|
黃賢喜. 韓青梅. (1994). 芋. 雜糧作物各論Ⅲ. 根及莖類. 臺灣區雜糧發展基金會成立二十週年紀念專輯之一. 第二十章. 1665-1735. Aagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C.A., Flanagan, J.U., Kellie, S., Hume, D.A., Kobe, B., and Martin, J.L. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13: 309-317. Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K. (1988). The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem. 263: 7655-7659. Abe, K., Knondo, H., and Arai, S. (1987). Purification and characterization of a rice cysteine proteinase inhibitor. Agric. Biol. Chem. 51: 2763-2768. Abe, M., Abe, K., Kuroda, M., and Arai, S. (1992). Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur. J. Biochem. 209: 933-937. Abe, M., and Arai, S. (1985). Purification of a cysteine proteinase inhibitors from rice, Oryza sativa L. japonica. Agric. Biol. Chem. 49: 3349-3350. Abe, M., Arai, S., Kato, H., and Fujimaki, M. (1980). Thiol-protease inhibitors occurring in endosperm of corn. Agric. Biol. Chem. 44: 685-686. Abrahamson, M., Ritonja, A., Brown, M.A., Grubb, A., Machleidt, W., and Barrett, A.J. (1987). Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J. Biol. Chem. 262: 9688-9694. Akers, C.P., and Hoff, J.E. (1980). Simultaneous formation of chymopapain inhibitor activity and cubical crystals in tomato leaves. Can. J. Bot. 58: 1000-1003. Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274: 19195-19203. Arai, S., Matsumoto, I., Emori, Y., and Abe, K. (2002). Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem. 50: 6612-6617. Arai, S., Watanabe, H., Kondo, H., Emori, Y., and Abe, K. (1991). Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J. Biochem. 109: 294-298. Argall, M.E., Bradbury, J.H., and Shaw, D.C. (1994). Amino-acid sequence of a trypsin/chymotrypsin inhibitor from giant taro (Alocasia macrorrhiza). Biochem. Biophys. Acta. 1204: 189-194. Arimatsu, Y. (1994). Latexin: a molecular marker for regional specification in the neocortex. Neurosci. Res. 20: 131-135. Barrett, A.J. (1987). The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci. 12: 193-196. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., and Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270: 2593-2604. Birk, Y., and Applebaum, S.W. (1960). Effect of soybean trypsin inhibitors on the development and midgut proteolytic activity of Tribolium castaneum larvae. Enzymologia 22: 318-326. Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988). The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7: 2593-2599. Bolter, C.J. (1993). Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves. Plant Physiol. 103: 1347-1353. Botella, M.A., Xu, Y., Prabha, T.N., Zhao, Y., Narasimhan, M.L., Wilson, K.A., Nielsen, S.S., Bressan, R.A., and Hasegawa, P.M. (1996). Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112: 1201-1210. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Brzin, J., Popovic, T., Drobnic-Kosorok, M., Kotnik, M., and Turk, V. (1988). Inhibitors of cysteine proteinase from potato. Biol. Chem. Hoppe-Seyler Suppl. 369: 233-238. Brzin, J., Ritonja, A., Popvic, T., and Turk, V. (1990). Low molecular mass protein inhibitor of cystene proteinases from soybean. Biol. Chem. Hoppe-Seyler Suppl. 371: 167-170. Cappello, F., Gatti, E., Camossetto, V., David, A., Lelouard, H., and Pierre, P. (2004). Cystatin F is secreted, but artificial modification of its C-terminus can induce its endocytic targeting Exp. Cell Res. 297: 607-618. Chen, R., and Weng, Z. (2003). A novel shape complementarity scoring function for protein-protein docking. Proteins 51: 397-408. Christova, P.K., Christov, N.K., and Imai, R. (2006). A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223: 1207-1218. Corre-Menguy, F., Cejudo, F.J., Mazubert, C., Vidal, J., Lelandais-Briere, C., Torres, G., Rode, A., and Hartmann, C. (2002). Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol. Biol. 50: 687-698. Dieckmann, T., Mitschang, L., Hofmann, M., Kos, J., Turk, V., Auerswald, E.A., Jaenicke, R., and Oschkinat, H. (1993). The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J. Mol. Biol. 234: 1048-1059. Diop, N.N., Kidrc, M., Repellin, A., Gareil, M., D''Arcy-Lameta, A., Pham Thi, A.T., and Zuily-Fodil, Y. (2004). A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 577: 545-550. Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione transferases. Genome Biol 3: REVIEWS3004. Fernandes, K.V.S., Campos, F.A.P., Val, R.R.D., and Filho, J.X. (1991). The expression of papain inihibitors during development of cowpea seeds. Plant Sci. 74: 179-184. Filho, J.X. (1992). The biological roles of serine and cysteine proteinase inhibitors in plants. R. Bras. Fisiol. Veg. 4: 1-6. Gutierrez-Campos, R., Torres-Acosta, J.A., Saucedo-Arias, L.J., and Gomez-Lim, M.A. (1999). The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotech. 17: 1223-1226. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hatanaka, Y., Uratani, Y., Takiguchi-Hayashi, K., Omori, A., Sato, K., Miyamoto, M., and Arimatsu, Y. (1994). Intracortical regionality represented by specific transcription for a novel protein, latexin. Eur. J. Neurosci. 6: 973-982. Heinrikson, R.L., and Kezdy, F.J. (1976). Acidic cysteine protease inhibitors from pineapple stem. Methods Enzymol. 45: 740-851. Hines, M.E., Osuala, C.I., and Nielsen, S.S. (1991). Isolation and partial characterization of a soybean cystatin cysteine proteinase inhibitor of coleopteran digestive propeolytic activity. J. Agric. Food Chem. 39: 1515-1520. Holm, L., Kaariainen, S., Rosenstrom, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24: 2780-2781. Jacinto, T., Fernandes, K.V.S., Machado, O.L.T., and Siqueira-Junior, C.L. (1998). Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin. Plant Sci. 138: 35-42. Jane, J., Shen, L., Chen, J., Lim, S., Kasemsuwan, T., and K., N.W. (1992). physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535. Janin, J., Henrick, K., Moult, J., Eyck, L.T., Sternberg, M.J., Vajda, S., Vakser, I., and Wodak, S.J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52: 2-9. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M. (2001). Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Sturct. Biol. 8: 316-320. Kato, H., Sutoh, K., and Minamikawa, T. (2003). Identification, cDNA cloning and possible roles of seed-specific rice asparaginyl endopeptidase, REP-2. Planta 217: 676-685. Kembhavi, A.A., Buttle, D.J., Knight, C.G., and Barrett, A.J. (1993). The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 303: 208-213. Koiwa, K., Bressan, R.A., and Hasegawa, H.P. (1997). Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384. Kondo, H., Abe, K., Emori, Y., and Arai, S. (1991). Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 278: 87-90. Kondo, H., Abe, K., Nishimura, I., Watanabe, H., Emori, Y., and Arai, S. (1990). Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. J. Biol. Chem. 265: 15832-15837. Kouzuma, Y., Kawano, K., Kimura, M., Yamasaki, N., Kadowaki, T., and Yamamoto, K. (1996). Purification, characterization, and sequencing of two cysteine proteinase inhibitors, Sca and Scb, from sunflower (Helianthus annuus) seeds. J. Biochem. 119: 1106-1113. Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Crystallogr. 60: 2256-2268. Krizaj, I., Drobnic-Kosorok, M., Brzin, J., Jerala, R., and Turk, V. (1993). The primary structure of inhibitor of cysteine proteinases from potato. FEBS Lett. 333: 15-20. Kuroda, M., Ishimoto, M., Suzuki, K., Kondo, H., Abe, K., Kitamura, K., and Arai, S. (1996). Oryzacystatins exhibit growth-inhibitory and lethal effects on different speciesof bean insect pests, Callosoburuchus chinensis (Coleoptera) and Riptortus clavatus (Hemiptera). Biosci.Biotech. Biochem. 60: 209-212. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. LeplAagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C.A., Flanagan, J.U., Kellie, S., Hume, D.A., Kobe, B., and Martin, J.L. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13: 309-317. Abe, K., Emori, Y., Kondo, H., Arai, S., and Suzuki, K. (1988). The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem. 263: 7655-7659. Abe, K., Knondo, H., and Arai, S. (1987). Purification and characterization of a rice cysteine proteinase inhibitor. Agric. Biol. Chem. 51: 2763-2768. Abe, M., Abe, K., Kuroda, M., and Arai, S. (1992). Corn kernel cysteine proteinase inhibitor as a novel cystatin superfamily member of plant origin. Molecular cloning and expression studies. Eur. J. Biochem. 209: 933-937. Abe, M., and Arai, S. (1985). Purification of a cysteine proteinase inhibitors from rice, Oryza sativa L. japonica. Agric. Biol. Chem. 49: 3349-3350. Abe, M., Arai, S., Kato, H., and Fujimaki, M. (1980). Thiol-protease inhibitors occurring in endosperm of corn. Agric. Biol. Chem. 44: 685-686. Abrahamson, M., Ritonja, A., Brown, M.A., Grubb, A., Machleidt, W., and Barrett, A.J. (1987). Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J. Biol. Chem. 262: 9688-9694. Akers, C.P., and Hoff, J.E. (1980). Simultaneous formation of chymopapain inhibitor activity and cubical crystals in tomato leaves. Can. J. Bot. 58: 1000-1003. Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274: 19195-19203. Arai, S., Matsumoto, I., Emori, Y., and Abe, K. (2002). Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J. Agric. Food Chem. 50: 6612-6617. Arai, S., Watanabe, H., Kondo, H., Emori, Y., and Abe, K. (1991). Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. J. Biochem. 109: 294-298. Argall, M.E., Bradbury, J.H., and Shaw, D.C. (1994). Amino-acid sequence of a trypsin/chymotrypsin inhibitor from giant taro (Alocasia macrorrhiza). Biochem. Biophys. Acta. 1204: 189-194. Arimatsu, Y. (1994). Latexin: a molecular marker for regional specification in the neocortex. Neurosci. Res. 20: 131-135. Barrett, A.J. (1987). The cystatins: a new class of peptidase inhibitors. Trends Biochem. Sci. 12: 193-196. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P., and Delledonne, M. (2003). AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270: 2593-2604. Birk, Y., and Applebaum, S.W. (1960). Effect of soybean trypsin inhibitors on the development and midgut proteolytic activity of Tribolium castaneum larvae. Enzymologia 22: 318-326. Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988). The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7: 2593-2599. Bolter, C.J. (1993). Methyl Jasmonate Induces Papain Inhibitor(s) in Tomato Leaves. Plant Physiol. 103: 1347-1353. Botella, M.A., Xu, Y., Prabha, T.N., Zhao, Y., Narasimhan, M.L., Wilson, K.A., Nielsen, S.S., Bressan, R.A., and Hasegawa, P.M. (1996). Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112: 1201-1210. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Brzin, J., Popovic, T., Drobnic-Kosorok, M., Kotnik, M., and Turk, V. (1988). Inhibitors of cysteine proteinase from potato. Biol. Chem. Hoppe-Seyler Suppl. 369: 233-238. Brzin, J., Ritonja, A., Popvic, T., and Turk, V. (1990). Low molecular mass protein inhibitor of cystene proteinases from soybean. Biol. Chem. Hoppe-Seyler Suppl. 371: 167-170. Cappello, F., Gatti, E., Camossetto, V., David, A., Lelouard, H., and Pierre, P. (2004). Cystatin F is secreted, but artificial modification of its C-terminus can induce its endocytic targeting Exp. Cell Res. 297: 607-618. Chen, R., and Weng, Z. (2003). A novel shape complementarity scoring function for protein-protein docking. Proteins 51: 397-408. Christova, P.K., Christov, N.K., and Imai, R. (2006). A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223: 1207-1218. Corre-Menguy, F., Cejudo, F.J., Mazubert, C., Vidal, J., Lelandais-Briere, C., Torres, G., Rode, A., and Hartmann, C. (2002). Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol. Biol. 50: 687-698. Dieckmann, T., Mitschang, L., Hofmann, M., Kos, J., Turk, V., Auerswald, E.A., Jaenicke, R., and Oschkinat, H. (1993). The structures of native phosphorylated chicken cystatin and of a recombinant unphosphorylated variant in solution. J. Mol. Biol. 234: 1048-1059. Diop, N.N., Kidrc, M., Repellin, A., Gareil, M., D''Arcy-Lameta, A., Pham Thi, A.T., and Zuily-Fodil, Y. (2004). A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 577: 545-550. Dixon, D.P., Lapthorn, A., and Edwards, R. (2002). Plant glutathione transferases. Genome Biol 3: REVIEWS3004. Fernandes, K.V.S., Campos, F.A.P., Val, R.R.D., and Filho, J.X. (1991). The expression of papain inihibitors during development of cowpea seeds. Plant Sci. 74: 179-184. Filho, J.X. (1992). The biological roles of serine and cysteine proteinase inhibitors in plants. R. Bras. Fisiol. Veg. 4: 1-6. Gutierrez-Campos, R., Torres-Acosta, J.A., Saucedo-Arias, L.J., and Gomez-Lim, M.A. (1999). The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotech. 17: 1223-1226. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Hatanaka, Y., Uratani, Y., Takiguchi-Hayashi, K., Omori, A., Sato, K., Miyamoto, M., and Arimatsu, Y. (1994). Intracortical regionality represented by specific transcription for a novel protein, latexin. Eur. J. Neurosci. 6: 973-982. Heinrikson, R.L., and Kezdy, F.J. (1976). Acidic cysteine protease inhibitors from pineapple stem. Methods Enzymol. 45: 740-851. Hines, M.E., Osuala, C.I., and Nielsen, S.S. (1991). Isolation and partial characterization of a soybean cystatin cysteine proteinase inhibitor of coleopteran digestive propeolytic activity. J. Agric. Food Chem. 39: 1515-1520. Holm, L., Kaariainen, S., Rosenstrom, P., and Schenkel, A. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24: 2780-2781. Jacinto, T., Fernandes, K.V.S., Machado, O.L.T., and Siqueira-Junior, C.L. (1998). Leaves of transgenic tomato plants overexpressing prosystemin accumulate high levels of cystatin. Plant Sci. 138: 35-42. Jane, J., Shen, L., Chen, J., Lim, S., Kasemsuwan, T., and K., N.W. (1992). physical and chemical studies of taro starches and flours. Cereal Chem. 69: 528-535. Janin, J., Henrick, K., Moult, J., Eyck, L.T., Sternberg, M.J., Vajda, S., Vakser, I., and Wodak, S.J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins 52: 2-9. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M. (2001). Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Sturct. Biol. 8: 316-320. Kato, H., Sutoh, K., and Minamikawa, T. (2003). Identification, cDNA cloning and possible roles of seed-specific rice asparaginyl endopeptidase, REP-2. Planta 217: 676-685. Kembhavi, A.A., Buttle, D.J., Knight, C.G., and Barrett, A.J. (1993). The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Arch. Biochem. Biophys. 303: 208-213. Koiwa, K., Bressan, R.A., and Hasegawa, H.P. (1997). Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384. Kondo, H., Abe, K., Emori, Y., and Arai, S. (1991). Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett. 278: 87-90. Kondo, H., Abe, K., Nishimura, I., Watanabe, H., Emori, Y., and Arai, S. (1990). Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. J. Biol. Chem. 265: 15832-15837. Kouzuma, Y., Kawano, K., Kimura, M., Yamasaki, N., Kadowaki, T., and Yamamoto, K. (1996). Purification, characterization, and sequencing of two cysteine proteinase inhibitors, Sca and Scb, from sunflower (Helianthus annuus) seeds. J. Biochem. 119: 1106-1113. Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Crystallogr. 60: 2256-2268. Krizaj, I., Drobnic-Kosorok, M., Brzin, J., Jerala, R., and Turk, V. (1993). The primary structure of inhibitor of cysteine proteinases from potato. FEBS Lett. 333: 15-20. Kuroda, M., Ishimoto, M., Suzuki, K., Kondo, H., Abe, K., Kitamura, K., and Arai, S. (1996). Oryzacystatins exhibit growth-inhibitory and lethal effects on different speciesof bean insect pests, Callosoburuchus chinensis (Coleoptera) and Riptortus clavatus (Hemiptera). Biosci.Biotech. Biochem. 60: 209-212. Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Leple, J.C., Bonade-Bottino, M., Augustin, S., Pilate, G., Dumanois Le Tan, V., Delplanque, A., Cornu, D., and Jouanin, L. (1995). Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breed. 1: 319-328. Liang, C., Brookhart, G., Feng, G.H., Reeck, G.R., and Kramer, K.J. (1991). Inhibition of digestive proteinases of stored grain Coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett 278: 139-142. Lin, K., Simossis, V.A., Taylor, W.R., and Heringa, J. (2005). A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21: 152-159. Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esterl, A., Wiegand, G., Kos, J., Turk, V., and Bode, W. (1989). Mechanism of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. FEBS Lett. 243: 234-238. Margis, R., Reis, E.M., and Villeret, V. (1998). Structural and phylogenetic relationships among plant and animal cystatins. Arch. Biochem. Biophys. 359: 24-30. Martin, J.R., Craven, C.J., Jerala, R., Kroon-Zitko, L., Zerovnik, E., Turk, V., and Waltho, J.P. (1995). The three-dimensional solution structure of human stefin. J. Mol. Biol. 246: 331-343. Martinez, M., Abraham, Z., Carbonero, P., and Diaz, I. (2005a). Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Mol. Genet. Genomics 273: 423-432. Martinez, M., Abraham, Z., Gambardella, M., Echaide, M., Carbonero, P., and Diaz, I. (2005b). The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J. Exp. Bot. 56: 1821-1829. Martinez, M., Diaz-Mendoza, M., Carrillo, L., and Diaz, I. (2007). Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett. 581: 2914-2918. Martinez, M., and Diaz, I. (2008). The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol. Biol. 8: 198. Martinez, M., Rubio-Somoza, I., Fuentes, R., Lara, P., Carbonero, P., and Diaz, I. (2005c). The barley cystatin gene (Icy) is regulated by DOF transcription factors in aleurone cells upon germination. J. Exp. Bot. 56: 547-556. Massonneau, A., Condamine, P., Wisniewski, J.P., Zivy, M., and Rogowsky, P.M. (2005). Maize cystatins respond to developmental cues, cold stress and drought. Biochim. Biophys. Acta 1729: 186-199. McGuffin, L.J., Bryson, K., and Jones, D.T. (2000). The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405. Michaud, D., Cantin, L., Raworth, D.A., and Vrain, T.C. (1996). Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis. Electrophoresis 17: 74-79. Mirnics, Z.K., Mirnics, K., Terrano, D., Lewis, D.A., Sisodia, S.S., and Schor, N.F. (2003). DNA microarray profiling of developing PS1-deficient mouse brain reveals complex and coregulated expression changes. Mol. Psychiatry 8: 863-878. Muller-Esterl, W., Iwanaga, S., and Nakanishi, S. (1986). Kininogens revised. Trends Biochem. Sci. 11: 336-339. Nagata, K., Kudo, N., Abe, K., Arai, S., and Tanokura, M. (2000). Three-dimensional solution structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica. Biochemistry 39: 14753-14760. Neurath, H. (1984). Evolution of proteolytic enzymes. Science 224: 350-357. Nikawa, T., Towatari, T., Ike, Y., and Katunuma, N. (1989). Studies on the reactive site of the cystatin superfamily using recombinant cystatin A mutants. Evidence that the QVVAG region is not essential for cysteine proteinase inhibitory activities. FEBS Lett. 255: 309-314. Nissen, M.S., Kumar, G.N.M., Youn, B., Knowles, D.B., Lam, K.S., Ballinger, W.J., Knowles, N.R., and Kang, C. (2009). Characterization of Solanum tuberosum multicystatin and its structural comparison with other cystatins. Plant Cell 21: 861-875. Normant, E., Martres, M.P., Schwartz, J.C., and Gros, C. (1995). Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc. Natl. Acad. Sci. USA 92: 12225-12229. Ohtsubo, S., Kobayashi, H., Noro, W., Taniguchi, M., and Saitoh, E. (2005). Molecular cloning and characterization of oryzacystatin-III, a novel member of phytocystatin in rice (Oryza sativa L. japonica). J. Agric. Food Chem. 53: 5218-5224. Ohtsubo, S., Taiyoji, M., Kawase, T., Taniguchi, M., and Saitoh, E. (2007). Oryzacystatin-II, a Cystatin from Rice (Oryza sativa L. japonica), Is a Dimeric Protein: Possible Involvement of the Interconversion between Dimer and Monomer in the Regulation of the Reactivity of Oryzacystatin-II. J. Agric. Food Chem. 55: 1762-1766. Ojima, A., Shiota, H., Higashi, K., Kamada, H., Shimma, Y.I., Wada, M., and Satoh, S. (1997). An extracellular insoluble inhibitor of cysteine proteinases in cell cultures and seeds of carrot. Plant Mol. Biol. 34: 99-109. Okamoto, T., and Minamikawa, T. (1999). Molecular cloning and characterization of Vigna mungo processing enzyme 1 (VmPE-1), an asparaginyl endopeptidase possibly involved in post-translational processing of a vacuolar cysteine endopeptidase (SH-EP). Plant Mol. Biol. 39: 63-73. Pallares, I., Bonet, R., Garcia-Castellanos, R., Ventura, S., Aviles, F.X., Vendrell, J., and Gomis-Ruth, F.X. (2005). Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proc. Natl. Acad. Sci. USA 102: 3978-3983. Pernas, M., Sanchez-Monge, R., Gomez, L., and Salcedo, G. (1998). A chestnut seed cystatin differentially effective against cysteine proteinases from closely related pests. Plant Mol. Biol. 38: 1235-1242. Pernas, M., Sanchez-Ramos, I., Lombardero, M., Arteaga, C., Castanera, P., and Salcedo, G. (2000). Der p 1 and Der f 1, the highly related and major allergens from house dust mites, are differentially affected by a plant cystatin. Clinical and Experimental Allergy 30: 972-978. Potgieter, M. (1940). Taro (Colocasia esculenta) as a food. J. Amer. Diet. Assoc. 16: 536-540. Purcell, J.P., Greenplate, J.T., and Sammons, R.D. (1992). Examination of midgut luminal proteinase activities in six economically important insects. Insect Biochem. Mol. Biol. 22: 41-47. Purseglove, J.W. (1972). Tropical crops monocotyledons. John Wiley and Sons. New York. Ryan, S.N., Laing, W.A., and McManus, M.T. (1998). A cysteine proteinase inhibitor purified from apple fruit. Phytochemistry 49: 957-963. Sali, A., and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779-815. Schuttelkopf, A.W., Hamilton, G., Watts, C., and van Aalten, D.M. (2006). Structural basis of reduction-dependent activation of human cystatin F. J. Biol. Chem. 281: 16570-16575. Shyu, D.J., Chou, W.M., Yiu, T.J., Lin, C.P., and Tzen, J.T. (2004). Cloning, functional expression, and characterization of cystatin in sesame seed. J. Agric. Food Chem. 52: 1350-1356. Siqueira-Junior, C.L., Fernandes, K.V.S., Machado, O.L.T., Cunha, M.D., Gomes, V.M., Moura, D., and Jacinto, T. (2002). 87 kDa tomato cystatin exhibits properties of a defense protein and forms protein crystals in prosystemin overexpressing transgenic plants. Plant Physiol. Biochem. 40: 247-254. Soares-Costa, A., Beltramini, L.M., Thiemann, O.H., and Henrique-Silva, F. (2002). A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem. Biophys. Res. Commun. 296: 1194-1199. Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., and Levine, A. (1999). The involvement of cysteine proteases and protease inhibitor genes in the regulation for programmed cell death in plants. Plant Cell 11: 431-443. Song, I., Taylor, M., Baker, K., and Bateman, R.C. (1995). Inhibition of cysteine proteinases by Carica papaya cystatin produced in Escherichia coli. Gene 162: 221-224. Stubbs, M.T., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., and Turk, V. (1990). The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 9: 1939-1947. Sugimoto, Y., Nishihara, K., Abe, K., Fujita, S., and Fuwa, H. (1987). Developmental changes in starch properties of the taro (Colocasia esculenta L. Schott). J. Jpn. Soc. Starch Sci. 34: 1-10. Tate, S., Ushioda, T., Utsunomiya-Tate, N., Shibuya, K., Ohyama, Y., Nakano, Y., Kaji, H., Inagaki, F., Samejima, T., and Kainosho, M. (1995). Solution structure of a human cystatin A variant, cystatin A2-98 M65L, by NMR spectroscopy. A possible role of the interaction between N- and C-terminal to maintain the inhibitory active form of cystatin A. Biochemistry 34: 14637-14648. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. Turk, V., and Bode, W. (1991). The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 285: 213-219. Uratani, Y., Takiguchi-Hayashi, K., Miyasaka, N., Sato, M., Jin, M., and Arimatsu, Y. (2000). Latexin, a carboxypeptidase A inhibitor, is expressed in rat peritoneal mast cells and is associated with granular structures distinct from secretory granules and lysosomes. Biochem. J. 346 Pt 3: 817-826. Urwin, P.E., Lilley, C.J., McPherson, M.J., and Alkinson, H.J. (1997). Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J. 12: 455-461. Waldron, C., Wegrich, L.M., Merlo, P.A., and Walsh, T.A. (1993). Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol. Biol. 23: 801-812. Wang, K.M., Kumar, S., Cheng, Y.S., Venkatagiri, S., Yang, A.H., and Yeh, K.W. (2008). Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta). FEBS J. 275: 4980-4989. Wu, J., and Haard, N.F. (2000). Purification and characterization of a cystatin from the leaves of methyl jasmonate treated tomato plants. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 127: 209-220. Yang, A.H., and Yeh, K.W. (2005). Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221: 493-501. Zhang, X., Liu, S., and Takano, T. (2008). Two cysteine proteinase inhibitors from Arabidopsis Thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation, and cold tolerance. Plant Mol. Biol. 68: 131-143. Zhao, Y., Botella, M.A., Subramanian, L., Niu, X., Nielsen, S.S., Bressan, R.A., and Hasegawa, P.M. (1996). Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol. 111: 1299-1306.
|