跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林玉儒
研究生(外文):Yu-Ju Lin
論文名稱:臘狀芽孢桿菌C1L菌株在臺灣百合根部群聚能力之探討
論文名稱(外文):Studies on the colonization of Bacillus cereus C1L in theroots of Lilium formosanum
指導教授:陳昭瑩陳昭瑩引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:芽孢桿菌C1L 菌株臺灣百合生物防治群聚作用
外文關鍵詞:Bacillus cereus C1LLilium formosanumbiological controlcolonization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
百合灰黴病(Lily gray mold)為臺灣百合之真菌性病害,由灰黴病菌(Botrytis elliptica (Berk.) Cooke)感染造成葉片焦枯、花器畸形及花瓣萎凋,對臺灣百合之園藝栽作影響甚鉅。為利用生物防治法解決灰黴病菌危害的問題,乃自臺灣百合根圈篩選具有生物防治潛力的菌株,其中以臘狀芽孢桿菌C1L菌株之表現最佳。為便於剖析C1L菌株之群聚 (colonization) 特性,利用對立復黴素(rifampicin)具抗性的C1L菌株,處理於臺灣百合幼苗根圈後,回收根內及根表的細菌,計算族群密度,發現C1L菌株在根表及根內有良好的群聚能力。利用源自臘狀芽孢桿菌幾丁質分解酵素基因(chiCH)之啟動子及pHY300PLK建構可表現綠色螢光蛋白的載體系統,使C1L菌株產生自發性螢光。經綠色螢光標定之C1L菌株,其誘導植株系統性抗病能力(induced systemic resistance)、抑制真菌孢子發芽、菌絲生長的能力及泳動性(motility)皆與野生菌株之功效相近。利用共軛焦雷射顯微鏡觀察螢光標定之C1L菌株在臺灣百合幼苗根部群聚的情形,發現C1L菌株可附著根毛進入根部表層細胞間隙,並進入根部組織之深層細胞間隙。進一步利用轉位誘變之方式,獲得340個C1L菌株之突變株,針對突變株在玉米根內的群聚能力及泳動性進行篩選,經由單邊側翼序列比對方式,發現失去群聚能力之突變株被破壞之基因可能解碼nitric oxide dioxygenase cAMP-dependent protein kinase、N-acetylgalactosamine-6-phosphate deacetylase、glucose-specific IIABC component、replication protein等,而失去泳動性之突變株被破壞的基因可能解碼DNA binding protein、hypothetical protein以及possible collagen-like protein integrase。未來,期望進一步分析C1L菌株在植物根部群聚的模式。
Gray mold disease, caused by Botrytis elliptica (Berk.) Cooke, is one of the most important fungal diseases in Lilium formosanum that causes severe losses of yield and quality of lilies. In general, field management by application of fungicides to prevent and decrease disease incidence frequently results in the evolvement of fungicide-resistant strains. Therefore, alternative control measures such as biological control are developed. A biocontrol strain of Bacillus cereus C1L had been screened from the rhizosphere of L. formosanum and it could suppress the disease severity of lily gray mold. In this study, fluorescent C1L strain was constructed by using a promoter driving the expression of chitinase CH of Bacillus cereus and a shuttle vector pHY300PLK to express green fluorescence protein (GFP) in both Escherichia coli and Bacillus cereus. The tests on the abilities of induced systemic resistance (ISR), inhibition of spore germination and hyphal growth, and the bacterial motility indicated that the GFP-labeled C1L strain was similar to the wild-type strain. Examination by confocal laser scanning microscopy showed the presence of GFP-labeled C1L bacterial cells inner the roots of L. formosanum seedlings. The C1L strain could adhere to the root hairs, enter the intercellular space of root surface layer, and present in the in-depth intercellular space of root tissues, indicating that this bacterium could be an epiphyte and endophyte in the plant roots. In order to identify the genes of B. cereus C1L involved in the root colonization, a transposon insertion mutant library including 340 mutant strains was constructed. These mutants were screened for motility and colonization ability within corn roots. The genes identified from mutants of losing colonization ability were predicted to encode nitric oxide dioxygenase cAMP-dependent protein kinase, N-acetylgalactosamine-6-phosphate deacetylase, glucose-specific IIABC component, replication protein…et al. The genes possibly involved in motility were predicted to encode DNA binding protein, hypothetical protein, and possible collagen-like protein integrase. A build-up of model for the colonization of strain C1L in the roots of L. formosanum is the future prospect.
壹、 中文摘要 5
貳、 英文摘要 6
參、 前 言 8
肆、 前人研究 10
一、 百合與百合灰黴病 10
二、 根圈微生物 11
三、 根圈細菌之生物防治作用 12
四、 植物內生性細菌群聚植物之作用 13
五、 植物內生性細菌促進植物生長之應用 14
六、 植物內生性細菌防治病害之應用 15
七、 植物內生性細菌群聚作用之相關因子 16
伍、 材料與方法 18
一、 供試菌株與載體 18
二、 觀察C1L菌株在臺灣百合根圈族群密度的消長 19
1. 溫室試驗植株之栽培 19
2. 篩選具有立復黴素抗性之臘狀芽孢桿菌 C1L突變株 19
3. C1L菌株處理臺灣百合根圈土壤及回收試驗 19
三、 建構綠色螢光蛋白標定之C1L菌株 20
1. 分子生物技術之利用 20
2. 建構表現GFP之穿梭載體系統 23
3. 確認C1L菌株電穿孔轉形株表現GFP之北方雜合分析 27
4. 標定GFP之C1L菌株電穿孔轉形株與野生株之比較 29
四、 利用螢光顯微鏡觀察標定GFP之C1L菌株 31
五、 觀察標定GFP之C1L菌株在臺灣百合根部組織群聚情形 32
六、 利用轉位子Tn917ac1建構突變庫及篩選失去根部群聚能力之C1L突變株 32
1. 誘變株篩選系統 32
2. Tn917ac1插入C1L菌株染色體位置分析 34
3. 臘狀芽孢桿菌C1L菌株及突變株之ISR作用 35
陸、 結 果 36
一、 觀察C1L菌株在臺灣百合根圈的族群密度消長 36
二、 建構GFP標定之C1L電穿孔轉形株 36
三、 確認表現GFP之C1L電穿孔轉形株 37
四、 以螢光顯微鏡觀察標定GFP之C1L菌株 38
五、 GFP電穿孔轉形株特性 38
1. 生長曲線 38
2. 對峙培養 38
3. 抑制真菌孢子發芽試驗 39
4. 誘導植物抗病性之作用 39
5. 泳動性試驗 39
六、 觀察標定GFP之C1L電穿孔轉形株在臺灣百合根部組織群聚情形 40
七、 篩選失去群聚能力及泳動性之C1L突變株 40
柒、 討 論 43
捌、 總 結 48
玖、 參考文獻 50
壹拾、圖表集 59
表一、供試菌株 60
表二、供試載體 61
表三、引子 62
表四、臘狀芽孢桿菌C1L野生株及電穿孔轉形株CHG之抑制真菌生長能力比較 63
表五、臘狀芽孢桿菌C1L野生株及電穿孔轉形株CHG之ISR作用 64
表六、失去群聚能力之臘狀芽孢桿菌突變株Tn917ac1單邊側翼基因序列比對 65
表七、失去泳動能力之臘狀芽孢桿菌突變株Tn917ac1單邊側翼基因序列比對 66
圖一、臘狀芽孢桿菌C1L菌株在臺灣百合根部表面的族群密度消長 67
圖二、臘狀芽孢桿菌C1L菌株在臺灣百合根內組織的族群密度消長 68
圖三、載體pHY300PLK穩定性之測試 69
圖四、pGTZCH及pGTZCHG圖譜 70
圖五、pPLKCH及pPLKCHG圖譜 71
圖六、載體pPLKCHG之序列分析(1~1,900 bp) 72
圖七、測定臘狀芽孢桿菌電穿孔轉形株CHG培養之自發綠色螢光強度 73
圖八、北方雜合分析臘狀芽孢桿菌C1L野生株、電穿孔轉形株CH及CHG之GFP mRNA表現情形 74
圖九、 利用螢光顯微鏡觀察臘狀芽孢桿菌C1L野生株及電穿孔轉形株CHG之自發綠色螢光 75
圖十、臘狀芽孢桿菌C1L 野生株、電穿孔轉形株CH 及CHG之生長曲線 76
圖十一、臘狀芽孢桿菌C1L野生株及電穿孔轉形株CHG對真菌之拮抗能力 77
圖十二、 臘狀芽孢桿菌C1L野生株及電穿孔轉形株CHG上清濾液對真菌孢子發芽之抑制率 78
圖十三、臘狀芽孢桿菌C1L野生株、電穿孔轉形株CH及CHG泳動能力之比較 79
圖十四、 利用共軛焦雷射掃描顯微鏡觀察臘狀芽孢桿菌C1L菌株及電穿孔轉形株CHG在臺灣百合根部群聚情形 80
圖十五、臘狀芽孢桿菌突變株之泳動能力等級 81
圖十六、臘狀芽孢桿菌C1L菌株及突變株之ISR作用 82
圖十七、臘狀芽孢桿菌C1L菌株於臺灣百合根部群聚之初步模式圖 83
附 錄 84
圖一、pgroESp-GFP之載體圖譜 84
圖二、pD917之載體圖譜 85
1.戴廷恩. 2004. 原生鐵砲型百合型態變異、遺傳歧異及早熟相關葉片型態之研究. 國立臺灣大學園藝學研究所博士論文. 臺北. 臺灣. 233頁.
2.李長松. 1992. 拮抗細菌生物防治植物土傳病害的研究進展. 生物防治通報 8: 168-172.
3.李敏郎. 2000. 百合保護. 第16-21頁. 植物保護圖鑑系列5. 行政院農委會動植物防疫檢疫局出版.
4.廖惠玲. 2000. 台灣植物癌腫病之PCR鑑定及檢測. 國立台灣大學植物病理學研究所碩士論文. 臺灣. 臺北. 106頁.
5.劉益宏. 2004. 臺灣百合根圈細菌之篩選及灰黴病防治應用研究. 國立臺灣大學植物病理與微生物研究所碩士論文. 臺北. 臺灣. 68頁.
6.何紅、邱思鑫、胡方平、關雄. 2004. 植物內生細菌生物學作用研究發展. 微生物學雜誌 24: 40-45.
7.黃健瑞. 2006. 拮抗性臘狀芽孢桿菌菌株28-9幾丁質水解酵素系統研究. 國立臺灣大學植物病理與微生物研究所博士論文. 臺北. 臺灣. 123頁.
8.金石文. 1995. 百合屬之種源保存、遺傳歧異性分析及其種源利用與評估. 國立臺灣大學園藝學研究所博士論文. 臺北. 臺灣. 145頁.
9.簡宇馨. 2005. LA與LO型雜交種百合組織培養之癒合組織形成與植株再生. 國立臺灣大學園藝學研究所碩士論文. 臺北. 臺灣. 75頁.
10.謝廷芳、黃振文. 1998. 百合灰黴病之發生條件與病勢進展. 植物物保護學會會刊 40: 227-240.
11.游登良. 2002. 太魯閣步道. 貓頭鷹出版社. 臺灣. 臺北. 163頁.
12.楊瑞先、葛曉燕. 2006. 植物內生細菌生物學作用研究進展及應用前景. 洛陽大學學報 21: 78-81.
13.楊耿豪. 2007. 臘狀芽孢桿菌C1L菌株誘導玉米系統性抗葉枯病之應用研究. 國立臺灣大學植物病理與微生物研究所碩士論文. 臺北. 臺灣. 80頁.
14.Abdel, A., Wahab, M., and E-Sharouny, H. M. 1979. Nitrogen-fixing Bacillus species from Egyptian soil: acetylene reduction and cultural conditions. Plant Soil 51: 187-196.
15.Aiba, H., Adhya, S., and Crombrugghe, B. 1981. Evidence for two functional gal promoters in intact Esherichia coli cells. J. Biol. Chem. 256: 11905-11910.
16.Albareda, M., Dardanelli, M. S., Sousa, C., Megias, M., Temprano, F., and Navarro, D. N. R. 2006. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol. Lett. 259: 67-73.
17.Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. 2001. Current protocols in molecular biology. John Wieley & Sons, Inc., Boston.
18.Bacon, C. W., and Hinton D. M. 2002 Endophytic and biological control potential of Bacillus mojavensis and related species. Biol. Control 23: 274–284.
19.Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J., and Lelie, D. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22: 583-588.
20.Barea, J. M., Pozo, M. J., Azcon, R., and Aguilar, C. A. 2005. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56: 1761-1778.
21.Berggren, I., van Vuurde, J. W. L., and Martensson, A. M. 2001. Factors influencing the effect of deleterious Pseudomonas putida rhizobateria on initial infection of pea roots by Rhizobium leguminosarum bv. viceae. Appl. Soil Ecol. 17: 97-105.
22.Blair, K. M., Tumer, L., Winkelman, J. T., Berg, H. C., and Kearns, D. B. 2008. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320: 1636-1638.
23.Bloemberg, G. 2007. Microscopic analysis of plant-bacterium interactions using autofluorescent proteins. Eur. J. Plant Pathol. 119: 301-309.
24.Bloemberg, G. V., Wijfjes, A. H. M., Lamers, G. E. M., Stuurman, N., and Lugtenberg, J. J. 2000. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol. Plant-Microbe Interact. 13: 1170-1176.
25.Bohm, M., Hurek, T., and Hurek, B. R. 2007. Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol. Plant-Microbe Interact. 20: 526-533.
26.Capalbo, D. M., Valicente, F. H., Moraes, I. O., and Pelizer, L. H. 2001. Solid-state fermentation of Bacillus thuringiensis tolworthi to control fall armyworm in maize. Electron. J. Biotechnol. 4: 112-115.
27.Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802-805.
28.Chang, L. K., Chen, C. L., Chang, Y. S., Tschen, J. S., Chen, Y. M., and Liu, S. T. 1994. Construction of Tn917ac1, a transposon useful for mutagenesis and cloning of Bacillus sabtilis genes. Gene 150: 129-134.
29.Chaurasia, B., Pandey, A., Palni, L. M., Trivedi, P., Kumar, B., and Colvin, N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160: 75-81.
30.Chen, J., Jacobson, L. M., Handelsman, J., and Goodman, R. M. 1996. Compatibility of systemic acquired resistance and microbial biocontrol for suppression of plant disease in a laboratory assay. Mol. Ecol. 5: 73–80.
31.Chester, K. S. 1993. The problem of acquired physiological immunity in plants. Q. Rev. Biol. 8: 275-324.
32.Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E. A. 2005. Use of plant growth-promotiong bacteria for biocontrol of plant disease: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959.
33.Compant, S., Kaplan, H., Sessitsch, A., Nowak, J., Barka, E. A., and Clement, C. 2008. Endophytic colonization of Vitisv inifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol. Ecol. 63: 84-93.
34.Doss, R. P., Chastagner, G. A., and Riley, K. L. 1984. Techiques for inoculums production and inoculation of lily leaves with Botrytis elliptica. Plant Dis. 68: 854-856.
35.Downing, K. J., and Thomson, J. A. 2000. Introduction of the Serratia marcescens chiA gene into an endophyte Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can. J. Microbiol. 46: 363-369.
36.Dunn, A. K., Klimowicz, A. K., and Handelsman, J. 2003. Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudates and a rhizosphere resident, Pseudomonas aureofaciens. Appl. Environ. Microbiol. 69: 1197-1205.
37.Frankowski, J., Lorito, M., Scala, F., Schmidt, R., Berg, G., and Bahl, H. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176: 421-426.
38.Gage, D. J., Bobo, T., and Long, S. R. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol. 178: 7159-7166.
39.Hino, S., and Wilson, P. W. 1958. Nitrogen fixation by a facultative Bacillus. J. Bacteriol. 75: 403-408.
40.Huang, C. J., and Chen, C. Y. 2004. Gene cloning and biochemical characterization of chitinase CH from Bacillus cereus 28-9. Ann. Microbiol. 54: 289-297.
41.Iniguez, A. L., Dong, Y., Carter, H. D., Ahmer, B. M. M., Stone, J. M., and Triplett, E. W. 2005. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant-Microbe Interact. 18:169-178.
42.Jacobs, M. J., Bugbee, W. M., and Gabrielson, D. A. 1985. Enumeration, location and characterization of endophytic bacteria within sugar beet roots. Can. J. Bot. 63: 1262-1265.
43.Jacobson, C. B., Pasternak, J. J., and Glick, B. R. 1994. Partial purification and characterization of 1-amino-cyclopropane-1-carboxylate deamunase from the plant growth promoting rhizobacterium Peudomonas putida GR12-2. Can. J. Microbiol. 40: 1019-1025.
44.Kim, M. S., Cho, S. M., Kang, E. Y., Im, Y. J., Hwangbo, H., Kim, Y. C., Ryu, C. M., Yang, K. Y., Chung, G. C., and Cho, B. H. 2008. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol. Plant-Microbe Interact. 21:1643-1653.
45.Kloepper, J. W., Kabana, R. R., Zehnder, G.W., Murphy, J. F., Sikora, E., and Fernandez, C. 1999. Plant root-bacterial interactions in biological control of soilborne disease and potential extension to systemic and foliar diseases. Austral. Plant Pathol. 28: 21-26.
46.Kleopper, J. W., Schipper B., and Bakker, P. A. H. M. 1992a. Proposed elimination of the term endorhizosphere. Phytopathology 82: 726-727.
47.Kloepper, J. W., Tuzun, S., and Kuc, J. 1992b. Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2: 347-349.
48.Lazarovits, G., and Nowak, J. 1997. Rhizobacteria for improvement of plant growth and establishment. Hortscience 32: 188-192.
49.Lodewyckx, E. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21: 583-587.
50.Long, H. H., Schmidt, D. D., and Baldwin, I. T. 2008. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3: 1-10.
51.Lund, M. G., Carter, P. R., and Oplinger, E. S. 1993. Tillage and crop rotation affect corn, soybean, and winter yields. J. Prod. Agric. 6: 143-213.
52.Matz, M. M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L., and Lukyanov, S. A. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17: 969-973.
53.Nehl, D. B., Allen, S. J., and Brown, J. F. 1996. Deleterious rhizosphere bacteria: an integrating perspective. Appl. Soil Ecol. 5: 1-20.
54.Normander, B., Hendriksen, N. B., and Nybroe, O. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: Localization, viability, and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65: 4646-4651.
55.Ouahrani-Bettache, S., Prote, F., Tyessier, J., Liautard, P., and Kohler, S. 1999. pBBR1-GFP: A broad-host-range vector for prokaryotic promoter studies. BioTechniques 26: 620-622.
56.Petrini, O., Fisher, P. J., and Petrini, L. E. 1992. Fungal endophytes of bracken (Pteridium aquilinum), with some reflections on their use in biological control. Sydowia 44: 282-293.
57.Pieterse, C. M. J., van Wees, S. C. M., Hoffland, E., van Pelt, J. A., and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is dependent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237.
58.Ramos, C., Molbak, L., and Molin, S. 2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome content and synthesis rates. Appl. Environ. Microbiol. 66: 801-809.
59.Reizer, J., Bachem, S., Reizer, A., Arnaud, M., Saier, H., and Stulke, J. 1999. Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145: 3419-3429.
60.Rosenblueth, M., and Romero, E. M. 2006. Bacterial endophyte and their interactions with hosts. Mol. Plant-Microbe Interact. 19: 827-837.
61.Shoda, M. 2000. Bacterial control of plant disease. J. Biosci. Bioeng. 6: 515-521.
62.Silva, H. S. A., Rmeiro, R. S., Filho, R. C., Pereira, J. L. A., Mizubuti, E. S. G., and Mounteer, A. 2004. Induction of systemic resistance by Bacillus cereus against tomato foliar disease under field conditions. J. Phytopathol. 152: 371-375.
63.Smith, J. A., and Metraux, J. P. 1991. Pseudomonas syringae pv. syringae induces systemic resistance to Pyricularia oryzae in rice. Mol. Plant Pathol. 39: 451-461.
64.Sturz, A. V., Christie, B. R., and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable system of crop production. Crit. Rev. Plant Sci. 19: 1-30.
65.Surette, M. A., Sturz, A. V., Lada, R. R., and Nowak, J. 2003. Bacterial endophytes inprocessing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effect on plant growth. Plant Soil 253: 381-390.
66.Thomashow, L. S. 1996. Biological control of plant root pathogens. Rev. Environ. Sci. Biotechnol. 7: 343-347.
67.Tomasino, S. F., Leister, R. T., and Dimock, M. B. 1995. Field performance of Clavibacter xyli subsp. cyanodontis expressing the insecticidal protein gene cryIA Bacillus thuringiensis against European corn borer in field corn. Biol. Control 5: 442-448.
68.Tombolini, R., Unge, A., Davey, M. E., de Bruijn, F. J., and Schleifer, K. H. 1997. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol. Ecol. 22: 17-28.
69.Tran, V. V., Berge, O., Ngo, K. S., Balandreau, J. and Heulin, T. 2000. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273-284.
70.Valdivia, R., and Falkow, S. 1996. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22: 367-378.
71.Wei, G., Kloepper, J. W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86: 221-224.
72.Weidenmaier, C., and Peschel, A. 2008. Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat. Rev. 6: 276-287.
73.Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487-511.
74.Wilson, D. 1995. Endophyte-the evolution of a term, and clarification of its use and definition. Oikos 73: 274-276.
75.Zehnder, G. W., Murphy, J. F., Sikora, E. J., and Kloepper, J.W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50.
76.Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., and Chris, L. 2004. Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol. 136: 2875-1886.
77.Zhang, S., Reddy, M. S., and Kloepper, J. W. 2002. Development of assay for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol. Control 23: 79-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊