跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/09 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱明宏
研究生(外文):Ming-Hung Chu
論文名稱:芋頭半胱胺酸蛋白酶抑制因子之生物資訊及生化分析
論文名稱(外文):Domain analysis of tarocystatin by bioimformatic and biochemical assay
指導教授:鄭貽生鄭貽生引用關係
指導教授(外文):Yi-Sheng Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:半胱胺酸蛋白酶抑制因子芋頭同源模擬法蛋白質對接
外文關鍵詞:cysteine protease inhibitortarohomology modelingprotein-protein docking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
芋頭半胱胺酸蛋白酶抑制因子(tarocystatin)屬於第二群植物半胱胺酸蛋白酶抑制因子(phytocystatins)。Phytocystatins相似之處在於均具有高度保守的胺基端區域(N-terminal domain, NtD),稱之為cystatin domain (CY domain)。不同的是第二群抑制因子比第一群在蛋白質羧基端多了胺基酸序列的延伸,但此羧基端區域(C-terminal domain, CtD)功能尚不明確。為確認NtD與CtD能否產生交互作用,藉由戊二醛交聯反應(glutaraldehyde corss-linking)及酵母菌雙雜交實驗(yeast two-hybrid)的生化方式進行分析,結果顯示NtD與CtD具有微弱的交互作用,且NtD彼此間亦會產生交互作用,使tarocystatin能形成homodimer。
由胺基酸序列比對發現NtD、CtD與已知蛋白質結構的水稻半胱胺酸蛋白酶抑制因子(oryzacystatin, OC-Ⅰ)在序列上有相似性,而蛋白質二級結構預測也發現NtD與CtD的組成相似,均由1個α-helix緊接著4個β-sheets所組成,推測CtD蛋白質的摺疊方式應與NtD類似,稱之為類CY區域(CY-like domain),而此種二級結構組成方式亦和OC-I相同。因此以OC-Ⅰ為模板,根據交互作用實驗的結果,以同源模擬法(homology modeling)和蛋白質對接(protein-protein docking)的方式建構出兩種不同型式的tarocystatin之全長結構。
在功能分析方面,由膠體抑制活性染色實驗確認CtD具有微弱促進木瓜酶活性的能力,而全長抑制木瓜酶的效果比NtD強;又GST融合之tarocystatin會加強原始蛋白的功效,造成GST-CtD促進木瓜酶活性的能力優於CtD,而GST-全長和GST-NtD的抑制效果更佳。由本實驗的結果推論,在正常狀況下tarocystatin會以單體(monomer)及同型雙體(homodimer)的形式共存,而CtD的出現可能扮演促進tarocystatin抑制木瓜酶活性之功能。
Tarocystatin is a member of group-2 phytocystatin which could help plants against insect and pathogen attack. It shares a similar cystatin domain in the N-terminal region (NtD), and contained an extended C-terminal domain (CtD). For identifying the interaction of NtD and CtD, the glutaraldehyde cross-linking and yeast two-hybrid assays were carried out, the results showed a weak interaction between NtD and CtD, and tarocystatin could form homodimer by interaction of NtD and NtD. According to amino acids sequence alignment and secondary structure prediction, the fold of CtD should be a cystatin-like domain (CY-L domain) with similar folding to NtD which is 1 α-helix followed by 4 β-sheets. Based on domain interaction and bioinformatic analyses, we performed homology modeling and protein-protein docking to build the two models of tarocystatin using OC-I as the template. Moreover, we confirmed that CtD possess weak papain activitation property by in-gel inhibitory activity assay, full-length of tarocystatin showed higher anti-papain activity than NtD, and the GST fused tarocystatin augment their original property than none fused protein. As the results, we speculated that native tarocystatin could exist both monomeric and homodimeric form, and CtD might play a role in enhancing the inhibitory activity of tarocystatin.
目錄.....................................................I
中文摘要...............................................III
Abstract................................................IV
縮寫對照表...............................................V
第一章 前言..............................................1
1.植物之蛋白酶及蛋白酶抑制因子...........................1
2.Phytocystatin之研究與分類..............................2
3.Phytocystatin之功能....................................5
4.Phytocystatin之蛋白質結構..............................7
5.芋之簡介..............................................10
6.Tarocystatin之研究目的................................11
第二章 材料與方法.......................................12
1.材料..................................................12
2.方法..................................................12
(一)Tarocystatin胺基酸序列分析和二級結構預測............12
(二)Tarocystatin不同片段重組蛋白質之表現及純化..........13
(1)CeCPI基因表現載體之構築..............................13
(2)大腸桿菌勝任細胞之製備...............................13
(3)大腸桿菌轉形作用.....................................14
(4)重組蛋白質之大量表現及純化...........................14
(5)蛋白質之濃縮及定量分析...............................15
(6)SDS-聚丙烯醯胺膠體電泳(SDS-polyacrylamide gel electrophoresis, SDS-PAGE)..............................15
(三)Tarocystatin不同蛋白質片段之生化分析................15
(1)Glutaraldehyde (GA) cross-linking分析................15
(2)西方點墨法(western blot)分析.........................16
(3)酵母菌雙雜交(yeast two-hybrid)分析...................16
(四)Tarocystatin蛋白質結構模型之建立與分析..............17
(1)Tarocystatin蛋白質結構模型之建立.....................17
(2)Tarocystatin蛋白質結構之分析.........................17
(五)Tarocystatin不同蛋白質片段之抑制活性分析............18
第三章 結果.............................................19
1.Tarocystatin序列比對和二級結構分析....................19
2.不同片段tarocystatin之GA cross-linking分析........... 19
3.不同片段tarocystatin之yeast two-hybrid分析............21
4.Tarocystatin蛋白質結構之建立..........................22
5.Tarocystatin蛋白質結構之比對分析......................24
6.不同片段之GST-tarocystatin與tarocystatin抑制活性分析..24
第四章 討論.............................................26
1.不同片段tarocystatin的蛋白質純化結果及交互作用分析....26
2.Tarocystatin蛋白質結構分析............................27
3.GST-tarocystatin與tarocystatin功能差異之探討..........28
4.Tarocystatin CtD在功能及演化上的探討..................30
第五章 結論.............................................32
參考文獻................................................34
圖表....................................................47
附錄....................................................67
黃賢喜. 韓青梅. (1994). 芋. 雜糧作物各論Ⅲ. 根及莖類. 臺灣區雜糧發展基金會成立二十週年紀念專輯之一. 第二十章. 1665-1735.
Aagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C.A., Flanagan, J.U., Kellie, S., Hume, D.A., Kobe, B., and Martin, J.L. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13: 309-317.
Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K. (1988). The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem. 263: 7655-7659.
Abe, K., Knondo, H., and Arai, S. (1987). Purification and characterization of a rice cysteine proteinase inhibitor. Agric. Biol. Chem. 51: 2763-2768.
Abe, M., Abe, K., Kuroda, M., and Arai, S. (1992). Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur. J. Biochem. 209: 933-937.
Abe, M., and Arai, S. (1985). Purification of a cysteine proteinase inhibitors from rice, Oryza sativa L. japonica. Agric. Biol. Chem. 49: 3349-3350.
Abe, M., Arai, S., Kato, H., and Fujimaki, M. (1980). Thiol-protease inhibitors occurring in endosperm of corn. Agric. Biol. Chem. 44: 685-686.
Abrahamson, M., Ritonja, A., Brown, M.A., Grubb, A., Machleidt, W., and Barrett, A.J. (1987). Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J. Biol. Chem. 262: 9688-9694.
Akers, C.P., and Hoff, J.E. (1980). Simultaneous formation of chymopapain inhibitor activity and cubical crystals in tomato leaves. Can. J. Bot. 58: 1000-1003.
Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274: 19195-19203.
Arai, S., Matsumoto, I., Emori, Y., and Abe, K. (2002). Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem. 50: 6612-6617.
Arai, S., Watanabe, H., Kondo, H., Emori, Y., and Abe, K. (1991). Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J. Biochem. 109: 294-298.
Argall, M.E., Bradbury, J.H., and Shaw, D.C. (1994). Amino-acid sequence of a trypsin/chymotrypsin inhibitor from giant taro (Alocasia macrorrhiza). Biochem. Biophys. Acta. 1204: 189-194.
Arimatsu, Y. (1994). Latexin: a molecular marker for regional specification in the neocortex. Neurosci. Res. 20: 131-135.
Barrett, A.J. (1987). The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci. 12: 193-196.
Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., and Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270: 2593-2604.
Birk, Y., and Applebaum, S.W. (1960). Effect of soybean trypsin inhibitors on the development and midgut proteolytic activity of Tribolium castaneum larvae. Enzymologia 22: 318-326.
Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988). The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7: 2593-2599.
Bolter, C.J. (1993). Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves. Plant Physiol. 103: 1347-1353.
Botella, M.A., Xu, Y., Prabha, T.N., Zhao, Y., Narasimhan, M.L., Wilson, K.A., Nielsen, S.S., Bressan, R.A., and Hasegawa, P.M. (1996). Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112: 1201-1210.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brzin, J., Popovic, T., Drobnic-Kosorok, M., Kotnik, M., and Turk, V. (1988). Inhibitors of cysteine proteinase from potato. Biol. Chem. Hoppe-Seyler Suppl. 369: 233-238.
Brzin, J., Ritonja, A., Popvic, T., and Turk, V. (1990). Low molecular mass protein inhibitor of cystene proteinases from soybean. Biol. Chem. Hoppe-Seyler Suppl. 371: 167-170.
Cappello, F., Gatti, E., Camossetto, V., David, A., Lelouard, H., and Pierre, P. (2004). Cystatin F is secreted, but artificial modification of its C-terminus can induce its endocytic targeting Exp. Cell Res. 297: 607-618.
Chen, R., and Weng, Z. (2003). A novel shape complementarity scoring function for protein-protein docking. Proteins 51: 397-408.
Christova, P.K., Christov, N.K., and Imai, R. (2006). A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223: 1207-1218.
Corre-Menguy, F., Cejudo, F.J., Mazubert, C., Vidal, J., Lelandais-Briere, C., Torres, G., Rode, A., and Hartmann, C. (2002). Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol. Biol. 50: 687-698.
Dieckmann, T., Mitschang, L., Hofmann, M., Kos, J., Turk, V., Auerswald, E.A., Jaenicke, R., and Oschkinat, H. (1993). The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J. Mol. Biol. 234: 1048-1059.
Diop, N.N., Kidrc, M., Repellin, A., Gareil, M., D''Arcy-Lameta, A., Pham Thi, A.T., and Zuily-Fodil, Y. (2004). A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 577: 545-550.
Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione transferases. Genome Biol 3: REVIEWS3004.
Fernandes, K.V.S., Campos, F.A.P., Val, R.R.D., and Filho, J.X. (1991). The expression of papain inihibitors during development of cowpea seeds. Plant Sci. 74: 179-184.
Filho, J.X. (1992). The biological roles of serine and cysteine proteinase inhibitors in plants. R. Bras. Fisiol. Veg. 4: 1-6.
Gutierrez-Campos, R., Torres-Acosta, J.A., Saucedo-Arias, L.J., and Gomez-Lim, M.A. (1999). The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotech. 17: 1223-1226.
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
Hatanaka, Y., Uratani, Y., Takiguchi-Hayashi, K., Omori, A., Sato, K., Miyamoto, M., and Arimatsu, Y. (1994). Intracortical regionality represented by specific transcription for a novel protein, latexin. Eur. J. Neurosci. 6: 973-982.
Heinrikson, R.L., and Kezdy, F.J. (1976). Acidic cysteine protease inhibitors from pineapple stem. Methods Enzymol. 45: 740-851.
Hines, M.E., Osuala, C.I., and Nielsen, S.S. (1991). Isolation and partial characterization of a soybean cystatin cysteine proteinase inhibitor of coleopteran digestive propeolytic activity. J. Agric. Food Chem. 39: 1515-1520.
Holm, L., Kaariainen, S., Rosenstrom, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24: 2780-2781.
Jacinto, T., Fernandes, K.V.S., Machado, O.L.T., and Siqueira-Junior, C.L. (1998). Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin. Plant Sci. 138: 35-42.
Jane, J., Shen, L., Chen, J., Lim, S., Kasemsuwan, T., and K., N.W. (1992). physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535.
Janin, J., Henrick, K., Moult, J., Eyck, L.T., Sternberg, M.J., Vajda, S., Vakser, I., and Wodak, S.J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52: 2-9.
Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M. (2001). Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Sturct. Biol. 8: 316-320.
Kato, H., Sutoh, K., and Minamikawa, T. (2003). Identification, cDNA cloning and possible roles of seed-specific rice asparaginyl endopeptidase, REP-2. Planta 217: 676-685.
Kembhavi, A.A., Buttle, D.J., Knight, C.G., and Barrett, A.J. (1993). The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 303: 208-213.
Koiwa, K., Bressan, R.A., and Hasegawa, H.P. (1997). Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384.
Kondo, H., Abe, K., Emori, Y., and Arai, S. (1991). Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 278: 87-90.
Kondo, H., Abe, K., Nishimura, I., Watanabe, H., Emori, Y., and Arai, S. (1990). Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. J. Biol. Chem. 265: 15832-15837.
Kouzuma, Y., Kawano, K., Kimura, M., Yamasaki, N., Kadowaki, T., and Yamamoto, K. (1996). Purification, characterization, and sequencing of two cysteine proteinase inhibitors, Sca and Scb, from sunflower (Helianthus annuus) seeds. J. Biochem. 119: 1106-1113.
Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Crystallogr. 60: 2256-2268.
Krizaj, I., Drobnic-Kosorok, M., Brzin, J., Jerala, R., and Turk, V. (1993). The primary structure of inhibitor of cysteine proteinases from potato. FEBS Lett. 333: 15-20.
Kuroda, M., Ishimoto, M., Suzuki, K., Kondo, H., Abe, K., Kitamura, K., and Arai, S. (1996). Oryzacystatins exhibit growth-inhibitory and lethal effects on different speciesof bean insect pests, Callosoburuchus chinensis (Coleoptera) and Riptortus clavatus (Hemiptera). Biosci.Biotech. Biochem. 60: 209-212.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
LeplAagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C.A., Flanagan, J.U., Kellie, S., Hume, D.A., Kobe, B., and Martin, J.L. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13: 309-317.
Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K. (1988). The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem. 263: 7655-7659.
Abe, K., Knondo, H., and Arai, S. (1987). Purification and characterization of a rice cysteine proteinase inhibitor. Agric. Biol. Chem. 51: 2763-2768.
Abe, M., Abe, K., Kuroda, M., and Arai, S. (1992). Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur. J. Biochem. 209: 933-937.
Abe, M., and Arai, S. (1985). Purification of a cysteine proteinase inhibitors from rice, Oryza sativa L. japonica. Agric. Biol. Chem. 49: 3349-3350.
Abe, M., Arai, S., Kato, H., and Fujimaki, M. (1980). Thiol-protease inhibitors occurring in endosperm of corn. Agric. Biol. Chem. 44: 685-686.
Abrahamson, M., Ritonja, A., Brown, M.A., Grubb, A., Machleidt, W., and Barrett, A.J. (1987). Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J. Biol. Chem. 262: 9688-9694.
Akers, C.P., and Hoff, J.E. (1980). Simultaneous formation of chymopapain inhibitor activity and cubical crystals in tomato leaves. Can. J. Bot. 58: 1000-1003.
Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274: 19195-19203.
Arai, S., Matsumoto, I., Emori, Y., and Abe, K. (2002). Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem. 50: 6612-6617.
Arai, S., Watanabe, H., Kondo, H., Emori, Y., and Abe, K. (1991). Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J. Biochem. 109: 294-298.
Argall, M.E., Bradbury, J.H., and Shaw, D.C. (1994). Amino-acid sequence of a trypsin/chymotrypsin inhibitor from giant taro (Alocasia macrorrhiza). Biochem. Biophys. Acta. 1204: 189-194.
Arimatsu, Y. (1994). Latexin: a molecular marker for regional specification in the neocortex. Neurosci. Res. 20: 131-135.
Barrett, A.J. (1987). The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci. 12: 193-196.
Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., and Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270: 2593-2604.
Birk, Y., and Applebaum, S.W. (1960). Effect of soybean trypsin inhibitors on the development and midgut proteolytic activity of Tribolium castaneum larvae. Enzymologia 22: 318-326.
Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988). The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7: 2593-2599.
Bolter, C.J. (1993). Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves. Plant Physiol. 103: 1347-1353.
Botella, M.A., Xu, Y., Prabha, T.N., Zhao, Y., Narasimhan, M.L., Wilson, K.A., Nielsen, S.S., Bressan, R.A., and Hasegawa, P.M. (1996). Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112: 1201-1210.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brzin, J., Popovic, T., Drobnic-Kosorok, M., Kotnik, M., and Turk, V. (1988). Inhibitors of cysteine proteinase from potato. Biol. Chem. Hoppe-Seyler Suppl. 369: 233-238.
Brzin, J., Ritonja, A., Popvic, T., and Turk, V. (1990). Low molecular mass protein inhibitor of cystene proteinases from soybean. Biol. Chem. Hoppe-Seyler Suppl. 371: 167-170.
Cappello, F., Gatti, E., Camossetto, V., David, A., Lelouard, H., and Pierre, P. (2004). Cystatin F is secreted, but artificial modification of its C-terminus can induce its endocytic targeting Exp. Cell Res. 297: 607-618.
Chen, R., and Weng, Z. (2003). A novel shape complementarity scoring function for protein-protein docking. Proteins 51: 397-408.
Christova, P.K., Christov, N.K., and Imai, R. (2006). A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223: 1207-1218.
Corre-Menguy, F., Cejudo, F.J., Mazubert, C., Vidal, J., Lelandais-Briere, C., Torres, G., Rode, A., and Hartmann, C. (2002). Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol. Biol. 50: 687-698.
Dieckmann, T., Mitschang, L., Hofmann, M., Kos, J., Turk, V., Auerswald, E.A., Jaenicke, R., and Oschkinat, H. (1993). The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J. Mol. Biol. 234: 1048-1059.
Diop, N.N., Kidrc, M., Repellin, A., Gareil, M., D''Arcy-Lameta, A., Pham Thi, A.T., and Zuily-Fodil, Y. (2004). A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 577: 545-550.
Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione transferases. Genome Biol 3: REVIEWS3004.
Fernandes, K.V.S., Campos, F.A.P., Val, R.R.D., and Filho, J.X. (1991). The expression of papain inihibitors during development of cowpea seeds. Plant Sci. 74: 179-184.
Filho, J.X. (1992). The biological roles of serine and cysteine proteinase inhibitors in plants. R. Bras. Fisiol. Veg. 4: 1-6.
Gutierrez-Campos, R., Torres-Acosta, J.A., Saucedo-Arias, L.J., and Gomez-Lim, M.A. (1999). The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotech. 17: 1223-1226.
Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
Hatanaka, Y., Uratani, Y., Takiguchi-Hayashi, K., Omori, A., Sato, K., Miyamoto, M., and Arimatsu, Y. (1994). Intracortical regionality represented by specific transcription for a novel protein, latexin. Eur. J. Neurosci. 6: 973-982.
Heinrikson, R.L., and Kezdy, F.J. (1976). Acidic cysteine protease inhibitors from pineapple stem. Methods Enzymol. 45: 740-851.
Hines, M.E., Osuala, C.I., and Nielsen, S.S. (1991). Isolation and partial characterization of a soybean cystatin cysteine proteinase inhibitor of coleopteran digestive propeolytic activity. J. Agric. Food Chem. 39: 1515-1520.
Holm, L., Kaariainen, S., Rosenstrom, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24: 2780-2781.
Jacinto, T., Fernandes, K.V.S., Machado, O.L.T., and Siqueira-Junior, C.L. (1998). Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin. Plant Sci. 138: 35-42.
Jane, J., Shen, L., Chen, J., Lim, S., Kasemsuwan, T., and K., N.W. (1992). physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535.
Janin, J., Henrick, K., Moult, J., Eyck, L.T., Sternberg, M.J., Vajda, S., Vakser, I., and Wodak, S.J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52: 2-9.
Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M. (2001). Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Sturct. Biol. 8: 316-320.
Kato, H., Sutoh, K., and Minamikawa, T. (2003). Identification, cDNA cloning and possible roles of seed-specific rice asparaginyl endopeptidase, REP-2. Planta 217: 676-685.
Kembhavi, A.A., Buttle, D.J., Knight, C.G., and Barrett, A.J. (1993). The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 303: 208-213.
Koiwa, K., Bressan, R.A., and Hasegawa, H.P. (1997). Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384.
Kondo, H., Abe, K., Emori, Y., and Arai, S. (1991). Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 278: 87-90.
Kondo, H., Abe, K., Nishimura, I., Watanabe, H., Emori, Y., and Arai, S. (1990). Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. J. Biol. Chem. 265: 15832-15837.
Kouzuma, Y., Kawano, K., Kimura, M., Yamasaki, N., Kadowaki, T., and Yamamoto, K. (1996). Purification, characterization, and sequencing of two cysteine proteinase inhibitors, Sca and Scb, from sunflower (Helianthus annuus) seeds. J. Biochem. 119: 1106-1113.
Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Crystallogr. 60: 2256-2268.
Krizaj, I., Drobnic-Kosorok, M., Brzin, J., Jerala, R., and Turk, V. (1993). The primary structure of inhibitor of cysteine proteinases from potato. FEBS Lett. 333: 15-20.
Kuroda, M., Ishimoto, M., Suzuki, K., Kondo, H., Abe, K., Kitamura, K., and Arai, S. (1996). Oryzacystatins exhibit growth-inhibitory and lethal effects on different speciesof bean insect pests, Callosoburuchus chinensis (Coleoptera) and Riptortus clavatus (Hemiptera). Biosci.Biotech. Biochem. 60: 209-212.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Leple, J.C., Bonade-Bottino, M., Augustin, S., Pilate, G., Dumanois Le Tan, V., Delplanque, A., Cornu, D., and Jouanin, L. (1995). Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breed. 1: 319-328.
Liang, C., Brookhart, G., Feng, G.H., Reeck, G.R., and Kramer, K.J. (1991). Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett 278: 139-142.
Lin, K., Simossis, V.A., Taylor, W.R., and Heringa, J. (2005). A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21: 152-159.
Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esterl, A., Wiegand, G., Kos, J., Turk, V., and Bode, W. (1989). Mechanism of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Lett. 243: 234-238.
Margis, R., Reis, E.M., and Villeret, V. (1998). Structural and phylogenetic relationships among plant and animal cystatins. Arch. Biochem. Biophys. 359: 24-30.
Martin, J.R., Craven, C.J., Jerala, R., Kroon-Zitko, L., Zerovnik, E., Turk, V., and Waltho, J.P. (1995). The three-dimensional solution structure of human stefin. J. Mol. Biol. 246: 331-343.
Martinez, M., Abraham, Z., Carbonero, P., and Diaz, I. (2005a). Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Mol. Genet. Genomics 273: 423-432.
Martinez, M., Abraham, Z., Gambardella, M., Echaide, M., Carbonero, P., and Diaz, I. (2005b). The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J. Exp. Bot. 56: 1821-1829.
Martinez, M., Diaz-Mendoza, M., Carrillo, L., and Diaz, I. (2007). Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett. 581: 2914-2918.
Martinez, M., and Diaz, I. (2008). The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol. Biol. 8: 198.
Martinez, M., Rubio-Somoza, I., Fuentes, R., Lara, P., Carbonero, P., and Diaz, I. (2005c). The barley cystatin gene (Icy) is regulated by DOF transcription factors in aleurone cells upon germination. J. Exp. Bot. 56: 547-556.
Massonneau, A., Condamine, P., Wisniewski, J.P., Zivy, M., and Rogowsky, P.M. (2005). Maize cystatins respond to developmental cues, cold stress and drought. Biochim. Biophys. Acta 1729: 186-199.
McGuffin, L.J., Bryson, K., and Jones, D.T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405.
Michaud, D., Cantin, L., Raworth, D.A., and Vrain, T.C. (1996). Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis. Electrophoresis 17: 74-79.
Mirnics, Z.K., Mirnics, K., Terrano, D., Lewis, D.A., Sisodia, S.S., and Schor, N.F. (2003). DNA microarray profiling of developing PS1-deficient mouse brain reveals complex and coregulated expression changes. Mol. Psychiatry 8: 863-878.
Muller-Esterl, W., Iwanaga, S., and Nakanishi, S. (1986). Kininogens revised. Trends Biochem. Sci. 11: 336-339.
Nagata, K., Kudo, N., Abe, K., Arai, S., and Tanokura, M. (2000). Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica. Biochemistry 39: 14753-14760.
Neurath, H. (1984). Evolution of proteolytic enzymes. Science 224: 350-357.
Nikawa, T., Towatari, T., Ike, Y., and Katunuma, N. (1989). Studies on the reactive site of the cystatin superfamily using recombinant cystatin A mutants. Evidence that the QVVAG region is not essential for cysteine proteinase inhibitory activities. FEBS Lett. 255: 309-314.
Nissen, M.S., Kumar, G.N.M., Youn, B., Knowles, D.B., Lam, K.S., Ballinger, W.J., Knowles, N.R., and Kang, C. (2009). Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. Plant Cell 21: 861-875.
Normant, E., Martres, M.P., Schwartz, J.C., and Gros, C. (1995). Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc. Natl. Acad. Sci. USA 92: 12225-12229.
Ohtsubo, S., Kobayashi, H., Noro, W., Taniguchi, M., and Saitoh, E. (2005). Molecular cloning and characterization of oryzacystatin-III, a novel member of phytocystatin in rice (Oryza sativa L. japonica). J. Agric. Food Chem. 53: 5218-5224.
Ohtsubo, S., Taiyoji, M., Kawase, T., Taniguchi, M., and Saitoh, E. (2007). Oryzacystatin-II, a Cystatin from Rice (Oryza sativa L. japonica), Is a Dimeric Protein: Possible Involvement of the Interconversion between Dimer and Monomer in the Regulation of the Reactivity of Oryzacystatin-II. J. Agric. Food Chem. 55: 1762-1766.
Ojima, A., Shiota, H., Higashi, K., Kamada, H., Shimma, Y.I., Wada, M., and Satoh, S. (1997). An extracellular insoluble inhibitor of cysteine proteinases in cell cultures and seeds of carrot. Plant Mol. Biol. 34: 99-109.
Okamoto, T., and Minamikawa, T. (1999). Molecular cloning and characterization of Vigna mungo processing enzyme 1 (VmPE-1), an asparaginyl endopeptidase possibly involved in post-translational processing of a vacuolar cysteine endopeptidase (SH-EP). Plant Mol. Biol. 39: 63-73.
Pallares, I., Bonet, R., Garcia-Castellanos, R., Ventura, S., Aviles, F.X., Vendrell, J., and Gomis-Ruth, F.X. (2005). Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proc. Natl. Acad. Sci. USA 102: 3978-3983.
Pernas, M., Sanchez-Monge, R., Gomez, L., and Salcedo, G. (1998). A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. Plant Mol. Biol. 38: 1235-1242.
Pernas, M., Sanchez-Ramos, I., Lombardero, M., Arteaga, C., Castanera, P., and Salcedo, G. (2000). Der p 1 and Der f 1, the highly related and major allergens from house dust mites, are differentially affected by a plant cystatin. Clinical and Experimental Allergy 30: 972-978.
Potgieter, M. (1940). Taro (Colocasia esculenta) as a food. J. Amer. Diet. Assoc. 16: 536-540.
Purcell, J.P., Greenplate, J.T., and Sammons, R.D. (1992). Examination of midgut luminal proteinase activities in six economically important insects. Insect Biochem. Mol. Biol. 22: 41-47.
Purseglove, J.W. (1972). Tropical crops monocotyledons. John Wiley and Sons. New York.
Ryan, S.N., Laing, W.A., and McManus, M.T. (1998). A cysteine proteinase inhibitor purified from apple fruit. Phytochemistry 49: 957-963.
Sali, A., and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779-815.
Schuttelkopf, A.W., Hamilton, G., Watts, C., and van Aalten, D.M. (2006). Structural basis of reduction-dependent activation of human cystatin F. J. Biol. Chem. 281: 16570-16575.
Shyu, D.J., Chou, W.M., Yiu, T.J., Lin, C.P., and Tzen, J.T. (2004). Cloning, functional expression, and characterization of cystatin in sesame seed. J. Agric. Food Chem. 52: 1350-1356.
Siqueira-Junior, C.L., Fernandes, K.V.S., Machado, O.L.T., Cunha, M.D., Gomes, V.M., Moura, D., and Jacinto, T. (2002). 87 kDa tomato cystatin exhibits properties of a defense protein and forms protein crystals in prosystemin overexpressing transgenic plants. Plant Physiol. Biochem. 40: 247-254.
Soares-Costa, A., Beltramini, L.M., Thiemann, O.H., and Henrique-Silva, F. (2002). A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem. Biophys. Res. Commun. 296: 1194-1199.
Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A. (1999). The involvement of cysteine proteases and protease inhibitor genes in the regulation for programmed cell death in plants. Plant Cell 11: 431-443.
Song, I., Taylor, M., Baker, K., and Bateman, R.C. (1995). Inhibition of cysteine proteinases by Carica papaya cystatin produced in Escherichia coli. Gene 162: 221-224.
Stubbs, M.T., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., and Turk, V. (1990). The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 9: 1939-1947.
Sugimoto, Y., Nishihara, K., Abe, K., Fujita, S., and Fuwa, H. (1987). Developmental changes in starch properties of the taro (Colocasia esculenta L. Schott). J. Jpn. Soc. Starch Sci. 34: 1-10.
Tate, S., Ushioda, T., Utsunomiya-Tate, N., Shibuya, K., Ohyama, Y., Nakano, Y., Kaji, H., Inagaki, F., Samejima, T., and Kainosho, M. (1995). Solution structure of a human cystatin A variant, cystatin A2-98 M65L, by NMR spectroscopy. A possible role of the interaction between N- and C-terminal to maintain the inhibitory active form of cystatin A. Biochemistry 34: 14637-14648.
Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
Turk, V., and Bode, W. (1991). The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 285: 213-219.
Uratani, Y., Takiguchi-Hayashi, K., Miyasaka, N., Sato, M., Jin, M., and Arimatsu, Y. (2000). Latexin, a carboxypeptidase A inhibitor, is expressed in rat peritoneal mast cells and is associated with granular structures distinct from secretory granules and lysosomes. Biochem. J. 346 Pt 3: 817-826.
Urwin, P.E., Lilley, C.J., McPherson, M.J., and Alkinson, H.J. (1997). Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J. 12: 455-461.
Waldron, C., Wegrich, L.M., Merlo, P.A., and Walsh, T.A. (1993). Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol. Biol. 23: 801-812.
Wang, K.M., Kumar, S., Cheng, Y.S., Venkatagiri, S., Yang, A.H., and Yeh, K.W. (2008). Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta). FEBS J. 275: 4980-4989.
Wu, J., and Haard, N.F. (2000). Purification and characterization of a cystatin from the leaves of methyl jasmonate treated tomato plants. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 127: 209-220.
Yang, A.H., and Yeh, K.W. (2005). Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221: 493-501.
Zhang, X., Liu, S., and Takano, T. (2008). Two cysteine proteinase inhibitors from Arabidopsis Thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation, and cold tolerance. Plant Mol. Biol. 68: 131-143.
Zhao, Y., Botella, M.A., Subramanian, L., Niu, X., Nielsen, S.S., Bressan, R.A., and Hasegawa, P.M. (1996). Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol. 111: 1299-1306.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top