104: 903-910
55.Edwards, H. H. 1983. Effect of kinetin, abscisic acid, and cations on host-parasite relations of barley inoculated with Erysiphe graminis f. sp. hordei. Phytopathology Z. 107:22-30.
56.Elad, Y., and Chet, I. 1987. Possible role of competition for nutrition in biocontrol of Pythium damping-off by bacteria. Phytopathology 75: 190-195
57.Etscheid, M., Klümper, S., and Riesner, D. 1999. Accumulation of a metallothionein-like mRNA in Norway spruce under environmental stress. J. Phytopathol. 147: 207 – 213.
58.Erbs, G., and Newman, M. A. 2003. The role of lipopolysaccharides in induction of plant defence responses. Mol. Plant Pathol. 4: 421-425.
59.Fan, W., and Dong, X. 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis. Plant Cell 14: 1377–1389.
60.Finkelstein, R., and Rock, C. 2002. Abscisic acid biosynthesis and signaling. In The Arabidopsis Book, eds. Somerville, C. R. and Meyerowitz, E. M., American Society of Plant Biologists, Rockville, MD,doi/10.1199/tab.0058, http://www. aspb.org/publications/arabidopsis/
61.Fridovich, I., 1997. Superoxide anion radical [O2-], superoxide dismutases, and related matters. J. Biol. Chem. 272: 18515-18517.
62.García-Mata, C., and Lamattina, L. 2001. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126: 1196-1204.
63.Gil-ad, N. L., Bar-Nun, N., Noy, T. and Mayer, A. M. 2000. Enzymes of Botrytis cinerea capable of breaking down hydrogen peroxide. FEMS Microbiol. Lett. 190: 121-126.
64.Gil-ad, N. L., and Mayer, A. M. 1999. Evidence for rapid breakdown of hydrogen peroxide by Botrytis cinerea. FEMS Microbiol. Lett. 176: 455-461.
65.Gilchrist, D. G. 1998. Programmed cell death in plant disease: the purpose and romise of cellular suicide. Annu. Rev. Phytopathol. 36: 393-414.
66.Govrin, E. M., and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10: 751-757.
67.Govrin, E. M., Rachmilevitch, S., Tiwari, B. S., Solomon, M., and Levine, A. 2006. An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96: 299-307.
68.Greenberg, J. T. 1997. Programmed cell death in plant-pathogen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 525-545.
69.Guan, L. M., Zhao, J., and Scandalios, J. G. 2000. Cis-elements and transfactors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J. 22: 87-95.
70.Haas, D., and De´fago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonas. Nature Rev. Microbiol. 3: 307-319.
71.Hamer, D. H. 1986. Metallothionein. Annu. Rev. Biochem. 55: 913-951.
72.Handelsman, J., and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1869.
73.Hashimoto, A., Ettinger, W. F., Yamamoto, Y., and Theg, S. M. 1997. Assembly of newly imported oxygen-evolving complex subunits in isolated chloroplasts: sites of assembly and mechanism of binding. Plant Cell 9: 441-452.
74.Hoffland, E., Hakulinem, J., and van Pelt, J.A. 1996. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86: 757-762.
75.Honée, G. 1999. Engineered resistance against fungal plant pathogens. Eur. J. Plant Pathol. 105: 319-326.
76.Hsieh, H. M., Liu, W. K., and Huang, P. C. 1995. A novel stress-inducible metallothionein-like gene from rice, Plant Mol. Biol. 28: 381–389.
77.Hsieh, T. F., and Huang, J. W. 1999. Effect of film-forming polymers on control of lily leaf blight caused by Botrytis elliptica. Eur. J. Plant Pathol. 105: 501-508.
78.Hsieh, T. F., Huang, J. W., and Hsiang, T. 2001. Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. Eur. J. Plant Pathol. 107:571-581.
79.Hsieh, T. F., and Tu, C. C. 1993. The occurrence of lily leaf blight caused by Botrytis elliptica (Berk.) Cooke in Taiwan. Plant Prot. Bull. 35: 355. (Abstr.)
80.Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F., and Tan, M. 2007. Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol. 173: 27-38.
81.Huang, J. C., Wang, T. K., Chung, S. C., and Chen, C. Y. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Bicochem. Mol. Biol. 32: 82-88.
82.Hutcheson, S. W. 1998. Current concepts of active defense in plants. Annu. Rev. Phytopathol. 36: 59-90.
83.Iavicoli, A., Boutet, E., Buchala, A., and Me´traux, J.-P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858.
84.James, H. E., Bartling, D., Musgrove, J. E., Kirwin, P. M., Herrmann, R. G., and Robinson, C. 1989. Transport of proteins into chloroplasts. Import and maturation of precursors to the 33-, 23-, and 16-kDa proteins of the photosynthetic oxygen-evolving complex. J. Biol. Chem. 264: 19573-19576.
85.Jana, S. and Choudhuri, M. A. 1982. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat. Bot. 12: 345-354.
86.Kang, Y., Carlson, R., Tharpe, W., and Schell, M. A. 1998. Characterization of genes involved in biosynthesis of novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64: 3939-3947.
87.Kapat, A., Zimand, Y., and Elad, Y. 1998. Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol. Res. 102: 1017-1024.
88.Kessmann, H., Staub, T., Ligon, J., Oostendorp, M., and Ryals, J. 1994. Activation of systemic acquired disease resistance in plants. Eur. J. Plant Pathol. 100: 359-369.
89.Kim, S., Ahn, I.P., and Lee, Y. H. 2001. Analysis of genes expressed during rice–Magnaporthe grisea interactions. Mol Plant-Microbe Interact. 14: 1340–1346.
90.Kim, M. S., Kim, Y. C., and Cho, B. H. 2004. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge inoculation with Corynespora cassiicola. Plant Biol. 6: 105-108.
91.Kim, M. C., Lee, S. H., Kim, J. K., Chun, H. J., Choi, M. S., Chung, W. S., Moon, B. C., Kang, C. H., Park, C. Y., Yoo, J. H., Kang, Y. H., Koo, S. C, Koo, Y. D., Jung, J. C., Kim, S. T., Schulze-Lefert, P., Lee, S. Y., and Cho, M. J. 2002a. Mlo, a modulator of plant defence and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 277: 19304-19314.
92.Kim, M. C., Panstruga, R., Elliott, C., Muller, J., Devoto, A., Yoon, H. W., Park, H. C., Cho, M. J., and Schulze-Lefert, P. 2002b. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416: 447-451.
93.Kishore, G. K., and Pande, S. 2007. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44: 98-105.
94.Kloepper, J. W., and Beauchamp, C. J. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38: 1219-1232.
95.Kloepper J. W., Leong, J., Teintze, M., and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885–886.
96.Kloepper, J. W., Ryu, C.-M., and Zhang, S. A. 2004. Induced systemic resistance and promotion of growth by Bacillus spp. Phytopathology 94: 1259-1266.
97.Kohler, A., Blaudez, D., Chalot, M., and Martin, F. 2004. Cloning and expression of multiple metallothioneins from hybrid poplar, New Phytol 164: 83–93.
98.Kombrink, E., and Hahlbrock, K. 1986. Response of cultured parsely cells to elicitors from phytopathogenic fungi. Timing and dose dependency of elicitor-induced reactions. Plant Physiol. 81: 216-221.
99.Kotchoni, O. S., Kuhns, C., Ditzer, A., Kirch, H. H., and Bartels, D. 2006. Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ. 29: 1033-1048.
100.Kovtun, Y., Chiu, W. L., Tena, G., and Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. U.S.A. 97: 2940-2945.
101.Laloi, C., Apel, K., and Danon, A. 2004. Reactive oxygen signaling: the latest news. Curr. Opin. Plant Biol. 7: 323-328.
102.Lamb, C., and Dixon, R. A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251-275.
103.Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., and Pugin, A. 2002. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14: 2627–2641.
104.Lecourieux, D., Ranjeva, R., and Pugin, A. 2006. Calcium in plant defence- signalling pathways. New Phytol. 171: 249-269.
105.Lee, H. J., Choi, G. J., and Cho, K. Y. 1998. Correlation of lipid peroxidation in Botrytis cinerea caused by dicarboximide fungicides with their fungicidal activity. J. Agric. Food Chem. 46: 737-741.
106.Lee, S. M., Kim, H. S., Han, H. J., Moon, B. C., Kim, C. Y., Harper, J. F., and Chung, W. S. 2007. Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett. 581: 3943–3949.
107.Leeman, M., van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M., and Schipper, B. 1995a. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101: 655-664.
108.Leeman, M., van Pelt, J. A., Hendrickx, M. J., Scheffer, R. J., Bakker, P. A. H. M., and Schipper, B. 1995b. Biocontrol of fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85: 1301-1305.
109.Leone, G. 1990. In vivo and in vitro phosphate-dependent polygalacturonase production by different isolates of Botrytis cinerea. Mycol. Res. 94: 1039-1045.
110.Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593.
111.Liu, J., Zhang, M., Jiang, M., and Tseng, G.-N. 2002. Structural and functional role of the extracellular S5-P linker in the HERG potassium channel. J. Gen. Physiol. 120: 723–737
112.Liu, Y. H., Huang, C. J., and Chen, C. Y. 2008. Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98: 830-836.
113.Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., and Zhang, S. 2007. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 51: 941-954.
114.Lu, Y. Y. and Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Sci. 169: 1-9.
115.Lu, Y. Y., Liu, Y. H. and Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Sci. 172: 913-919
116.Lutts, S., Majerus, V., and Kinet, J. M. 1999. NaCl effects on praline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105: 450-458.
117.Mark, G. L., Dow, J. M., Kiely, P. D., Higgins, H., Haynes, J., Baysse, C., Abbas, A., Foley, T., Franks, A., Morrissey, J., and O’Gara, F. 2005. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc. Natl. Acad. Sci. U.S.A. 102: 17454-17459.
118.Mellersh, D. G, Foulds, I. V., Higgins, V. J., and Heath, C. M. 2002. H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J. 29: 257–268.
119.Migheli, Q., Aloi, C., and Gullino, M. L. 1990. Resistance of Botrytis elliptica to fungicides. Acta Hort. 266: 429-436.
120.Mino, M., Maekawa, K., Ogawa, K., Yamagish, H., and Inoue, M. 2002. Cell death processes during expression of hybrid lethality in interspecific F1 hybrid between Nicotiana gossei domin and Nicotiana tabacum. Plant Physiol. 130: 1776-1787.
121.Mithöfer, A., Fliegmann, J., Daxberger, A., Ebel, C., Neuhaus-Url, G., Bhagwat, A. A., Keister, D. L., and Ebel, J. 2001. Induction of H2O2 synthesis by beta-glucan elicitors in soybean is independent of cytosolic calcium transients. FEBS Lett. 508: 191-195.
122.Mittler, R., Herr, E. H., Orvar, B. L., van Camp, W., Willekens, H., Inze, D. and Ellis, B. E. 1999. Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. U.S.A. 96: 14165-14170.
123.Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. 2004. The reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498.
124.Mohr, P. G., and Cahill, D. M. 2003. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct. Plant Biol. 30: 461-469.
125.Mohr, P. G., and Cahill, D. M. 2006. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics 11: 181-191.
126.Murphy, J. F., Zehnder, G. W., Schuster, D. J., Sikora, E. J., Polston, J. E., and Kloepper, J. W. 2000. Plant growth-promoting rhizobacteria mediated protection in tomato against tomato mottle virus. Plant Dis. 84: 779-784.
127.Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., and Tahara, S. 1999. Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl. Environ. Microbiol. 65: 4334-4339.
128.Neill, S. J, Desikan, R., Clarke, A., Hurst, R. D., and Hancock, J. T. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot. 53: 1237-1247.
129.O''Brien, T. P., Feder, N., and McCully, M. E. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59: 368-373.
130.Ongena, M., Daayf, F., Jacques, P., Thonart, P., Benhamou, N., Paulitz, T. C., and Bélanger, R. R. 2000. Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonas. Plant Pathol. 49: 523-530.
131.Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., and Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67: 692-698.
132.Orozco-Cárdenas, M. L., Narváez-Vásquez, J., and Ryan, C. A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179-191.
133.Park, K. S., and Kloepper, J. W. 2000. Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control 18: 2-9.
134.Paulitz, T. C., and Bélanger, R. R. 2001. Biological control in greenhouse systems. Ann. Rev. Phytopathol. 39: 103-133.
135.Pavet, V., Olmos, E., Kiddle, G., Mowla, S., Kumar, S., Antoniw, J., Alvarez, M. E., and Foyer, C. H. 2005. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol. 139: 1291-1303.
136.Pieterse, C. M. J., and van Loon, L. C. 1999. Salicylic acid independent plant defence pathways. Trends Plant Sci. 4: 52-58.
137.Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E., van Pelt, J. A., and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237.
138.Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580.
139.Pieterse, C. M. J., van Wees, S. C. M., Ton, J., van Pelt, J. A., and van Loon, L. C. 2002. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol. 4: 535-544.
140.Piffanelli, P., Devoto, A., and Schulze-Lefert, P. 1999. Defence signaling pathways in cereals. Curr. Opin. Plant Biol. 2: 295-300.
141.Piyush, P., Sun, C. K., Chandra, P. G., and Dinesh, K. M. 2005. Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr. Microbiol. 51: 303-309.
142.Pleban, S., Ingel, F., and Chet, I. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. Eur. J. Plant Pathol. 101: 665-672.
143.Raaijmakers, J. M., Leeman, M., van Oorschot, M. P. M., van der Sluis, I., Schippers, B., and Bakker, P. A. H. M. 1995. Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85: 1075-1081.
144.Radjacommare, R., Ramanathan, A., Kandan, A., Harish, S., Thambidurai, G., Sible1, G.V., Ragupathi, N., and Samiyappan, R. 2004. PGPR mediates induction of pathogenesis-related (PR) proteins against the infection of blast pathogen in resistant and susceptible ragi [Eleusine coracana (L.) Gaertner] cultivars. Plant Soil 266: 165-176.
145.Rao, M. V., Paliyath, G., Ormrod, D. P., and Murr, D. P. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzyme. Plant Physiol. 115: 137-149.
146.Reid, S., and Ross, G. S. 1997. Up-regulation of two cDNA clones encoding metallothionein-like proteins in apple fruit during cool storage. Physiol. Plant. 100: 183–189. 
147.Ringli, C., Keller, B., and Ryser, U., 2001. Glycine-rich proteins as structural components of plant cell walls. Cell. Mol. Life Sci. 58: 1430–1441.
148.Rizhsky, L., Hallak-Herr, E., van Breusegem, F., Rachmilevitch, S., Barr, J. E., Rodermel, S., Inze, D., and Mittler, R. 2002. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 32: 329-342.
149.Robinson, N. J., Tommey, A. M., Kuske, C., and Jackson, P. J. 1993. Plant metallothioneins. Biochem. J. 295:1-10.
150.Rossall, S., Mansfield, J.W., and Hutson, R. A. 1980. Death of Botrytis cinerea and B. fabae following exposure to wyerone derivatives in vitro and during infection development in broad bean leaves. Physiol. Plant Pathol. 16: 135-147.
151.Salles, I. I., Blount, J. W., Dixon, R. A., and Schubert, K. 2002. Phytoalexin production and ß-1,3-glucanase activities in Colletotrichum trifolii infected alfalfa (medicago sativa L.). Physiol. Mol. Plant Pathol. 61: 89-101.
152.Samuilov, V. D., Lagunova, E. M., Gostimsky, S. A., Timofeev, K. N., and Gusev, M. V. 2003. Role of chloroplast photosystems II and I in apoptosis of pea guard cells. Biochem. (Moscow) 68: 912-917.
153.Schouten, A., Klaus, B. T., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B., and van Kan, J. A. L. 2002. Functional analysis of an extracellular catalase of Botrytis cinerea. Mol. Plant Pathol. 3: 227-238.
154.Shah-Smith, D. A., and Burns, R. G. 1996. Biological control of damping-off sugar beet by Pseudomonas putida applied to seed pellets. Plant Pathol. 45: 572-582.
155.Shoresh, M., Yedidia, I., Chet, I., 2005. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95, 76–84.
156.Shuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., van Breusegem, F., Eberl, L., Hartmann, A., and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-
homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 29:
909-918.
157.Siddiqui, I. A., and Shaukat S. S. 2002. Rhizobacteria-midiated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica. J. Phytopathol. 150: 469-473.
158.Skopelitis, D. S., Paranychianakis, N. V., Paschalidis, K. A., Eleni, D., Pliakonis, E. D., Delis, I. D., Yakoumakis, D. I., Kouvarakis, A., Papadakis, A. K., Stephanou, E. G., and Roubelakis-Angelakisa, K. A. 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18: 2767-1781.
159.Staats, M., van Baarlen, P., and van Kan, J. A. L. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol. 22: 333–346.
160.Stein, M., and Somerville, S. C. 2002. MLO, a novel modulator of plant defenses and cell death, binds calmodulin. Trends Plant Sci. 9: 379-340.
161.Sticher, L., Mauch-Mani, B., and Métraux, J.-P. 1997. Systemic acquired resistance. Ann. Rev. Phytopathol. 35: 235-270.
162.Sun, M. M., Li, L. H., Xie, H., Ma, R. C., and He, Y. K., 2007. Differentially expressed genes under cold acclimation in Physcomitrella patens. J. Biochem. Mol. Biol. 40: 986-1001.
163.Suorsa, M., Sirpiö, S., Allahverdiyeva, Y., Paakkarinen, V., Mamedov, F., Styring, S., and Aro, E.-M. 2006. PsbR– a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J. Biol. Chem. 281: 145–150
164.Thomas, J. C., Perron, M., LaRosa, P. C., Smigocki, A. C. 2005. Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress. Physiol. Plant. 123: 262–271.
165.Thordal-Christensen, H., Ahang, Z., Wei, Y., and Collinge, D. B. 1997. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11: 1187-1194.
166.Timmusk, S., and Wagner, E. G. H. 1999. The plant-growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12: 951-959.
167.Ton, J., Davison, S., van Wees, S. C. M., van Loon, L. C., and Pieterse, C. M. J. 2001. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125: 652-661.
168.Ton, J., and Mauch-Mani, B. 2004. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38: 119-130.
169.Ton, J., van Pelt, J. A., van Loon, L. C., and Pieterse, C. M. J. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15: 27-34.
170.Torres, M., and Dangl, J. 2005. Functions of the respiratory burst oxidase n biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8: 397-403.
171.Torres, M., Jones, J., and Dangl, J. 2005. Pathogen induced, NADPH oxidase- derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat. Genet. 37: 1130-1134.
172.Umezawa, T., Mizuno, K., and Fujimura, T. 2002. Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant Cell Environ. 25: 1617-1625.
173.Unger, C. H., Kleta, S., Jandl, G., and Tiedemann, A. V. 2005. Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J. Phytopathol. 153: 15-26.
174.van Baarlen, P., Staats, M., and van Kan, J. A. L. 2004. Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol. Plant Pathol. 5:559-574.
175.van Baarlen, P., Woltering, E. J., Staats, M., and van Kan, J. A. L. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8: 41-54.
176.van der Vlugt-Bergmans, C. J. B., Wagemakers, C. A. M., Dees, D. C. T., and van Kan, J. A. L. 1997. Catalase A from Botrytis cinerea is not expressed during infection on tomato leaves. Physiol. Mol. Plant Pathol. 50: 1-15.
177.van Kan, J. A. L., 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11: 247-253.
178.van Loon, L. C., Bakker, P. A. H. M., and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36: 453-483.
179.van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-734.
180.van Peer, R., and Schipper, B. 1992. Lipopolysaccharides of plant growth-promoting Pseudomonas spp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth. J. Plant Pathol. 98: 129-139
181.van Tiedemann, A. 1997. Evidence for a primary role of oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol. Mol. Plant Pathol. 50: 151-166.
182.van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C., and Pieterse, C. M. J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41: 537-549.
183.van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van’t Westende, Y. A. M., Hartog, F., and van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10: 716-724.
184.Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., van Loon, L. C., and Pieterse, C. M. J. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant-Microbe Interact. 17: 895-908.
185.Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. 2005. Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol. Plant-Microbe Interact. 18: 385-396.
186.Ward, E. W. B., Cahill, D. M., and Bhattacharyya, M. K. 1989. Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans of Phytophthora megasperma f. sp. glycinea. Plant Physiol. 91: 23-27..
187.Wei, G., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512.
188.Wei, G., Kloepper, J. W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86: 221-224
189.Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., van Montagu, M., Inze, D., and van Camp, W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J. 16: 4806-4816.
190.Yan, Z., Reddy, M.S., Ryu, C.M., McInroy, J.A., Wilson, M., and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92: 1329-1333
191.Yang, E. J., Oh, Y. A., Lee, E. S., Park, A. R., Cho, S. K., Yoo, Y. J., and Park, Y. J. 2003. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem. Biophys. Res. Commun. 305: 862-868.
192.Zehnder, G., Kloepper, J., Yao, C. B., and Wei, G. 1997. Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J. Econ. Entomol. 90: 391-96.
193.Zehnder, W. Geoffrey, Murphy, F. John., Sikora, J. Edward., and Kloepper, J .W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50.
194.Zhang, S., Reddy, M. S., and Kloepper, J. W. 2002. Development of assay for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control 23: 79-86
195.Zhou, J., and Goldsbrough, P. B. 1995. Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genetics 248: 318-328.
196.Zou, J., Rodriguez-Zas, S., Aldea, M., Li, M., Zhu, J., Gonzalez, D. O., Vodkin, L. O., DeLucia, E., and Clough, S. J. 2005. Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-Specific downregulation of photosynthesis. Mol. Plant-Microbe Interact. 18: 161-1174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊