跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江漢威
研究生(外文):Han-Vei Jiang
論文名稱:阿拉伯芥AtGSTU17與PHYA在光、荷爾蒙及逆境的功能研究
論文名稱(外文):Functional Studies of Glutathione S-Transferase(AtGSTU17)and Phytochrome A in Response to Light,Hormones and Stress Conditions
指導教授:謝旭亮
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:阿拉伯芥光敏素離層素遠紅光
外文關鍵詞:ArabidopsisphytochromeABAFar-redGST
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物多為固著生長,行光合作用,因此因應外界光線環境的改變,而調整自身的生長與發育能力,對植物尤其重要。在阿拉伯芥中,光敏素A 是負責接收遠紅光,並透過一連串的訊息傳遞而影響下游的基因表現,使植物進行光型態發生(photomorphogenesis)。前人研究指出GST 基因家族成員AtGSTU17在遠紅光中的基因表現量可受到phyA及其下游基因FIN219突變所抑制,隨著遠紅光強度越強,AtGSTU17也表現越多。在較弱的遠紅光下Atgstu17突變體呈現較野生型長的下胚
軸,顯示AtGSTU17的表現與遠紅光光照有密切的關係。但AtGSTU17在遠紅光中作用的分子機制尚未明瞭。利用遠紅光及PCR 篩選到Atgstu17phyA的雙突變體,從外表型的檢測,發現Atgstu17phyA的下胚軸長度在弱遠紅光下比親代各別的單突變體長。暗示AtGSTU17與phyA在遠紅光下有非等位非互補(nonallelic noncomplementation)的遺傳調控關係,可能分別調控同一訊息傳遞下的兩個平行途徑,或者兩者有相互作用的功能。另外,當AtGSTU17大量表現在phyA突變體(AtGSTU17OE-2/phyA),在遠紅光下的下胚軸長度比phyA突變體還短。然而,RT-PCR指出Atgstu17突變體在遠紅光下有幾個與auxin相關的基因表現增加,而PIFs及光訊息相關的基因(例如: CHS)的表現則是下降的。此外,在Atgstu17突變體有幾個受ABA調控的基因表現也受到影響。在鹽類逆境及滲透壓逆境處理之下,我們發現gstu17突變體對於逆境造成的側根抑制不敏感,這顯示
AtGSTU17可能有參與在逆境方面的調控。綜合上述結果顯示AtGSTU17的表現會受到遠紅光、荷爾蒙、逆境的調控,並且會影響植物在遠紅光下的光型態發生及荷爾蒙、逆境所控制的根部發育。
Phytochrome A (phyA) is the photoreceptor of far-red (FR) light. Previous
studies have shown that a glutathione S-transferase (AtGSTU17), a tau class
member of the GST gene family in Arabidopsis, can be induced rapidly in wild
type under FR light, but abolished in the phyA mutant. The molecular
mechanisms underlying the regulation of GSTU17 expression by phyA remain
unknown. We isolated the gstu17phyA double mutant showing that it exhibited a
longer hypocotyl phenotype than its parental lines specifically under weak FR
light. When AtGSTU17 was overexpressed in the phyA mutant background
(GSTU17OE-2/phyA), it led to a shorter hypocotyl phenotype than the phyA
under FR light. These data suggest that AtGSTU17 and PHYA act as a nonallelic
noncomplementary relation, and may work in parallel pathways or physically
interact with each other to control hypocotyl elongation under FR. Furthermore,
RT-PCR analyses indicated that several auxin responsive genes were
up-regulated, and phytochrome-interacting factors (PIFs) as well as light
responsive gene such as CHS down-regulated in the gstu17 mutant under FR. In
addition, several ABA-regualted genes were affected in the gstu17 mutant.
Under the ionic stress and osmotic stress treatments, the gstu17 mutant is
hyposensitive in terms of lateral roots inhibition. Taken together, these data
indicate that AtGSTU17 may function as a crosstalk among phyA-mediated FR
light, auxin, ABA and stress signaling pathways to regulate hypocotyl elongation
and root development in Arabidopsis.
目錄 ............................................................................................................. I
中文摘要 .................................................................................................. IV
英文摘要 .................................................................................................... V
第一章 前言 ............................................................................................... 1
一、導讀 ............................................................................................................................... 1
二、植物的光訊息傳遞 ....................................................................................................... 1
1. Phytochromes 光敏素 ................................................................................................. 1
2.光訊息傳遞下游因子 ................................................................................................... 2
三、Auxin 與ABA 所影響的植物生長與基因表現 ............................................................ 3
四、活性氧分子(ROS) ......................................................................................................... 4
五、植物的抗氧化系統 ....................................................................................................... 5
六、植物GSTs 的歷史及分類 ............................................................................................ 6
七、植物GSTs 的功能 ......................................................................................................... 7
八、GST 與光的研究 ............................................................................................................ 7
九、AtGSTU17 先前的研究 .................................................................................................. 8
十、逆境與GSH 系統 ........................................................................................................... 8
十一、研究目標 ................................................................................................................... 9
第二章 材料與方法 ................................................................................ 10
2-1 植物材料與生長條件 .................................................................................................. 10
2-2 Genomic DNA 萃取 ...................................................................................................... 10
2-3 分析T-DNA homozygous lines ................................................................................ 11
2-4 RNA 的萃取與RNA 表現量分析 .................................................................................. 11
2-5 花青素與葉綠素以及開花時間的測量 ...................................................................... 12
II
2-6 根毛觀察 ...................................................................................................................... 12
2-7 種子發芽測試 .............................................................................................................. 12
2-8 GUS 活性染色分析 ...................................................................................................... 13
2-9 Glutathione 萃取 ...................................................................................................... 13
2-10 逆境耐受程度測試 ................................................................................................... 14
第三章 結果............................................................................................. 15
一、利用遠紅光篩選及PCR 方法獲得Atgstu17phyA 雙突變株 ................................... 15
二、Atgstu17phyA 雙突變株在弱遠紅光下,其下胚軸長度比phyA 長 ...................... 15
三、GSTU17OE-2/phyA 在遠紅光下,其下胚軸長度較phyA 短 .................................... 16
四、AtGSTU17 影響在遠紅光下花青素累積、葉綠素生合成以及開花時間 ............... 16
五、AtGSTU17 在遠紅光下會影響光訊息及auxin 相關的基因表現 ............................ 17
六、Atgstu17 的側根與根毛發育與野生型不同 ............................................................ 18
七、AtgstU17、phyA、AtgstU17phyA 對於ABA 抑制根生長不敏感 ............................ 18
八、phyA 對於ABA 所影響的種子發芽及發育不敏感 .................................................... 18
九、AtGSTU17 會影響ABA 及與逆境相關的基因表現 .................................................... 19
十、Atgstu17 對於鹽類逆境或者滲透壓逆境不敏感 .................................................... 19
十一、pAtGSTU17:GUS 轉殖株經Auxin 及ABA 及滲透壓逆境處理之後,AtGSTU17 表現
在根尖及側根生長點 ......................................................................................................... 20
十二、AtGSTU17 影響植物內生的GSH level ................................................................. 21
第四章、討論........................................................................................... 22
AtGSTU17 參與在遠紅光訊息傳遞之中 ............................................................................ 22
AtGSTU17 影響Auxin 及ABA 所調控的植物生理 ............................................................ 24
AtGSTU17 影響ABA 及與逆境相關的基因表現 ................................................................ 25
AtGSTU17 參與鹽類及滲透壓逆境的調控 ........................................................................ 26
AtGSTU17 對於植物體內GSH 含量恆定是重要的 ............................................................ 26
結論 .................................................................................................................................... 27
III
參考文獻 ................................................................................................... 46
附錄 ........................................................................................................... 56
一、AtGSTU17 與phyA 在阿拉伯芥第一條染色體上的位置 .......................................... 56
二、fin219 與phyA 雜交所得F1 世代在遠紅光下的外表型 ........................................ 57
三、AtGSTU17 T-DNA 插入位置示意圖 ............................................................................ 58
四、本文中所使用的phyA 突變株 ................................................................................... 59
五、microarray data ...................................................................................................... 60
Abel, S., and Theologis, A. (1996). Early genes and auxin action. Plant Physiol 111, 9-17.
Addicott, F.T., and Lyon, J.L. (1969). Physiology of abscisic acid and related substances. Annu Rev Plant Physiol 20, 139-164.
Ahmad, M., and Cashmore, A. R. (1993). Hy4 Gene of A-Thaliana Encodes A Protein with Characteristics of A Blue-Light Photoreceptor. Nature 366, 162-166.
Asada, K. (1999). The water–water cycle in chloroplasts: scavenging of reactive oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol
50, 501–639.
Ballesteros, M.L., Bolle, C., Lois, L.M., Moore, J.M., Vielle-Calzada, J.P.,
Grossniklaus, U., and Chua, N.H. (2001). LAF1, a MYB transcription
activator for phytochrome A signaling. Genes Dev 15, 2613-2625.
Barnes, S.A., Nishizawa, N.K., Quaggio, R.B., Whitelam, G.C., and Chua,
N.H. (1996). Far-red light blocks greening of Arabidopsis seedlings via a
phytochrome A-mediated change in plastid development. Plant Cell 8,
601-615.
Barroso, C., Romero, L.C., Cejudo, F.J., Vega, J.M., and Gotor, C. (1999). Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol. Biol. 40, 729-736.
Bennet-Clark, T.A., and Kefford, N.P. (1953). Chromatography of the growth substances in plant extracts. Nature 171, 645-648.
Bolle, C., Koncz, C., and Chua, N.H. (2000). PAT1, a new member of the
GRAS family, is involved in phytochrome A signal transduction. Genes Dev
14, 1269-1278.
Briggs, W. R., and Christie, J.M. (2002). Phototropins 1 and 2, versatile plant blue-light receptors. Trend Plant Sci. 7, 204-210.
Briggs, W. R., and Huala, E. (1999). Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15, 33-62.
Buche, C., Poppe, C., Schafer, E., and Kretsch, T. (2000). eid1: a new
Arabidopsis mutant hypersensitive in phytochrome A-dependent
high-irradiance responses. Plant Cell 12, 547-558.
Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12, 514-521
Chen, H., Zhang, J., Neff,M.M., Hong, S.,W. S., Zhang,H., Deng,X.W.,
and Xiong, L. (2008). Integration of light and abscisic acid signaling during
seed germination and early seedling development. Proc Natl Acad Sci U S A 105, 4495-4450.
Chen, I.C., Huang, I.C. Liu, M.J. Wang, Z.G. Chung, S.S., and Hsieh, H.L. (2007). Glutathione S-Transferase Interacting with Far-Red Insensitive 219 Is Involved in Phytochrome A-Mediated Signaling in Arabidopsis. Plant Physiol 143:1189-1202.
Choi, G., Yi, H., Lee, J., Kwon, Y.K., Soh, M.S., Shin, B., Luka, Z., Hahn,
T.R., and Song, P.S. (1999). Phytochrome signalling is mediated through
nucleoside diphosphate kinase 2. Nature 401, 610-613.
Cole, S.P., Downes, H.F., Mirski, S.E., and Clements, D.J. (1990).
Alterations in glutathione and glutathione-related enzymes in a multidrug-resistant small cell lung cancer cell line. Mol Pharmacol 37, 192-197.
Deak, K.I., and Malamy, J. (2005). Osmotic regulation of root system architecture. Plant J 43, 17–28.
Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71, 791-801.
Deng, X. W.and Quail, P. H. (1999). Signalling in light-controlled development. Semin Cell Dev Biol 10,121-129.
De Pinto M.C., Tommasi F., and De Gara L. (2002). Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright–Yellow 2 cells. Plant Physiol 130, 698–708.
Dixon, D.P., Cole, D.J., and Edwards, R. (2000). Characterisation of a zeta
class glutathione transferase from Arabidopsis thaliana with a putative role in
tyrosine catabolism. Arch Biochem Biophys 384, 407-412.
Dixon, D.P., Davis, B.G., and Edwards, R. (2002). Functional divergence in
the glutathione transferase superfamily in plants. Identification of two classes
with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol
Chem 277, 30859-30869.
Dixon, D.P., Cummins, L., Cole, D.J., and Edwards, R. (1998).
Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1,
258-266.
Fankhauser, C., and Chory, J. (1997). Light control of plant development.
Annu Rev Cell Dev Biol 13, 203-229.
Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D., and Chory, J. (1999). PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539-1541.
Feinbaum, R.L., and Ausubel, F.M. (1988). Transcriptional regulation of the
Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8, 1985-1992.
Finkelstein, R.R., and Somerville, C.R. (1990). Three Classes of Abscisic
Acid (ABA)-Insensitive Mutations of Arabidopsis Define Genes that Control
Overlapping Subsets of ABA Responses. Plant Physiol 94, 1172-1179.
Foyer CH. (1997). Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J, ed. Oxidative stress and the molecular biology of antioxidant defenses. New York: Cold Spring Harbor Laboratory Press, 587–621.
Finkelsteina, R.R., and Rockb, D.C. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book 1-48.
Franklin, K.A., Davis, S.J., Stoddart, W.M., Vierstra, R.D., and Whitelam,
G.C. (2003). Mutant analyses define multiple roles for phytochrome C in
Arabidopsis photomorphogenesis. Plant Cell 15, 1981-1989.
Frear, D.S., and Swanson, H.R. (1970). Biosynthesis of S-glutathione: partial purification and properties of glutathione S-transferase from corn. Phytochemistry 9, 2123–2132.
Frova, N., Sari Gorla, M., Mizzi, L., De Toma, G., and Frova, C. (2004).
Organisation and structural evolution of the rice glutathione S-transferase
gene family. Mol Genet Genomics 271, 511-521.
Garry C.W.,Emma J., Jinrong P., Pierre C., Mary L.A.,John S.C., and Nicholas P.H.(1993). Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white Light. Plant Cell 5, 757-768.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis
Ca2+-binding protein involved in cryptochrome and phytochrome coaction.
Science 291, 487-490.
Gupta, A.S., Webb, R.P., Holaday, A.S., and Allen, R.D. (1993). Overexpression of superoxide dismutase protects plants from oxidative stress. Induction of ascorbate peroxidase in superoxide dismutaseoverexpression plants. Plant Phsiol 103,1067–1073.
Hay, A., and Tsiantis, M. (2005). From genes to plants via meristems. Development 132, 2679-2684.
Hoecker, U., Xu, Y., and Quail, P.H. (1998). SPA1: a new genetic locus
involved in phytochrome A-specific signal transduction. Plant Cell 10, 19-33.
Hoth, S., Morgante, M., Sanchez, J.P., Hanafey, M.K., Tingey, S.V., and Chua, N.H. (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of Cell Science 115, 4891-4900.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link
between phytochrome A and the downstream regulator COP1 in light control
of Arabidopsis development. Genes Dev 14, 1958-1970.
Huang, C.H. (2005). Inverstigation of functional relationship between FIN219 and photomorphogenic mutants in Arabidopsis. Master thesis.
Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13, 2017-2027.
Hudson, M.E. (2000). The genetics of phytochrome signalling in Arabidopsis.
Semin Cell Dev Biol 11, 475-483.
Huq, E., and Quail, P.H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21, 2441-2450.
Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., and Quail, P.H. (2004). Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305, 1937-1941.
Kepinski, S., and Leyser, O. (2002). Ubiquitination and auxin signaling: a degrading story. Plant Cell 14, S81-S95.
Kim, Y. M., Woo, J. C., Song, P. S., and Soh, M. S. (2002). HFR1, a phytochrome A-signalling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J 30,711-719.
Kim, J., Yi, H., Choi, G., Shin, B., Song, P.S., and Choi, G. (2003). Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15, 2399-2407.
Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., and Strand,A. (2007). Genome-Wide Gene Expression Analysis Reveals a Critical Role for CRYPTOCHROME1 in the Response of Arabidopsis to High Irradiance. Plant Physiol 144, 1391-1406.
Liu, M.J.(2006). Studies of the involvement of glutathione S-transferases in light signal transduction in Arabidopsis thaliana. Master Thesis
Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. (2000).
Glutathione and a UV light-induced glutathione S-transferase are involved in
signaling to chalcone synthase in cell cultures. Plant Cell 12, 1939-1950.
Marrs, K.A. (1996). The Functions And Regulation Of Glutathione
S-Transferases In Plants. Annu Rev Plant Physiol Plant Mol Biol 47, 127-158.
Miao, Y. and Zentgraf, U. (2007). The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19, 819–830.
Mittler R. (2006). Abiotic stress, the field environment and stress combination.. Trends in Plant Sci 11,15–19.
Monte, E., Tepperman, J.M., Al-Sady, B., Kaczorowski, K.A., Alonso, J.M., Ecker, J.R., Li, X., Zhang, Y., and Quail, P.H. (2004). The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci U S A 101, 16091-16098.
Nagy, F., Kircher, S., and Schafer, E. (2000). Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes. Semin Cell Dev Biol 11, 505-510.
Nagy, F., and Schafer, E. (2002). Control of nuclear import and phytochromes. Curr.Opin.Plant Biol. 3,450-454.
Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49,249–279.
Noctor, G., Gomez, L., Vanacker, H., and Foyer, H.C. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. Journal of Experimental Botany 53, 1283-1304.
Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a phytochrome
-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667.
Okhuma, K., Lyon, J.L., Addicott, F.T., and Smith, O.E. (1963). Abscisin II, an abscission accelerating substance from young cotton fruit. Science 142, 1592-1593.
Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., and Schroeder J.L. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406, 731–734.
Quail, P. H. (1997). The phytochromes: a biochemical mechanism of signaling in sight? Bioessays 19 ,571-579.
Quail, P.H. (2002). Phytochrome photosensory signalling networks. Nat Rev
Mol Cell Biol 3, 85-93.
Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs, Transcription Factors Involved in Dehydration- and Cold-Inducible Gene Expression. Biochemical and Biophysical Research Communications 290, 998–1009.
Scandalios, J.G. (2002). The rise of ROS. Trends Biochem Sci 27,483–486.
Schwechheimer, C., and Deng, X.W. (2000). The COP/DET/FUS proteins-regulators
of eukaryotic growth and development. Seminars in Cell and Developmental Biology
11, 495–503.
Sharrock, R.A., and Quail, P.H. (1989). Novel phytochrome sequences in
Arabidopsis thaliana: structure, evolution, and differential expression of a
plant regulatory photoreceptor family. Genes Dev 3, 1745-1757.
Shewry, P. R., Pinfield, N. J., and Stobart, A. K. (1971). The Effect of 2,4-Dichlorophenoxyacetic Acid and (2-Chloroethyl)-trimethylammonium Chloride
on Chlorophyll Synthesis in Barley Leaves. Planta 101, 352-359.
Shin, J., Park, E., and Choi, G. (2007). PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49, 981-994.
Shinomura, T., Nagatani, A., Chory, J., and Furuya, M. (1994). The Induction of SeedGermination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A. Plant Physiol 104,363-371.
Smith, A.P., Nourizadeh, S.D., Peer, W.A., Xu, J., Bandyopadhyay, A.,
Murphy, A.S., and Goldsbrough, P.B. (2003). Arabidopsis AtGSTF2 is
regulated by ethylene and auxin, and encodes a glutathione S-transferase
that interacts with flavonoids. Plant J 36, 433-442.
Smith, H. (2000). Phytochromes and light signal perception by plants--an
emerging synthesis. Nature 407, 585-591.
Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125, 27-58.
Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001).
Multiple transcription-factor genes are early targets of phytochrome A
signaling. Proc Natl Acad Sci U S A 98, 9437-9442.
Taiz. L., and Zeiger, E. (1998). Abscisic acid. In: Plant Physiology (ed by Taiz, L., Zeiger, E.). pp 671-690 Sinauer Associates Inc Publishers, Sunderland, Massachusetts.
Taji, T., Seki, M., Yamaguchi-Shinozaki, K., Kamada, H., Giraudat, J.,
and Shinozaki, K. (1999). Mapping of 25 Drought-Inducible Genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol 40, 119-123
Tausz, M. (2002). Significance of Glutathione to Plant Adaptation to the Environment. Plant Ecophysiology 2,101-122.
Tiwari, S. B., Wang, X. J., Hagen, G., and Guilfoyle, T. J. (2001). AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13,2809-2822.
Tiwari, S. B., Hagen, G., and Guilfoyle, T. (2003). The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15 ,533-543.
von Arnim, A.G., Osterlund, M.T., Kwok, S.F., and Deng, X.W. (1997).
Genetic and developmental control of nuclear accumulation of COP1, a
repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114, 779-788.
Wang, H. and Deng, X. W. (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21 ,1339-1349.
Wang, H., Ma, L., Habashi, J., Li, J., Zhao, H., and Deng, X.W. (2002).
Analysis of far-red light-regulated genome expression profiles of
phytochrome A pathway mutants in Arabidopsis. Plant J 32, 723-733.
Wilce, M.C., and Parker, M.W. (1994). Structure and function of glutathione
S-transferases. Biochim Biophys Acta 1205, 1-18.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (1993). The plant hormone
abscisic acid mediates the drought-induced expression but not the
seed-specific expression of rd22, a gene responsive to dehydration stress in
Arabidopsis thaliana. Mol Gen Genet 238, 17-25.
Yeh, K.C., and Lagarias, J.C. (1998). Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry.
Proc Natl Acad Sci U S A 95, 13976-13981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊