跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃婷榆
研究生(外文):Ting-Yu Huang
論文名稱:花生簇葉病菌質體dnaB1和dnaG基因之選殖與分析
論文名稱(外文):Cloning and Analysis of dnaB1 and dnaG Genes of Peanut Witches’-Broom Phytoplasma
指導教授:林長平林長平引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:花生簇葉病菌質體dnaB1基因dnaG基因基因選殖南方氏雜配反應
外文關鍵詞:dnaB1 genednaG genegene cloningSouthern hybridization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在於從事花生簇葉病菌質體 dnaB1 和 dnaG 基因之選殖與基因序列之分析。首先利用本實驗室所研發之花生簇葉病菌質體專一性 PCR 引子對 281-5a/ 281-5b,以受花生簇葉病菌質體感染之日日春全 DNA 為模板進行 PCR 反應,經選殖 PCR 產物後,獲得選殖株 281-5。經定序分析後獲得 dnaB1 基因 5’ 端核酸序列。該 dnaB1 基因為指導複製解螺旋酶 (replicative DNA helicase) DnaB 之合成,且 dnaB1 基因在植物菌質體之基因體為 dnaB1-dnaG 之基因排序方式,其中 dnaG 基因所指導之引發酶 (DNA primase) DnaG 亦參與於 DNA 複製之過程中,因此以選殖株 281-5 之選殖片段核酸序列為基礎,同時進行 dnaB1 和 dnaG 基因之選殖。實驗中所採用之選殖策略為收集 GenBank 中已發表之各植物菌質體之 dnaG 基因核酸序列,進行比對分析後,並依據 dnaG 基因 5’ 端和 3’ 端高保守性區域分別設計簡併式 (degenerate) 反向引子 dnaBr2 及 RG2,並利用選殖株 281-5 之選殖片段序列設計正向引子 dnaB-1-R-1,並以引子對 281-5a/ dnaBr2 和 dnaB-1-R-1/ RG2 分別進行 PCR 反應,以增幅花生簇葉病菌質體之核酸片段,經選殖 PCR 產物後,分別獲得選殖株 B52 和 BG。選殖株 281-5, B52 和 BG 之選殖片段於重疊處之核酸序列相同度為 100%,且選殖株 BG 之選殖片段,於 NCBI 基因資料庫進行比對分析後,發現其 3’ 端序列與本研究室先前發表之選殖株 H13 選殖片段 (GenBank AY270153) 之 5’ 端核酸序列完全相同,因此利用選殖株 H13 之選殖片段核酸序列,設計反向引子 RHp1,並以引子對 dnaB-1-R-1/ RHp1 進行 PCR 反應,經選殖 PCR 產物後,獲得選殖株 BH。以電腦軟體分析本研究中所獲得之各選殖株選殖片段序列,經將其接續後獲得 3,593 bp 之核酸序列,經序列比對分析後得知,該核酸片段依序包含一 hypothetical protein gene 之 3’ 端序列, dnaB1及 dnaG 基因全序列,以及另一 hypothetical protein gene 之 5’ 端序列。以核酸探針 FB3-p 進行南方氏雜配反應 (Southern hybridization) 以分析 dnaB1 基因套組數時, 可獲得兩個雜配訊號,因此推測 dnaB1 基因在花生簇葉病菌質體基因體中具有兩個套組。此外,由 RT-PCR 反應的結果發現在花生簇葉病菌質體中 dnaB1 和 dnaG 基因可分別進行 mRNA 之轉錄。
A PCR-based strategy was conducted to obtain dnaB1 and dnaG genes of phytoplasma associated with peanut witches’ broom (PnWB) in this study. A PCR fragment was amplified specifically from the PnWB phytoplasma-affected periwinkle plants using primer pair 281-5a/ 281-5b designed in previous study. The PCR product was cloned and the DNA fragment of clone 281-5 was sequenced and revealed to have homology to the sequences of published dnaB genes. In phytoplasma genome, dnaB gene can be arranged in the order of dnaB-dnaG to encode the DnaB and DnaG proteins for DNA replication, respectively. To clone the dnaB1 and the downstream dnaG gene of PnWB phytoplasma, two degenerate oligonucleotide PCR primers dnaBr2 and RG2 in reverse direction were designed according to the 5’ and 3’ end conserved sequences of the dnaG gene of various phytoplasmas, and primer dnaB-1-R-1 in forward direction was also designed according to the sequence of the cloned fragment of 281-5. PCR fragments were then amplified specifically from the PnWB phytoplasma DNA using primer pairs 281-5a/ dnaBr2 and dnaB-1-R-1/ RG2. The PCR products were cloned and clones B52 and BG were obtained, respectively. Sequence analysis of the cloned fragment of BG revealed that the 3’ end sequence has high homology to that of clone H13 (GenBank AY270153) published by us previously. A primer RHp1 in reverse direction was then designed according to the sequence of the cloned fragment of H13. PCR fragment was amplified from the PnWB phytoplasma DNA using primer pair dnaB-1-R-1/ RHp1 to obtain clone BH. Sequences of the cloned fragments of 281-5, B52, BG and BH were analyzed and combined as a 3,593 bp sequence fragment. Sequence analysis showed that the fragment contain the 3’ end sequence of a hypothetical protein gene, dnaB1 gene, dnaG gene, and the 5’ end sequence of another hypothetical protein gene in order. Southern hybridization analysis indicated that there were two copies of dnaB1 gene in PnWB phytoplasma genome. RT-PCR analysis showed that mRNAs of dnaB1 and dnaG were transcribed independently in PnWB phytoplasma.
論文口試委員審定書.................................. i
誌謝 ............................................... ii
中文摘要 ........................................... iii
英文摘要 ........................................... v
壹、前言 ........................................... 1
貳、前人研究 ....................................... 4
一、植物菌質體之發現 ............................... 4
二、植物菌質體病害之植物病理學 ..................... 4
三、植物菌質體之分類地位............................ 6
四、植物菌質體之生物特性與其分子生物學上的研究...... 7
五、細菌基因體中 dnaB 基因之特性及研究 ............. 9
六、細菌基因體中 dnaG 基因之特性及研究 ............. 12
參、材料與方法 ..................................... 15
一、研究材料來源與植物全 DNA (total DNA) 之純化 .... 15
(一) 試驗植物來源與繁殖............................. 15
(二) 健康及受花生簇葉病菌質體感染之罹病植物全 DNA 之純
化............................................. 15
1. 大量抽取植物全 DNA .............................. 15
2. 微量抽取植物全 DNA .............................. 16
二、花生簇葉病菌質體 dnaB1 基因之選殖與分析 ........ 17
(一) 花生簇葉病菌質 dnaB1 基因部分序列之選殖與分析.. 17
1. 聚合酵素連鎖反應 (polymerase chain reaction, PCR) 18
2. 聚合酵素連鎖反應產物之純化與選殖 (cloning)....... 18
(1) 聚合酵素連鎖反應產物之純化...................... 19
(2) 聚合酵素連鎖反應產物之選殖...................... 19
3. 轉形株 (transformant) 內重組質體 (recombinant plasmid) 嵌
入片段之大小與其序列分析......................... 20
(1) 以菌落聚合酵素連鎖反應 (colony PCR) 增幅嵌入片段. 20
(2) 重組質體嵌入片段之定序與分析 ................... 21
(二) 花生簇葉病菌質體 dnaB1 基因全長序列之選殖與分析 21
1. 聚合酵素連鎖反應引子之設計....................... 21
2. 聚合酵素連鎖反應................................. 22
3. 聚合酵素連鎖反應產物之選殖與序列分析............. 22
三、以南方氏雜配反應 (Southern hybridization) 分析花
生簇葉病菌質體 dnaB1 基因之套組數 (copy member). 23
(一) 花生簇葉病菌質體 dnaB1 基因核酸探針之製備 ..... 23
1. 核酸探針片段序列之增幅與選殖..................... 23
(1) 聚合酵素連鎖反應 ............................... 23
(2) 聚合酵素連鎖反應產物之選殖與序列分析 ........... 23
2. 核酸探針之標識 (labeling) ....................... 24
(1) 重組質體 DNA 之純化............................. 24
(2) 以聚合酵素連鎖反應標識核酸探針.................. 25
(二) 南方氏轉漬 (Southern blot) 及雜配反應
(hybridization) ............................... 25
1. 健康與罹病植物全 DNA 之核酸限制酵素酵解 ......... 26
2. 南方氏轉漬 ...................................... 26
3. 雜配及呈色反應 .................................. 26
四、花生簇葉病菌質體 dnaG 基因之選殖與分析 ......... 27
(一) 花生簇葉病菌質體 dnaG 基因部分序列之選殖與分析. 27
1. 聚合酵素連鎖反應引子對之設計..................... 27
2. 聚合酵素連鎖反應 ................................ 28
3. 聚合酵素連鎖反應產物之選殖與序列分析 ............ 28
(二) 花生簇葉病菌質體 dnaG 基因全長之選殖與分析 .... 29
1. 聚合酵素連鎖反應引子之設計....................... 29
2. 聚合酵素連鎖反應 ................................ 29
3. 聚合酵素連鎖反應產物之選殖與序列分析 ............ 29
(1) 聚合酵素連鎖反應產物之膠體萃取與選殖............ 30
(a) 聚合酵素連鎖反應產物之膠體萃取.................. 30
(b) 聚合酵素連鎖反應產物之選殖...................... 30
(2) 重組質體嵌入片段之大小及其序列分析.............. 30
五、花生簇葉病菌質體 dnaB1 和 dnaG 基因核酸探針之製備及北方
氏雜配反應 (Northern hybridization) ............... 31
(一) 花生簇葉病菌質體 dnaB1 和 dnaG 基因核酸探針之製備 31
1. 核酸探針片段序列之增幅與選殖..................... 31
2. 核酸探針之標識 .................................. 32
(二) 健康與罹病植物全 RNA 之純化 ................... 33
(三) 北方氏雜配及呈色反應 (Northern hybridization) . 33
六、花生簇葉病菌質體 dnaB1 和 dnaG 基因轉錄
(transcription) 起始點之分析 ................... 34
(一) 健康與罹病植物全 RNA 之純化 ................... 34
(二) 反轉錄聚合酵素連鎖反應 (reverse transcription PCR,
RT-PCR)........................................ 35
1. 反轉錄反應引子與聚合酵素連鎖反應引子對之設計 .... 35
2. 以反轉錄反應進行 dnaB1 和 dnaG cDNA 之合成 ...... 36
3. 聚合酵素連鎖反應 ................................ 36
4. 聚合酵素連鎖反應產物之選殖與序列分析 ............ 37
七、花生簇葉病菌質體 dnaB1 和 dnaG 基因推衍蛋白質之結
構預測........................................... 37
肆、結果 ........................................... 39
一、研究材料來源與植物全 DNA (total DNA) 之純化 .... 39
二、花生簇葉病菌質體 dnaB1 基因之選殖與分析 ........ 39
(一) 以 PCR 引子對 281-5a/ 281-5b 所增幅之 dnaB1 基因部分序
列之分析....................................... 39
(二) dnaB1 基因核酸序列之分析 ...................... 40
(三) dnaB1 基因胺基酸推衍序列之保守性區域分析 ...... 41
三、花生簇葉病菌質體 dnaB1 基因核酸探針之製備及南方氏雜配反
應 (Southern hybridization) ..................... 42
四、花生簇葉病菌質體 dnaG 基因之選殖與分析 ......... 43
(一) dnaG 基因核酸序列之分析 ....................... 43
(二) dnaG 基因胺基酸推衍序列之保守性區域分析........ 44
五、花生簇葉病菌質體 dnaB1 和 dnaG 基因之 RNA 表現分析 45
六、花生簇葉病菌質體 dnaB1 和 dnaG 基因推衍蛋白質之結
構預測........................................... 47
伍、討論 ........................................... 48
陸、參考文獻 ....................................... 56
柒、圖表 ........................................... 66
捌、附錄 ........................................... 95
1.李芷芸。2008。利用real-time PCR進行花生簇葉病菌質體質體pPNWB套組數之測定與台灣梨衰弱病菌質體之檢測。國立台灣大學植物病理與微生物學研究所碩士論文。
2.紀凱齡、林長平。2005。花生簇葉病菌質體polC基因之選殖與分析。植物會刊 14: 51-58。
3.葉中川、陳文雄。1996。植物保護圖鑑系列3-落花生保護。行政院農業委員會。臺北。48-49頁。
4.魏慧珍、林長平。2004。以逢機定序方式選殖花生簇葉病菌質體之質體及插入序列。植病會刊 13: 143-154。
5.Agrios, G. N. 2005. Plant diseases caused by Mollicutes: phytoplasmas and spiroplasmas. Pages 687-703 in: Plant Pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
6.Aravind, L., Leipe, D. D., and Koonin, E. V. 1998. Toprim-a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26: 4205-4213.
7.Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
8.Bai, X., Zhang, J. H., Ewing, A., Miller, S. A., Radek, A. J., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., and other authors. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188: 3682-3696.
9.Bailey, S., Eliason, W. K., and Steitz1, T. A. 2007. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318: 459-463.
10.Bertaccini, A., Davis, R. E., Lee, I. M., Conti, M., Dally, E. L., and Douglas, S. M. 1990. Detection of chrysanthemum yellows mycoplasmalike organism by dot hybridization and Southern blot analysis. Plant Dis. 74: 40-43.
11.Bird, L. E., Pan, H., Soultanas, P., and Wigley, D. B. 2000. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry 39: 171-182.
12.Biswas, E. E., and Biswas, S. B. 1999. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochemistry 38: 10919-10928.
13.Biswas, S. B., Chen, P. H., and Biswas, E. E. 1994. Structure and function of Escherichia coli DnaB protein: role of the N-terminal domain in helicase activity. Biochemistry 33: 11307-11314.
14.Black, L. M. 1943. Some properties of aster-yellows virus. Phytophathology 33: 2.
15.Braun, E. J., and Sinclair, W. A. 1976. Histopathology of phloem necrosis in Ulmus americana. Phytopathology 66: 598-607
16.Braun, E. J., and Sinclair, W. A. 1978. Translocation in phloem necrosis-diseased American elm seedlings. Phytopathology 68: 1733-1737.
17.Bujalowski, W., and Jezewska, M. J. 1995. Interactions of Escherichia coli primary replicative helicase DnaB protein with single-stranded DNA. The nucleic acid does not wrap around the protein hexamer. Biochemistry 34: 8513-8519.
18.Carl, P. L. 1970. Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol. Gen. Genet. 109: 107-122.
19.Chen, M. F., and Lin, C. P. 1997. DNA probes and PCR primers for the detection of a phytoplasma associated with peanut witches''-broom. Eur. J. Plant Pathol. 103: 137-145.
20.Chintakayala, K., Larson, M. A., Griep, M. A., Hinrichs, S. H., and Soultanas, P. 2008. Conserved residues of the C-terminal p16 domain of primase are involved in modulating the activity of the bacterial primosome. Mol. Microbiol. 68: 360-371.
21.Ciarrocchi, G., Attolini, C., Cobianchi, F., Riva, S., and Falaschi, A. 1977. Modulation of deoxyribonucleic a polymerase III level during the life cycle of Bacillus subtilis. J. Bacteriol. 131: 776-783.
22.Davis, R. E., and Dally, E. L. 2001. Nonfunctional tRNA gene in an unusual example of rRNA interoperon sequence heterogeneity in phytoplasma. Phytopathology 91: S21.
23.Denes, A. S., and Sinha, R. C. 1992. Alteration of clover phyllody mycoplasma DNA after in vitro culturing of phyllody-diseased clover. Can. J. Plant Pathol. 14: 189-196.
24.Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Ann. Phytopath. Soc. Jpn. 33: 259-266.
25.Fass, D., Bogden, C. E., and Berger, J. M. 1999. Crystal structure of the N-terminal domain of the DnaB hexameric helicase. Structure 7: 691-698.
26.Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression DNA and RNA genomes. Nucleic Acids Res. 17: 4713-4730.
27.Griep, M. A., Blood, S., Larson, M. A., Koepsell, S. A., and Hinrichs, S. H. 2007. Myricetin inhibits Escherichia coli DnaB helicase but not primase. Bioorg. Med. Chem. 15: 7203-7208.
28.Guex, N., and Peitsch, M. C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18: 2714-2723.
29.Gundersen, D. E., Lee, I. M., Schaff, D. A., Harrison, N. A., Chang, C. J., Davis, R. E., and Kingsbury, D. T. 1996. Genomic diversity and differentiation among phytoplasma strains in 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). Int. J. Syst. Bacteriol. 46: 64-75.
30.Guo, Y. H., Cheng, Z. M., and Walla, J. A. 1998. Amplification and RFLP analysis of 23S ribosomal DNA from phytoplasmas. Phytopathology 88: S35.
31.Hodgetts, J., Boonham, N., Mumford, R., Harrison, N., and Dickinson, M. 2008. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ''Candidatus Phytoplasma''. Int. J. Syst. Evol. Microbiol. 58: 1826-1837.
32.Hogenhout, S. A., Oshima, K., Ammar, E. D., Kakizawa, S., Kingdom, H. N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9: 403-423.
33.Ilyina, T. V., Gorbalenya, A. E., and Koonin, E. V. 1992. Organization and evolution of bacterial and bacteriophage primase-helicase systems. J. Mol. Evol. 34: 351-357.
34.Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mullberry dwarf disease. Ann. Phytopathol. Soc. Jpn. 33: 267-275.
35.Kato, M., Ito, T., Wagner, G., and Ellenberger, T. 2004. A molecular handoff between bacteriophage T7 DNA primase and T7 DNA polymerase initiates DNA synthesis. J. Biol. Chem. 279: 30554-30562.
36.Kirkpatrick, B. C., Smart, C., Gardner, S., Gao, J. L., Ahrens, U., Maurer, R., Schneider, B., Lorenz, K. H., Seemüller, E., Harrison, N., Namba, S., and Daire, X. 1994. Phylogenetic relationships of plant pathogenic MLOs established by 16/23S rDNA spacer sequences. IOM Letters 3: 228-229.
37.Ko, H. C., and Lin, C. P. 1994. Development and application of cloned DNA probe for a mycoplasma-like organism associate with sweet potato withes’-broom. Phytopathology 84: 468-473.
38.Koepsell, S. A., Larson, M. A., Frey, C. A., Hinrichs, S. H., and Griep, M. A. 2006. Staphylococcus aureus primase has higher initiation specificity, interacts with single-stranded DNA stronger, but is less stimulated by its helicase than Escherichia coli primase. J. Bacteriol. 188: 4673-4680.
39.Kollar, A., and Seemüller, E. 1989. Base composition of the DNA of mycoplasma-like organisms associated with various plant diseases. J. Phytopathol. 127: 177-186.
40.Kopp, J., and Schwede, T., 2004. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res. 32: D230-D234.
41.Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., and Seemüller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma ''Candidatus Phytoplasma mali''. BMC Genomics. 9: 306.
42.Kusakabe, T., and Richardson, C. C. 1996. The role of the zinc motif in sequence recognition by DNA primases. J. Biol. Chem. 271: 19563-19570.
43.Kuske, C. R., and Kirkpatrick, B. C. 1992. Phylogenetic relationships between the western aster yellows mycoplasma-like organisms and other prokaryotes established by 16S rRNA gene sequence. Int. J. Syst. Bacteriol. 42: 226-233.
44.Larson, M. A., Bressani, R., Sayood, K., Corn, J. E., Berger, J. M., Griep, M. A., and Hinrichs, S. H. 2008. Hyperthermophilic Aquifex aeolicus initiates primer synthesis on a limited set of trinucleotides comprised of cytosines and guanines. Nucleic Acids Res. 36: 5260-5269.
45.Lauer, U., and Seemüller, E. 2000. Physical map of the chromosome of the apple proliferation phytoplasma. J. Bacteriol. 182: 1415-1418.
46.Lee, I. M., Gundersen, D. E., Hammond, R. W., and Davis, R. E. 1994. Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84: 559-566.
47.Lepka, P., Stitt, M., Moll, E., and Seemüller, E. 1999. Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol. Mol. Plant Pathol. 55: 59-68.
48.Lim, P. O., and Sears, B. B. 1989. 16S rRNA sequence indicates that plant-pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. J. Bacteriol. 171: 5901-5906.
49.Lim, P. O., and Sears, B. B. 1991. DNA sequence of the ribosomal protein genes rpl2 and rps19 from a plant-pathogenic mycoplasmalike organism. FEMS Microbiol. Lett. 84: 71-74.
50.Lim, P. O., and Sears, B. B. 1992. Evolutionary relationship of a plant pathogenic mycoplasma-like organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequence. J. Bacteriol. 174: 2606-2611.
51.Marcone, C., Neimark, A., Ragozzino, A., Lauer, U., and Seemüller, E. 1999. Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89: 805-810.
52.McCoy, R. E., Caudwell, A., Chang, C. J., Chen, T. A., Chiyowski, L. N., Cousin, M. T., Dale, J. L., de Leeuw, G. T. N., Golino, D. A., Hackett, K. J., Kirkpatrick, B. C., Marwitz, R., Petzold, H., Sinha, R. C., Sugiura, M., Whitcomb, R. F., Yang, I. L., Zhu, B. M., and Seemüller, E. 1989. Plant diseases associated with mycoplasma-like organisms, and Mycoplasmas of plants and Arthropods. Whitcomb, R. F., and Tully, J. G. eds. Academic Press, San Diego, CA.
53.Mesa, P., Alonso, J. C., and Ayora, S. 2005. Bacillus subtilis bacteriophage SPP1 G40P helicase lacking the N-terminal domain unwinds DNA bidirectionally. J. Mol. Biol. 357: 1077-1088.
54.Musetti, R., Favali, M. A., and Pressacco, L. 2000. Histopathology and poly- phenol content in plants infected by phytoplasmas. Cytobios 102: 133–147.
55.Nakayama, N., Arai, N., Kaziro, Y., and Arai, K. 1984. Structural and functional studies of the dnaB protein using limited proteolysis. Characterization of domains for DNA-dependent ATP hydrolysis and for protein association in the primosome. J. Biol. Chem. 259: 88-96.
56.Nitharwal, R. G., Paul, S., Dar, A., Choudhury, N. R., Soni, R. K., Prusty, D., Sinha, S., Kashav, T., Mukhopadhyay, G. T., Chaudhuri, K., Gourinath, S., and Dhar, S. K. 2007. The domain structure of Helicobacter pylori DnaB helicase the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function. Nucleic Acids Res. 35: 2861-2874.
57.Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27-29.
58.Padovan, A. C., Firrao, G., Schneider, B., and Gibb, K. S. 2000. Chromosome mapping of the sweet potato little leaf phytoplasma reveals genome heterogeneity within the phytoplasmas. Microbiology 146: 893-902.
59.Peitsch, M. C. 1995. Protein modeling by E-mail Bio/Technology 13: 658-660.
60.Ramirez, R. N., Robledo, Y., Mesa, P., Ayora, S., Alonso, J. C., Carazo, J. M., and Donate, E. 2006. Quaternary polymorphism of replicative helicase G40P: structural mapping and domain rearrangements. J. Mol. Biol. 357: 1063-1076.
61.Rodina, A., and Godson, G. N. 2006. Role of conserved amino acids in the catalytic activity of Escherichia coli primase. J. Bacteriol. 188: 3614-3621.
62.Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C., and Ellenberger, T. 1999. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99: 167-177.
63.Schneider, B., Gibb, K. S., and Seemüller, E. 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143: 3381-3389.
64.Schneider, B., and Seemüller, E. 1994. Presence of two sets of ribosomal genes in phytopathogenic mollicutes. Appl. Environ. Microbiol. 60: 3409-3412.
65.Schneider, B., Seemüeller, E., Smart, C. D., and Kirkpatrick, B. C. 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. Pages 369-380 in: Molecular and diagnostic procedures in mycoplasmology, vol. I. S. Razin and J. G. Tully eds. Academic Press, San Diego, CA.
66.Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.
67.Sears, B. B., Klomparens, K. L., Wood, J. I., and Schewe, G. 1997. Effect of altered levels of oxygen and carbon dioxide on phytoplasma abundance in Oenothera leaftip cultures. Physiol. Mol. Plant Pathol. 50: 275-287.
68.Singleton, M. R., Dillingham, M. S., and Wigley, D. B. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76: 23-50.
69.Smart, C. D., Schneider, B. C., Blomquist, L., Guerra, L. J., Harrison, N. A., Ahrens, U., Lorenz, K. H., Seemüller, E., and Kirkpatrick, B. C. 1996. Phytoplasma-specific PCR primers based on sequences of 16S-23S rRNA spacer region. Appl. Environ. Microbiol. 62: 2988-2993.
70.Smiley, B. L., Lupski, J. R., Svec, P. S., McMacken, R., and Godson, G. N. 1982. Sequences of the Escherichia coli dnaG primase gene and regulation of its expression. Proc. Natl. Acad. Sci. U.S.A. 79: 4550-4554.
71.Sun, W., Tormo, J., Steitz, T. A., and Godson, G. N. 1994. Domains of Escherichia coli primase: functional activity of a 47-kDa N-terminal proteolytic fragment. Proc. Natl. Acad. Sci. U.S.A. 91: 11462-11466.
72.The IRPCM Phytoplasma/Spiroplasma working team-Phytoplasma taxonomy group. 2004. ''Candidatus Phytoplasma'', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54: 1243-1255.
73.Thirlway, J., and Soultanas, P. 2006. In the Bacillus stearothermophilus DnaB-DnaG complex, the activities of the two proteins are modulated by distinct but overlapping networks of residues. J. Bacteriol. 188: 1534-1539.
74.Toth, K. F., Harrison, N., and Sears, B. B. 1994. Phylogenetic relationships among members of the class Mollicutes deduced from rps3 gene sequences. Int. J. Syst. Bacteriol. 44: 119-124.
75.Tougu, K., Peng, H., and Marians, K. J. 1994. Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J. Biol. Chem. 269: 4675-4682.
76.Tran-Nguyen, L. T. T., and Gibb, K. S. 2006. Extrachromosomal DNA isolated from tomato big bud and Candidatus phytoplasma anstraliense phytoplasma strains. Plasmid 56: 153-166.
77.Tran-Nguyen, L. T. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB. J. Bacteriol. 90: 3979-3391.
78.Tully, J. G. 1993. International committee on systemic bacteriology subcommittee on the taxonomy of Mollicutes, minutes of interim meeting, 1 and 2 Auguest, 1992, Ames Iowa. Inter. J. Syst. Bacteriol. 43: 394-397.
79.Wang, G., Klein, M. G., Tokonzaba, E., Zhang, Y., Holden, L. G., and Chen, X. S. 2008. The structure of a DnaB-family replicative helicase and its interactions with primase. Nat. Struct. Mol. Biol. 15: 94-100.
80.Washington, M. T., Rosenberg, A. H., Griffin, K., Studier, F. W., and Patel, S. S. 1996. Biochemical analysis of mutant T7 primase/helicase proteins defective in DNA binding, nucleotide hydrolysis, and the coupling of hydrolysis with DNA unwinding. J. Biol. Chem. 271: 26825-26834.
81.Wei, W., Davis, R. E., Lee, I. M., and Zhao, Y. 2007. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int. J. Syst. Evol. Microbiol. 57: 1855-1867.
82.Wei, W., Lee, I. M., Davis, R. E., Suo, X., and Zhao, Y. 2008. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int. J. Syst. Evol. Microbiol. 58: 2368-2377.
83.Yang, I. L. 1988. Witches’ broom diseases of sweet potato and peanut in Taiwan. Ph. D. Thesis. Hokkaido Univ., Japan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top