跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佩芸
研究生(外文):Pei-Yun Wu
論文名稱:阿拉伯芥FIN219基因表現的分析以及與COI1之間調控關係之研究
論文名稱(外文):Investigation of FIN219 expression and its regulatory relationship with COI1 in Arabidopsis
指導教授:謝旭亮
指導教授(外文):Hsu-Liang Hsieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:阿拉伯芥光訊息傳遞FIN219COI1
外文關鍵詞:Arabidopsislight signaling transductionFIN219COI1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
“光”是影響植物生長發育的重要環境因子之一。植物中可利用不同的光接受體(photoreceptor)如phytochromes(光敏素),cryptochromes(隱花色素)和phototropins(植物向光素)來感應光環境的變化,包括光的方向性、週期、光量與光質。除此之外,Jasmonic acid (JA)已被認為一種植物荷爾蒙,參與在阿拉伯芥的生長發育與防禦機制之中,然而在植物體中如何整合光和JA的訊息傳遞仍有待研究。
本實驗室所研究的FIN219 (far-red insensitive 219)基因,參與在遠紅光上游的訊息傳遞,扮演著phyA與光形態發生抑制者COP1之間的橋樑。FIN219屬於GH3-like基因家族成員之一,可受生長素Auxin誘導而快速地表現,由microarray結果指出FIN219也會影響許多位於細胞核中的轉錄因子的表現,暗示FIN219可能會直接或間接調控這些轉錄因子。因此我們建構了由FIN219啟動子(promoter)接上報導基因GUS與FIN219 cDNA的轉殖株來幫助了解FIN219在植物中的表現與調控情形。結果發現轉殖在fin219-null突變株背景下,FIN219會特別表現在植株葉緣出水孔(hydathode)與附近的保衛細胞及毛茸(trichomes)基部、初生葉、下胚軸、根部等處,然而在phyA缺失的時候植株幼苗的FIN219則不會在下胚軸表現。
由報導中已知JAR1和FIN219是同一個基因,JAR1參與在JA的訊息傳遞中,修飾JA分子使JA接上isoleucine (Ile),成為具有活性的狀態,使JA訊息可以傳遞到下游。而COI1 (coronatine insensitive 1)在JA訊息傳遞中扮演負調控者的角色。Microarray結果顯示在遠紅光下fin219突變會使植株中COI1的表現量大幅下降,表示FIN219的功能正常與否會影響到COI1基因的表現。在遠紅光下生長的coi1-16突變株也呈現出對遠紅光不敏感的外表型,有較野生型抽長的下胚軸,顯示COI1可能參與了遠紅光的訊息傳遞。由RT-PCR結果顯示fin219突變在遠紅光下的確會使COI1基因表現量下降,而coi1-16突變株在遠紅光下FIN219基因的表現也同樣降低,顯示COI1與FIN219彼此之間有正向調控的關係。它們彼此更深入的相互關係會在論文中討論。
Light is one of the major environmental signals that influence plant growth and development. Plants can detect almost all facets of light such as direction, duration, quantity and quality with three major classes of photoreceptors: phytochromes, cryptochromes and phototropins. Jasmonic acid (JA) has been recognized as a phytohormone, which is involved in both developments and defense pathways in Arabidopsis. How the integration of light and JA affects Arabidopsis development remains to be elucidated.
FIN219 is a component of phyA-mediated far-red light signaling pathway. It is highly similar to a family of proteins defined by the soybean early auxin-inducible gene GH3. FIN219 expression is rapidly induced by auxin. According to the result of microarray data, FIN219 affects the expression of several transcription factors which are localized in the nucleus, suggesting that FIN219 may directly or indirectly regulate these nuclear proteins. So we produced Arabidopsis transgenic plants containing a FIN219 promoter driven GUS-FIN219 fusion construct to understand the function of FIN219. In the fin219-null mutant background, GUS staining can be detected in the hydathode of cotyledons, and the guard cells around hydathodes. GUS staining are also found in the base of trichomes, hypocotyls and roots. In contrast, in the phyA mutant background, GUS-FIN219 was not expressed in the hypocotyls.
JAR1 has been shown to be the same locus as FIN219 and functions as an enzyme to conjugate isoleucine to JA. So FIN219 is also involved in JA signaling pathway. Microarray data reveal that the COI1 expression is decreased dramatically in fin219 under FR condition. Here we found that coi1-16 is insensitive to far-red light. RT-PCR results indicate that COI1 expression is down-regulated in fin219-null matant and FIN219 expression also down-regulated in coi1-16 under far-red light, which implies that they positively regulate with each other. Further regulatory relationship will be discussed in the thesis.
目錄 I
中文摘要 III
英文摘要 V
縮寫對照表 VII
第一章 前言 1
一、 緒論 1
二、 光敏素 2
三、 光訊息傳遞 3
四、 FIN219基因 4
五、 COI1基因 5
六、 保衛細胞的調控 5
七、 研究目標 7
第二章 材料與方法 8
一、 載體構築 (Plasmid Construction) 8
二、 植物材料與生長條件 8
三、 基因轉殖與轉殖株篩選 9
四、 GUS活性染色分析 9
五、 RNA表現量分析 9
六、 蛋白質表現分析 10
七、 雜交測試 11
第三章 結果 12
一、 載體的構築 12
二、 p219:GUS轉殖株受光影響的GUS表現分析 12
三、 質體的轉殖與阿拉伯芥轉殖株的分析 13
四、 COI1突變株外表型分析 15
第四章 討論 18
一、 p219:GUS-FIN219表現在葉表皮的保衛細胞 18
二、 p219:GUS-FIN219並無法rescue fin219的突變外表型 19
三、 COI1與FIN219以及光訊息傳遞的關聯 20
四、 coi1突變株對光及JA的反應 21
五、 未來展望 21
第五章 結果圖片 22
參考文獻 44
附圖 55
附錄一、實驗操作流程 60
附錄二、一般藥品配製 76
Ahmad, M., and Cashmore, A. R. (1996). The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway. Plant J. 10 (6):1103-1110.
Aloni, R., Schwalm, K., Langhans, M., and Ullrich, C. I. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841-853.
Ang, L. H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X. W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1:213-222.
Assmann, S. M. (1993). Signal transduction in guard cells. Annu. Rev. Cell Biol. 9:345-375.
Assmann, S. M. (1988). Enhancement of the stomatal response to blue light by red light, reduced intercellular concentrations of CO2, and low vapor pressure differences. Plant Physiol. 87:226-231.
Aukerman, M. J., Hirschfeld, M., Wester, L., Weaver, M., Clack, T., Amasino, R. M., and Sharrock, R. A. (1997). A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9:1317-1326.
Ballesteros, M. L., Bolle, C., Lois, L. M., Moore, J. M., Vielle-Calzada, J. P., Grossniklaus, U., and Chua, N. H. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev. 15 (19):2613-2625.
Bechtold, N., Ellis, J., and Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sciences 316:1194-1199.
Blatt, M.R. (2000). Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16:221-241.
Bolle, C., Koncz, C., and Chua, N. H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev. 14 (10):1269-1278.
Briggs, W. R., and Christie, J. M. (2002). Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci. 7:204-210.
Briggs, W. R., and Huala, E. (1999). Blue-light photoreceptors in highter plants. Annu. Rev. Cell Dev. Biol. 15:33-63.
Birnboim, H. C., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513-1523.
Buche, C., Poppe, C., Schafer, E., and Kretsch, T. (2000). eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12 (4):547-558.
Chen, I. C., Huang, I. C., Liu, M. J., Wang, Z. G., Chung, S. S. and Hsieh, H. L. (2007). Glutathione S-transferase interacting with FIN219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiology 143:1189-1202.
Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J. M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F. M., Ponce, M. R., et al (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671.
Choi, G.,Yi, H., Lee, J., Kwon, Y. K., Soh, M. S., Shin, B., Luka, Z., Hahn, T. R., and Song, P. S. (1999). Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401 (6753):610-613.
Chory, J., Peto, C. A., Ashbaugh, M., Saganich, R., Pratt, L., and Ausubel, F. (1989). Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1:867-880.
Clough, R. C., and Vierstra, R. D. (1997). Phytochrome degradation. Plant Cell Environ. 20:713-721.
Clough, S. J. and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16 (6):735-743.
Creelman, R. A. (1998). Jasmonate perception: characterization of COI1 mutants provides the first clues. Trends Plant Sci 3:367-368.
Deng, X. W., Caspar, T., and Quail, P. H. (1991). COP1, a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5:1172-1182.
Desnos, T., Puente, P., Whitelam, G. C., and Harberd, N. P. (2001). FHY1, a phytochrome A-specific signal transducer. Genes Dev. 15:2980-2990.
Devlin, P. F., Patel, S. R., and Whitelam, G. C. (1998.)Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10:1479-1487.
Ellis, C., and Turner, J.G. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215:549-556.
Feys, B., Benedetti, C. E., Penfold, C. N., and Turner, J. G. (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751-759.
Fairchild, C. D., Schumaker, M. A., and Quail, P. H. (2000). HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev. 14 (18):2377-2391.
Fankhauser, C., and Chory, J. (1997). Light control of plant development. Annu. Rev. Cell Dev. Biol. 13:203-229.
Fankhauser, C., and Chory, J. (2000). RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol 124 (1):39-45.
Fankhauser, C., Yeh, K. C., Lagarias, J. C., Zhang, H., Elich, T. D., and Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284 (5419):1539-1541.
Fischer, R. A. (1968). Stomatal opening: role of potassium uptake by guard cells. Science 160:784-785.
Fu, T. Y. and Hsieh, H. L.(2008). Functional studies of Arabidopsis FIN219 in cross-talks between blue light and far-red light signaling. NTU master thesis.
Fujino, M. (1967). Role of ATP and ATPase in stomatal movements. Sci. Bull. Fac. Educ. Nagasaki Univ. 18:1-47.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291 (5503):487-490.
Genoud, T., Millar, A. J., Nishizawa, N., Kay, S. A., Schafer, E., Nagatani, A., and Chua, N. H. (1998). An Arabidopsis mutant hypersensitive to red and far-red light signals. Plant Cell 10 (6):889-904.
Hare, P. D., Moller, S. G., Huang, L. F., and Chua, N. H. (2003). LAF3, a novel factor required for normal phytochrome A signaling. Plant Physiol 133 (4):1592-1604.
Hardtke, C. S. & Deng, X. W. (2000). The cell biology of the COP/DET/FUS proteins. Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol. 124:1548-1557.
Hoecker, U., Xu, Y., and Quail, P. H. (1998). SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10 (1):19-33.
Hoecker, U., Tepperman, J. M., and Quail, P. H. (1999). SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284 (5413):496-499.
Hsieh, H. L., Okamoto, H., Wang, M., Ang, L. H., Matsui, M., Goodman, H., and Deng, X. W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14:1958-1970.
Hudson, M., Ringli, C., Boylan, M. T., and Quail, P. H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13 (15):2017-2027.
Hugouvieux, V., Barber, C. E., and Daniels, M. J. (1998). Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: A system for studying early infection events in bacterial pathogenesis. Mol. Plant-Microbe Interact. 11:537-543.
Imamura, S. (1943). Untersuchungen über den mechanismus der turgorschwankung der spaltöffnungsschliesszellen. Jpn. J. Bot. 12:251-346.
Jacobsen, S. E., Sakai, H., Finnegan, E. J., Cao, X. and Meyerowitz, E. M. (2000). Ectopic hypermethylation of flower-specific genes in Arabidopsis, Curr Biol 10:179-186.
Jacobsen, S. E. and Meyerowitz, E. M. (1997). Hypermethylated SUPERMAN epigenetic alleles in arabidopsis, Science 277:1100-1103.
Karlsson, P. E. (1986). Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination and initial conductance level. Physiol. Plant. 66:202-206.
Kendrick, R.E., and Kronenberg, G.H.M. (1994). Photomorphogenesis in plants, 2nd ed. (Dordrecht The Netherlands, Kluwer).
Kim, Y. M., Woo, J. C., Song, P. S., and Soh, M. S. (2002). HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J. 30 (6):711-719.
Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K. (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656-660.
Kinoshita, T., and Shimazaki, K. (1999). Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18:5548-5558.
Kircher, S. (1999). Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445-1456.
Mathews, S., and Sharrock, R. A. (1997). Phytochrome gene diversity. Plant Cell Environ 20:666-671.
Mao, J., Zhang, Y. C., Sang, Y., Li, Q. H., and Yang, H. Q. (2005). A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. USA 102:12270-12275.
McCormac, A. C., Elliott, M. C., and Chen, D. F. (1998). A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol Biotechnol 9:155-159.
Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980.
Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y., Murata, Y. (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398-1407.
Nagy, F., and Schäfer, E. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53:329-355.
Nemhauser, J., and Chory, J. (2002). Photomorphogenesis, in: The Arabidopsis Book. American Society of Plant Biologists (http://www.aspb.org/publications/arabidopsis/).
Neff, M. M., Fankhauser, C., and Chory, J. (2000). Light: An indicator of time and place. Genes Dev. 14:257-271.
Ni, M., Tepperman, J. M., and Quail, P. H. (1998). PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95 (5):657-667.
Ogawa, T., Ishikawa, H., Shimada, K., and Shibata, K. (1978). Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta 142:61-65.
Osterlund, M. T., Ang, L. H. and Deng, X. W. (1999). The role of COP1 in repression of Arabidopsis photomorphogenic development. Trends Cell Biol. 9:113-118.
Osterlund, M. T., Hardtke, C. S., Wei, N. and Deng, X. W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462-466.
Parks, B. M., and Quail, P. H. (1993). hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5:39–48.
Park, D. H., Lim, P. O., Kim, J. S., Cho, D. S., Hong, S. H., and Nam, H. G. (2003). The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. Plant J. 34:161-171.
Poffenroth, M., Green, D. B., and Tallman, G. (1992). Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light: analysis by high performance liquid chromatography. Plant Physiol. 98:1460-1471.
Qin, M., Kuhn, R., and Quail, P. H. (1997). Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J 12:1163-1172.
Quail, P. H. Boylan, M. T., Parks, B. M., Short, T. W., Xu, Y., and Wagner, D. (1995). Phytochromes: photosensory perception and signal transduction. Science. 268:675-680.
Quail, P. H. (1997). An emerging molecular map of the phytochromes. Plant Cell Environ. 20:657-665.
Quail, P. H. (1998). The phytochrome family: Dissection of functional roles and signaling pathways among family members. Philos.Trans. R. Soc. Lond. B. Biol. Sci. 353:1399-1403.
Quail, P. H. (2002a). Photosensory perception and signaling in plant cells: new paradigms? Curr. Opin. Cell Biol. 14:180-188.
Quail, P. H. (2002b). Phytochrome photosensory signaling networks. Nat. Rev. 3:85-92.
Roelfsema, M. R. G., and Hedrich, R. (2005). In the light of stomatal opening: New insights into ‘theWatergate’. N. Phytol. 167:665-691.
Roetschi, A., Si-Ammour, A., Belbahri, L., Mauch, F. and Mauch-Mani, B. (2001). Characterization of an Arabidopsis–Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J. 28:293-305.
Sambrook, J., Fritsch, E. R., and Maniatis, T. (1989). The inoue method for preparation and transformation of competent E. Coli. Molecular cloning.
Schroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M., and Waner, D. (2001). Guard cell signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:627-658.
Schulze-Lefert, P., and Robatzek, S. (2006). Plant pathogens trick guard cells into opening the gates. Cell 126:831-834.
Schwechheimer, C., Serino, G., Callis, J., Crosby, W. L., Lyapina, S., Deshaies, R. J., Gray, W. M., Estelle, M., and Deng, X. W. (2001). Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292:1379-1382.
Sharkey, T. D., and Ogawa, T. (1987). Stomatal responses to light. In Stomatal Function, ed. E Zeiger, G Farquhar, I Cowan, pp. 195-208. Stanford, CA: Stanford Univ. Press
Shinomura, T., Nagatani, A., Chory, J., and Furuya, M. (1994). The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol 104 (2):363-371.
Smith, H., and Whitelam, G. C. (1997). The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840-844.
Smith, H. (2000). Phytochromes and light signal perception by plants-an emerging synthesis. Nature 407 (6804):585-591.
Soh, M. S., Hong, S. H., Hanzawa, H., Furuya, M., and Nam, H. G. (1998). Genetic identification of FIN2, a far red light-specific signaling component of Arabidopsis thaliana. Plant J. 16 (4):411-419.
Staswick, P. E., Tiryaki, I., and Rowe, M. L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405-1415.
Suza, W. P., and Staswick, P. E. (2008). The role of JAR1 in jasmonoyl-L-isoleucine production in Arabidopsis wound response. Planta 227:1221-1232.
Talbott, L. D., and Zeiger, E. (1998). The role of sucrose in guard cell osmoregulation. J. Exp. Bot. 49:329-337.
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S. Y., Howe, G. A. and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448:661-665.
Vavasseur, A., and Raghavendra, A. S. (2005). Guard cell metabolism and CO2 sensing. N. Phytol. 165:665-682.
Von Arnim, A. G., and Deng, X. W. (1994). Light inactivation of Arabidopsis
photomorphogenic repressor COP1 involves a cell-specific regulation of its
nucleocytoplasmic partitioning. Cell 79:1035-104.
Von Arnim, A. G., Osterlund, M. T., Kwok, S. F., and Deng, X. W. (1997). Genetic and development control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis. Plant Physiol. 114:779-788.
Wadsworth, G. J., Redinbaugh, M. G., and Scandalios, J. G. (1988). A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal.Biochem. 172:279-283.
Wang, H., and Deng, X. W. (2002a). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21:1339-1349.
Wang, H., and Deng, X W. (2002b). Phytochrome signaling mechanism, in: The Arabidopsis Book. American Society of Plant Biologists (http://www.aspb.org/publications/arabidopsis/).
Wei, N., and Deng, X. W. (1999). Making sense of the COP9 signalosome. Trends Genet. 15:98-103.
Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., Turner, J. G. (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 280:1091-1094.
Yamashita, T. (1952). Influences of potassium supply upon various properties and movement of guard cell. Sielboldia Acta Biol. 1:51-70.
Yeh, K.C., and Lagarias, J.C. (1998). Eukaryotic phytochromes: light-regulated serine/threonine protein kinase with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA 95:13976-13981.
Zeidler, M., Bolle, C., and Chua, N. H. (2001). The phytochrome A specific signaling component PAT3 is a positive regulator of Arabidopsis photomorphogenesis. Plant Cell Physiol 42 (11):1193 -1200.
Zeiger, E. (1983). The biology of stomatal guard cells. Annu. Rev. Plant Physiol. 34:441-475.
Zhou, Y. C., Dieterle, M., Buche, C., and Kretsch, T. (2002). The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling. Plant Physiol 128 (3):1098 -1108.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊