跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊琇萍
研究生(外文):Hsiu-Ping Yang
論文名稱:臘狀芽孢桿菌C1L菌株揮發氣體促進植物生長之探討
論文名稱(外文):Enhancement of Plant Growth by Volatile Compounds Produced by Bacillus cereus C1L
指導教授:陳昭瑩陳昭瑩引用關係
指導教授(外文):Chao-Ying Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:60
中文關鍵詞:臘狀芽孢桿菌阿拉伯芥菸草氣相層析質譜儀揮發氣體二甲基二硫醚
外文關鍵詞:Bacillus cereusArabidopsis thalianaNicotiana tobacumgas chromatography-mass spectrometryvolatile compoundsdimethyl disulfideDMDS
相關次數:
  • 被引用被引用:4
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室由花蓮布洛灣臺灣百合根圈環境中,篩選到一株臘狀芽孢桿菌Bacillus cereus C1L菌株,具有生物防治的功能,有助於臺灣百合、葵百合、阿卡波克百合對抗灰黴病和玉米對抗葉枯病。另一方面,C1L菌株也具有促進植物生長的能力,除了可增進玉米株高、鮮重、乾重、葉長及葉寬,並可增加阿拉伯芥株高、鮮重、葉面積和果莢數目。為進一步探討C1L菌株促進植物生長的因子,經由I型培養皿與植物組織培養的方法,試驗細菌氣體是否能影響植物的生長發育,結果顯示C1L菌株的揮發物質不僅可使阿拉伯芥的鮮重顯著增加,亦能增加菸草植株的乾重、葉面積和根部的生長。以I型培養皿一側培養真菌時,C1L菌株揮發物質能抑制十字花科黑斑病菌(Alternaria brassicicola)、灰黴病菌(Botrytis cinerea)及百合灰黴病菌(Botrytis elliptica)菌落的生長。為進一步探討C1L菌株具有促進植物生長作用之揮發性氣體種類,利用氣相層析質譜儀分析C1L菌株所產生的揮發氣體,共分離出五種成分,與標準品比對,鑑定出最主要的成份為有機化合物二甲基二硫醚(dimethyl disulfide, DMDS),其餘4種為未知成分。以二甲基二硫醚與菸草共培養,可顯著增加菸草之乾重、葉面積和根長;但以二甲基二硫醚與阿拉伯芥共培養,並不能增加阿拉伯芥之乾重。此外,二甲基二硫醚對上述3株植物病原真菌菌株之生長也沒有抑制作用。本研究之貢獻在於收集統整C1L菌株細菌懸浮液促進阿拉伯芥生長之各參數數據,並且首次觀察到C1L菌株揮發氣體具有促進阿拉伯芥、菸草生長之效果,且可抑制植物病原真菌生長,本研究亦為首次分析C1L菌株揮發氣體成分,並鑑定其中主要成分為二甲基二硫醚,此化合物雖然對阿拉伯芥及植物病原真菌之生長並無影響,但可顯著促進菸草之生長,可能為C1L揮發氣體促進植物生長之有效成份之一
The biocontrol strain, Bacillus cereus C1L, was isolated from the rhizosphere of Lilium formosanum in Hualien, Taiwan. Application of B. cereus C1L effectively decreased disease level of lily leaf blight and corn leaf blight in the fields. The plant growth-promoting functions of strain C1L, to increase plant height, leaf width and length, and plant fresh and dry weight, were demonstrated on Arabidopsis thaliana in greenhouse assay. Plant tissue culture methods with I-plates revealed that volatile compounds of B. cereus C1L could increase fresh weight of A. thaliana, and the dry weight, leaf area, and root length of Nicotiana tobacum. In addition, volatile compounds released from strain C1L showed inhibitory effect on mycelial growth of Alternaria brassicicola, Botrytis cinerea, and Botrytis elliptica. The volatile compounds produced by strain C1L showed five peaks in components analysis by gas chromatography-mass spectrometry. One of them was identified as dimethyl disulfide (DMDS). Application of DMDS could increase dry weight, leaf area, and root length of N. tobacum; however, there was no growth-enhancing effect on A. thaliana and no inhibitory effect on the growth of three tested fungi as exposed to DMDS. The contributions of this study are data collection for plant growth promotion by strain C1L and the finding of the volatile compound effective on plant growth promotion.
壹、中文摘要 4
貳、英文摘要 5
參、前 言 6
肆、前人研究 8
根圈細菌促進植物生長機制 8
揮發物質對植物影響之探討 9
細菌揮發物質成分 10
桿菌屬揮發物質促進植物生長之研究及其生合成途徑探討 11
細菌氣體抑制植物病原真菌生長 12
植物病原真菌 12
伍、材料與方法 14
一、溫室植物栽培 14
1. 阿拉伯芥(Arabidopsis thaliana ecotype Colombia-0) 14
2. 菸草(Nicotiana tabacum cv. Wisconsin 38) 14
二、供試植物無菌苗培養 14
三、供試細菌培養與保存 15
四、供試真菌培養與保存 15
五、澆灌菌液促進阿拉伯芥生長試驗 15
六、C1L菌株細菌懸浮液促進植物側根生長試驗 16
七、C1L菌株所產生揮發氣體成分之分析 16
1. 氣體取樣方法 16
2. 揮發氣體樣本製備與取樣條件 17
3. 氣相層析質譜儀分析條件 17
4. 標準品定性與定量方法 17
八、揮發氣體促進植物生長試驗 18
九、揮發氣體抑制植物病原真菌生長試驗 18
陸、結果 19
一、澆灌B. cereus C1L促進植物生長之效果 19
1. 澆灌C1L菌株細菌懸浮液促進阿拉伯芥Col-0之生長 19
2. C1L菌株細菌懸浮液促進阿拉伯芥側根生長 19
二、B. cereus C1L揮發氣體之作用 20
1. C1L菌株揮發氣體促進阿拉伯芥Col-0之生長 20
2. C1L菌株揮發氣體促進菸草W38生長 20
3. C1L菌株揮發氣體抑制植物病原真菌生長 20
三、B. cereus C1L揮發氣體成分分析 21
1. C1L菌株揮發氣體成分分析 21
2. 偵測C1L菌株揮發氣體主成分-Dimethyl disulfide(DMDS) 21
四、DMDS之促進植物生長、抑制植物病原菌生長效果 22
1. DMDS促進菸草W38生長 22
2. DMDS對阿拉伯芥Col-0生長之影響 22
3. 不同濃度DMDS抑制植物病原真菌生長之試驗 22
柒、討論 24
捌、結論 30
玖、參考文獻 32
拾、圖表集 42
表一、供試植物與菌株 43
表二、Bacillus cereus C1L對Arabidopsis thaliana Col-0生長之影響 44
表三、Bacillus cereus C1L揮發氣體對Nicotiana tobacum W38生長之影響 45
表四、Bacillus cereus C1L之DMDS偵測量 46
表五、DMDS對Nicotiana tobacum W38生長之影響 47
表六、DMDS對Arabidopsis thaliana Col-0生長之影響 48
圖一、Bacillus cereus C1L對Arabidopsis thaliana Col-0生長之影響 49
圖二、Bacillus cereus C1L對Arabidopsis thaliana Col-0根部生長之影響 50
圖三、Bacillus cereus C1L揮發氣體對Arabidopsis thaliana Col-0生長之影響 51
圖四、Bacillus cereus C1L揮發氣體對Arabidopsis thaliana Col-0生長之影響 52
圖五、Bacillus cereus C1L揮發氣體對Nicotiana tobacum W38生長之影響 53
圖六、Bacillus cereus C1L揮發氣體抑制植物病原真菌之生長 54
圖七、氣相層析質譜儀(GC-MS)分析Bacillus cereus C1L揮發氣體成分 55
圖八、DMDS標準品與Bacillus cereus C1L揮發氣體圖譜的比對分析 56
圖九、DMDS標準品濃度對偵測波峰積分之標準曲線 57
圖十、DMDS對Nicotiana tobacum W38生長之影響 58
圖十一、DMDS對Arabidopsis thaliana Col-0生長之影響 59
圖十二、DMDS對植物病原真菌生長之影響 60
1.農業委員會策劃委員會。臺灣農家要覽-農作篇(三)2005。增修訂三版 p.169, 209, 222。行政院農業委員會。臺北市。
2.楊耿豪。2007。臘狀芽孢桿菌C1L菌株誘導玉米系統性抗葉枯病之應用研究。國立臺灣大學植物病理與微生物研究所碩士論文。臺北。臺灣。80頁。
3.劉益宏。2004。臺灣百合根圈細菌之篩選及灰黴病防治應用研究。國立臺灣大學植物病理與微生物研究所碩士論文。臺北。臺灣。68頁。
4.Alami, Y., Achouak, W., Marol, C., and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66:3393-3398.
5.Alstrom, S. 2001. Characteristics of bacteria from oil seed rape in relation to their biocontrol of activity against Verticillium dahliae. J. Phytopathol. 149:57-64.
6.Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000. Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature 406:512-515.
7.Arimura, G., Ozawa, R., Horiuchi, J. I., Nishioka, T., and Takabayashi, J. 2001. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem. System. Ecol. 29:1049-1061.
8.Aström, B., and Gerardson, B. 1988. Differential reactions of wheat and pea genotypes to root inoculations with growth-affecting rhizobacteria. Plant Soil 109:263-269.
9.Benhamou, N., Kloepper, J. W., Quadt-Hallmann, A., and Tuzun, S. 1996. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929.
10.Benhamou, N., Kloepper, J. W., and Tuzun, S. 1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153-168.
11.Benhamou, N., Gagné, S., Le Quéré, D., and Dehbi, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45-56.
12.Birkett, M. A., Campbell, C. A., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J., and Woodcock, C. M. 2000. New role for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. U.S.A. 97:9329-9334.
13.Brinton, W. F. 1998. Volatile organic acids in compost: production and odorants aspects. Compost Sci. Util. 6:75-82.
14.Brown, M. E. 1974. Seed and root bacterization. Annu. Rev. Phytopathol. 12:181-197.
15.Burd, G. I., Dixon, D. G., and Glick, B. R. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64:3663-3668.
16.Chabot, R., Antoun, H., and Cescas, M. 1993. Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can. J. Microbiol. 39:941-947.
17.Chaurasia, B., Pandey, A., Palni, L. M., Trivedi, P., Kumar, B., and Colvin, N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160:75-81.
18.Chitarra, G. S. 2003. Germination inhibitors of fungal spores: identification and mode of action. Dissertation 3466. Wageningen, the Netherlands: Wageningen University.
19.Dott, W., Thien, R., Müller, T., Wiesmüller, G. A., and Fischer, G. 2004. Belastung der Arbeitnehmer bei Schimmelpilzsanierungsarbeiten in Innenräumen. Literaturstudie. München, Germany: Tiefau-Berufs-Genossenschaft. pp. 50-51. (Cited in: Siddiqui, Z. A. 2006. Ecology of plant growth promoting rhizobacteria. In: PGPR: Biocontrol and Biofertilization. Siddiqui, Z. A. eds. Springer Netherlands. pp. 1-38.)
20.Fall, R., and Copley, S. D. 2000. Bacterial sources and sinks of isoprene, a reactive atmospheric hydrocarbon. Environ. Microbiol. 2:123-130.
21.Farag, M. A., and Pare, P. W. 2002. C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545-554.
22.Farag, M.A., Ryu, C.M., Sumner, L.W., Pare, P.W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262-2268.
23.Forlani, G., Mantelli, M., and Nielsen, E. 1999. Biochemical evidence for multiple acetoin-forming enzymes in cultured plant cells. Phytochemistry 50:255-262.
24.Gatehouse, J. A. 2002. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156:145-169.
25.Höflich, G., Wiehe, W., and Kühn, G. 1994. Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897-905.
26.Holl, F. B., Chanway, C. P., Turkington, R., and Radley, R. 1988. Growth response of crested wheat grass (Agropyron cristatum L.) white clover (Trifolium repens L.), and perennial ryegrass (Lolium perenne L.) to inoculation with Bacillus polymyxa. Soil Biol. Biochem. 20:19-24.
27.Joo, G. J., Kim, Y. M., Kim, J. T., Rhee, I. K., Kim, J. H., Lee, I. J. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43:510-515.
28.Kai, M., Effmert, U., and Berg, G. 2007. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187:351-360.
29.Kloepper, J. W., Lifshitz, R., and Zablotowicz, R. M. 1989. Free-living bacterial inocula forenhancing crop productivity. Trends Biotechnol. 7:39-44.
30.Kloepper, J.W. 1993. Plant growth-promoting rhizobacteria as biological control agents. In: Soil Microbial Ecology-applications in Agricultural and Environmental Management. Metting, F.B. Jr. eds. Mercel Dekker, New York, pp. 255-274.
31.Kokalis-Burelle, N., Vavrina, C. S., Rosskopf, E. N., and Shelby, R. A., 2002. Field evaluation of plant growth-promoting Rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257-266.
32.Kurze, S., Bahl, H., Dahl, R., and Berg, G. 2001. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 85:529-534.
33.Lalande, R., Bissonnette, N., Coutlée, D. and Antoun, H. 1989. Identification of rhizobacteria and determination of their plant-growth promoting potential. Plant Soil 115:7-11.
34.Larsen, T. O., and Frisvad, J. C. 1995. Characterization of volatile metabolites from 47 Penicillium species. Mycol. Res. 99:1153-1166.
35.Lin, W., Okon, Y., and Hardy, R. W. F. 1983. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol. 45:1775-1779.
36.Loper, J. E., and Schroth, M. N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. Phytopathology 76:386-389.
37.Loper, J. E., and Henkels, M. D. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:5357-5363.
38.López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I., and Valencia-Cantero, E. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant Microbe Interact. 20:207-217.
39.MacDonald, E. M., Powell, G. K., Reqier, D. A., Glass, N. L., Roberto, F., Kosuqe, T., and Morris, R. O. 1986. Secretion of zeatin, ribosylzeatin, and ribosyl-1”-methylzeatin by Pseudomonas savastanoi: plasmid-coded cytokinin biosynthesis. Plant Physiol. 82:742-747.
40.Marilley, L., and Casey, M. G. 2004. Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int. J. Food Microbiol. 90:139-159.
41.Merriman, J. M., Price, R. D., Kollmorgan, J. F., Piggott, T., and Ridge, E. H. 1974. Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on growth of cereals and carrots. Aust. J. Agric. Res. 25:219-226.
42.Meyer, R., Rautenbach, G. F., and Dubery, I. A. 2003. Identification and quantification of methyl jasmonate in leaf volatiles of Arabidopsis thaliana using solid-phase microextraction in combination with gas chromatography and mass spectrometry. Phytochem. Anal. 14:155-159.
43.Milner, J. L., Silo-Suh, L., Lee, J. C., He, H., Clardy, J., and Handelsman, J. 1996. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62:3061-3065.
44.M’Piga, P., Bélanger, R. R., Paulitz, T. C., and Benhamoul, N. 1997. Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens stran 63-28. Physiol. Mol. Plant Pathol. 50:301-320.
45.Nielsen, M. N., Sørensen, J., Fels, J., and Pedersen, H. C. 1998. Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64:3563-3569.
46.Ocampo, J. A., Barea, J. M., and Montoya, E. 1975. Interactions between Azotobacter and "phosphobacteria" and their establishment in the rhizosphere as affected by soil fertility. Can. J. Microbiol. 21:1160-1165.
47.Peix, A., Rivas-Boyero, A. A., Mateos, P. F., Ridriguez-Barrueco, C., Martinez-Molina, E., and Velazquez, E. 2001. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33:103-110.
48.Persello-Cartieaux, F., David, P., Sarrobert, C., Thibaud, M. C., Achouak, W., Robaglia, C., and Nussaume, L. 2001. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 212:190-198.
49.Pinton, R., Varanini, Z., and Nannipieri, P. 2001. The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: The Rhizosphere Biochemistry and Organic Substances at The Soil-plant Interface. Pinton, R., Varanini, Z., and Nannipieri, P., eds. Marcel Dekker, N.Y., pp. 1-17.
50.Ramos, H. C., Hoffmann, T., Marino, M., Nedjari, H., Presecan-siedel, E., Dreesen, O., Glaser, P., and Jahn, D. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 182:3072-3080.
51.Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., and Kloepper, J. W. 2003a. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:492-4932.
52.Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., and Kloepper, J. W. 2003b. Volatiles produced by PGPR elicit plant growth promotion and induced resistance. In: Arabidopsis. Proceedings the 6th International Workshop on Plant Growth Promoting Rhizobacteria. pp. 436-443.
53.Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.
54.Ryu, C. M., Hu, C. H., Locy, R. D., and Kloepper, J. W. 2005. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285-292.
55.Schipper, B., Bakker, L. W., and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu. Rev. Phytopathol. 25:339-358.
56.Schmelz, E. A., Engelberth, J., Alborn, H. T., Odonnell, P., Sammons, M., Toshima, H., and Tumlinson, J. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. U.S.A. 100:10552-10557.
57.Schöller, C., Molin, S., and Wilkins, K. 1997. Volatile metabolites from some Gram-negative bacteria. Chemosphere 35:1487-1495.
58.Segal, W., and Starkey, R. L. 1969. Microbial decomposition of methionine and identity of the resulting sulfur products. J. Bacteriol. 98:908-913.
59.Sekar, C., Prasad, N. N., and Sundaram, M. D. 2000. Enhancement of polygalacturonase activity during auxin induced para nodulation and endorhizosphere colonization of Azospirillum in rice roots. Indian J. Exp. Biol. 38:80-83.
60.Shulaev, V., Silverman, P., and Raskin, I. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718-721.
61.Siddiqui, Z. A. 2006. Ecology of plant growth promoting rhizobacteria. In: PGPR: Biocontrol and Biofertilization. Siddiqui, Z. A. eds. Springer Netherlands. pp. 1-38.
62.Smet, E., Van Langenhove, H., and De Bo, I. 1999. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste. Atmos. Environ. 33:1295-1303.
63.Suslow, T.V., and Schroth, M. N. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199-206.
64.Tien, T. M., Gaskins, M. H., and Hubbell, D. H. 1979. Plant growth substances produced by Azospririllum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37:1016-1024.
65.Timmusk, S., and Waqner, E. G. 1999. The plant-growth-promotin rhizobacterium Paenibacillus polymyxa induce changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12:951-959.
66.van Wees, S. C. M., Pieterse, C. M. J., Trisjssenaar, A., Van’t Westende, Y. A. M., Hartog, F., and van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Iteract. 10:716-724.
67.Vespermann, A., Kai, M., and Piechulla, B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639-5641.
68.Wann, F. B. 1920. The fixation of free nitrogen by green plants. Science 51:247-248.
69.Weber, H. 2002. Fatty acid-derived signals in plants. Trends Plant Sci. 7:217-224.
70.Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357-364.
71.Werner, D. 2001. Organic signals between plants and microorganisms. In: The Rhizosphere Biochemistry and Organic Substances at the Soil-plant Interface. Pinton, R., Varanini, Z., and Nannipieri, P., eds. Marcel Dekker, Inc. N.Y. pp. 197-222.
72.Werner, D. 2004. Signalling in the rhizobia-legumes symbiosis. In: Plant Surface Microbiology. Varma, A., Abbott, L., Werner, D., Hampp, R., eds. Springer, N.Y., pp. 99-119.
73.Whipps, J. M. 2001. Microbial interactions and biocontrol in ther rhizosphere. J. Exp. Bot. 52:487-511.
74.Wilkins, K. 1996. Volatile metabolites from actinomycetes. Chemosphere 32:1427-1434.
75.Wilkins, K. 1997. Gaseous organic emissions from various types of household waste. Ann. Agric. Environ. Med. 4:87-89.
76.Wipat, A., and Harwood, C. R. 1999. The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microb. Ecol. 28:1-9.
77.Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., and Allen, R. 2007. Rhizobacteria volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839-851.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊