跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳莉安
研究生(外文):Li-An Chen
論文名稱:蜜西番蓮高溫致死現象及其對溫度之反應
論文名稱(外文):Response of Sweet Granadilla to Temperature and Thermal Lethal
指導教授:陳右人陳右人引用關係
指導教授(外文):Iou-Zen Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:73
中文關鍵詞:蜜西番蓮溫度致死
外文關鍵詞:sweet granadillatemperaturelethal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣百香果市場目前面臨幾項的困境,包括栽培面積小、生產成本高、栽培品種單一、消費市場有限以及病毒病嚴重等,盼引進新的種類,以突破現況。台灣中海拔地區由民間引進之蜜西番蓮( Passiflora ligularis, sweet granadilla )具有果形大、風味特殊、果肉酸度低且豐產等優良性狀,適合鮮食與加工利用,為中南美洲常見可食性西番蓮之一。然而平地欲栽培卻無法順利越夏,經由長期觀察此植株,發現此種植物在高溫期嫩葉白化,過長的高溫期甚至導致死亡,因而在許多地區無法越夏;故此,本論文欲從植物營養、氣溫與根溫、以及嫁接等栽培部分著手,未探求無法越夏的原因。結果如下:將實生苗盆栽置於日/夜溫35/30ºC 、30/25ºC 、25/20ºC 、20/15ºC 、15/10ºC五個溫度下,結果在35/30ºC下,5週內植株全數死亡,30/25ºC下則有58%植株死亡,生長量則以25/20ºC較佳。再以扦插苗於30/25ºC 、25/20ºC 、20/15ºC 、15/10ºC四個溫度下重複試驗,在30/25ºC下7週內有50%死亡率,以20/15ºC下生長較佳。以扦插苗、普通嫁接苗及疑似耐熱系之扦插苗,比較氣溫30/25ºC及20/15ºC,根溫20ºC、25ºC及30ºC下之生長。結果於夏季,10週內,氣溫30/25 ºC死亡率為67%,而於冬季進行之試驗,7週內氣溫30/25ºC下,植株死亡率為59%;氣溫20/15ºC下,則分別是6%與0%。根溫30℃兩次死亡率分別為50%及33%,根溫25℃則分別是33%及28%,而根溫20℃則是 25%及0%。扦插苗死亡率在夏季10週與冬季7週,死亡率各是59%與22%,疑似耐熱株扦插苗死亡率為33%及17%,嫁接苗則是17%與27%。生長則無論氣溫,以低根溫下較佳,三種繁殖方法取得之植株間差異不大。分析葉片與根部鐵、錳、鋅含量,結果較低氣溫下,全株葉片與根的含量較高,但白化葉的錳、鋅含量均高於正常葉。
測葉片之膜穩定性,在30/25℃高溫下白化的上位葉片細胞膜穩定性顯著低於健康的下位葉,將葉片白化分為4個等級,完全健康葉與初期皺縮葉間細胞膜性差異不大,初步白化葉膜定性僅餘不到60%,已顯著較低,完全白化葉則膜穩定性僅在10%以下。檢視其受高溫影響之時程,發現在30/25℃之環境下,三星期開始有葉片白化與植株死亡之現象,降低根溫會改善植株對高溫之耐性,但無法完全克服高溫逆境,疑似耐熱株耐熱性優於普通株,而嫁接於黃果種百香果上,死亡率與疑似耐熱株相同,但無法改善溫下上位葉白化之現象。植株在高溫下死亡與葉片細胞膜穩定性變差關係密切。雖然在低溫下,葉片之鐵濃度較,但白化葉之鐵、錳、鋅含量高於健康葉,其作用仍有待探討。
There are a few problems in passion fruit industry of Taiwan such as small cultivating area, high cultural cost, single cultivar, limited market and serious virus disease. There is desperate need to introduce new varieties to break through the difficulties. Passiflora ligularis (sweet granadilla) is a potentially edible passion fruit which has several good characters such as big fruit shape, unique taste, low acidity and high yield which make it suitable for fresh fruit use, especially that compatriots prefer sweeter tastes. After observation for three years, we concluded that most seedlings and cutting plantlets can’t survive because of the summer heat in lowland of Taiwan, but three seedlings survived for two summers which indicated that P. ligularis might have the potential to overcome its obstacle through breeding or cultivation technique and increase the diversity of edible passion fruits in Taiwan. Through the experiments, we now somehow have an overall idea about sweet granadilla thermal lethal phenomenon.
Seedlings planting treated with day/night temperature 35/30ºC, 30/25ºC, 25/20ºC , 20/15ºC and 15/10ºC, respectively, all of the plants under 35/30ºC, and 42% of plants under 30/25ºC were dead within 5 weeks. The growth situation is best under 25/20ºC. Repeat the experiment with cuttings under day/night temperature 30/25ºC, 25/20ºC, 20/15ºC, 15/10ºC condition. After 7 weeks, the death rate of plants under 30/25ºC goes to 50%, and the growth situation is better under 20/15ºC. Treated normal cutting plantlets, grafting plantlets and the ambiguous heat-less sensitive cutting plantlets under day/night temperature 30/25ºC, 20/15ºC and 3 root temperature which were 20℃, 25℃, 30℃, to understand the lethal thermal tolerant of top and root. At summer experiment, treated for 10 weeks, the death rate of 30/25ºC was 67%, and at winter time, after 7 weeks of treatment, the death rate of 30/25ºC was 59%. And the death rate of 20/15ºC was 6% and 0%, respectively. Under 30℃ root zone temperature (RZT), the death rate were 50% and 33%, respectively, 33% and 28% under 25℃ RZT, 25% and 0% under 20℃ RZT. The death rate for cuttings for 10 weeks at summer and 7 weeks at winter was 59%and 22%, 33% and 17% for the ambiguous heat-less sensitive cuttings ,and 17% and 27% for grafting plantlets. No matter with which air temperature, the growth was better under low RZT, and there was small difference between the materials. To analyze the leaf and root Fe, Mn, Zn content, and the total contents in leaves and root were higher under lower air temp. But the concentration for Mn and Zn were higher in chlorosis leaves than in normal leaves.
To test the membrane thermostability (MTS) of sweet granadilla leaves. The MTS of the upper chlorosis type leaves that were induced by high air temp were significantly worse than the elder normal leaves. To identify the leaves into 4 typical grades under heat stress, MTS showed no significant difference between the normal type and the intermediate. And the MTS of semi-chlorosis type was under 60%, for the chlorosis type was eventually less than 10%, both significantly lower.
To lower the RZT was helpful for sweet granadilla to face high air temp but still unable to overcome heat stress, and the ambiguous heat-less sensitive cutting plantlets and the grafting plantlets showed better tolerance than the cuttings, however, none of them were growing normally without chlorosis under high air temperature.
目錄 i
表目錄 iii
圖目錄 iv
Abstract v
中文摘要 vii
前言(introduction) - 1 -
前人研究(Literature review) - 3 -
一、 可食性西番蓮簡介 - 3 -
台灣西番蓮屬栽培簡介: - 3 -
蜜西番蓮之生長特性與性狀特徵: - 4 -
二、 高溫逆境與植物生長發育之關係 - 5 -
自然界的高溫逆境: - 5 -
植物的耐熱性及耐熱性之誘發: - 7 -
高溫逆境對植物生長與發育之影響 - 8 -
三、 根溫對植物生長之影響: - 10 -
自然界根溫之變化: - 10 -
根溫對植物生長及礦物元素吸收與利用之影響: - 10 -
四、 植物之細胞膜熱穩定性 - 12 -
材料與方法(Materials and methods) - 15 -
一、 試驗一、氣溫對蜜西番蓮生長與發育之影響 - 15 -
1. 溫度對蜜西番蓮實生苗生長與發育之影響。 - 15 -
2. 溫度對蜜西番蓮扦插苗生長與發育之影響: - 16 -
3. 氣溫對於蜜西番蓮根部活性之影響: - 16 -
五、 試驗二、根溫與氣溫對蜜西番蓮生長與發育之影響 - 17 -
六、 試驗三、溫度對葉片型態、細胞膜穩定性及植體內三種微量要素含量之影響 - 18 -
(一)蜜西番蓮葉片細胞膜熱穩定性調查: - 18 -
(二)白化與正常葉片內鐵、錳、鋅三種微量要素含量與細胞膜熱穩定性之差異: - 19 -
(三)溫度對蜜西番蓮葉片細胞膜熱穩定性及相對熱傷害之影響: - 20 -
結果與討論( Results and discussion) - 22 -
一、 氣溫對蜜西番蓮生長與發育之影響 - 22 -
二、 氣溫對於蜜西番蓮根部活性之影響 - 27 -
三、 根溫對蜜西番蓮生長與發育之影響 - 28 -
四、 溫度對葉片型態、細胞膜穩定性及三種微量要素含量之影響 - 32 -
(一) 不同狀態蜜西番蓮葉片細胞膜熱穩定性調查: - 32 -
(二) 白化與正常葉片內鐵、錳、鋅三種微量要素含量與細胞膜熱穩定性之差異: - 32 -
(三) 不同栽培溫度及處理時間對蜜西番蓮葉片細胞膜熱穩定性及相對熱傷害之影響: - 33 -
結論(Conclusion) - 36 -
表(Tables) - 37 -
圖(Figures) - 48 -
參考文獻( Reference ) - 63 -
孔繁慧. 1988. 根溫對葡萄生長與發育之影響. 臺大園藝所碩士論文.
台灣農業統計年報. 2003. 行政院農業委員會, 台北, 台灣.
朱德民. 1995. 植物與環境逆境. 第二版 pp.385. 明文出版社, 台北, 台灣.
李惠鈴. 1998. 台東地區百香果重要病害及其防治. 台東區農業專訊 11:14-17.
李文立, 翁瑞亨. 1999. 台灣百香果的生產概況. 農業世界 195: 66-69.
阮素芬. 1983. 浸水對百香果幼株生長之影響. 臺大園藝所碩士論文.
何婉芬. 1984. 百香果(Passiflora edulis Sims)授粉受精與親和性之檢定.臺大園藝所碩士論文.
林曉君, 葉德銘. 2006. 氣溫與根溫對開運竹生長與發根之影響. 臺灣園藝52:441-448.
范念慈. 1995. 果樹. 第二版 p.138-142. 地景股份有限公司. 台北.
張育森. 1989. 百香果開花習性與花芽形成之硏究. 臺大園藝所博士論文.
張振宙. 1974. 黃百香果在台灣開花不實原因之研究. 台灣農業 10: 78-79.
張清安, 林瑩達. 1992. 無毒百香果苗栽植後之再感染生態及其防治病毒病效果評估. 植物病理學刊 1:140-146.
陳右人. 1988. 根溫對檬果開花之影響. 臺大園藝所博士論文.
陳右人, 曾信光. 1996. 地溫對植物生長與發育之影響. 中華農業氣象 3:65-89
陳香君. 2000. 毛西番蓮的花器發育和小孢子形成. 臺大植物所博士論文.
詹朝清,張建生. 1999. 有機質肥料對甘藍生育之影響. 花蓮區農業彙報. 17: 81-91.
劉子瑄. 2008. 矮牽牛品種及其自交或雜交後代之耐熱性與花朵性狀表現. 臺大園藝所碩士論文.
黃璧海, 楊耀祥, 翁慎微, 陳秉訓, 張清安. 1995. 百香果組織培養植株生育之研究. 興大園藝 20:41-57.
顏昌瑞, 何婉芬, 田永柔. 1985. 臺灣百香果育種之展望. 中國園藝 31:60-70.
Abdelbagi, M. I. and A. E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762–1768.
Akamine, E. K. and G. Girolami. 1959. Pollination and fruit set in the yellow passion fruit. Hawaii Agr. Expt. Sta. Tech. Bul. p.39- 44.
Backer, A. V. and D. J. Pilbeam. 2007. Handbook of plant nutrition. The CRC press, Abingdon, UK. p.329-350.
Baghour, M., D. A. Moreno, G. Viallora, I. Lopez-Cantarero, J. Hernandez, N. Castillia., and L. Romero. 2002. Root-zone temperature influences the distribution of Cu and Zn in potato-plant organs. J. Agri. Food Chem. 50:140-146.
Basaga, H., C. Tekkaya and F. Acikel. 1997. Antioxidative and free radical scavenging properties of rosemary extract. Lebensm.-Wiss. u.-Technol. 30: 105–108.
Bauer, H. 1978. Photosynthesis of ivy leaves (Hedera helix) after heat stress I.
CO2-gas exchange and diffusion resistances. Physiologia plantarum 44: 400-406.
Beale, S. I. and P. A. Castelfranco. 1974. The Biosynthesis of δ-Aminolevulinic acid in higher plants. II. Formation of 14C-δ- Aminolevulinic acid from labeld precursor in greening plant tissues. Plant Physiol. 53: 297-303.
Boyer, J. S. 1982. Plant productivity and environment. Science 218:443-448.
BassiriRad, H., J. W. Radin, and K. Matsuda. 1991. Temperature-dependent water and ion transport properties of barley and sorghum roots. Plant Physiol. 97:426-432.
Bruckner, C. H., V. W. D. Casali, A. J. de Regazzi, and E. A. M. da Silva. 1995. Self-incompatibality in passion fruit (Passiflora edulis Sims.) Acta Hort. 370:45-57.
Chassagne, D., R. Boulanger, J. Crouzet, and R. L. Baumes. 1996. Identification and quantification of passion fruit cyanogenic glycosides. J. Agric. Food Chem. 44:3817-3820.
Chassagne, D., R. Boulanger, J. Crouzet, and R. L. Baumes. 1998a. Identification and quantification of passion fruit cyanogenic glycosides. J. Agric. Food Chem. 44:3817-3820.
Chassagne, D., R. Boulanger, and J. Crouzet, 1998b. Identification of passion fruit glycosides by gas ghromatography/mass spectrometry. J. Agric. Food. Chem. 46: 4352-4357.
Chang, W.C., M.H. Chen and T.M. Lee1. 1999. 2,3,5-Triphenyltetrazolium reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress. Bot. Bull. Acad. Sin. 40: 207-212.
Chen, H. H., Z. Y. Shen, and P. H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725.
Choi, K.J., Chung, G.C., Choi, W.Y., Han, K.P. and Choi, S.K. 1995a. Effect of root zone temperatures on the mineral composition of xylem sap, photosynthetic activity and transpiration in cucumber plants. Acta Hort. 396:161-166.
Choi, K.J.; Chung, G.C.; Ahn, S.J. 1995b. Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane K(+)-Mg(++)-ATPase activity of grafted-cucumber and -figleaf gourd root systems. Plant Cell Physio. 36:639-643.
Comas, L. H., D. M. Eissenstat and A.N. Lakso. 2000. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol. 147: 171-178.
Cooper, A. J. 1973. Root temperature and plant growth. CAB press. UK. p.2-30.
De Andrade A. A., E. De Macedo Lemos, and J. Oliveira. 2002. Genetic variations among passion fruit species using RAPD markers. Revista Brasileira de Fruticultura 24:738-740.
Dodd. I. C., J. He, C. G. N. Turnbull, S. K. Lee, and C. Critchley. 2000. The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J. Exp. Bot. 343:239-248.
Engels, C., L. Munkle, and H. Marschner. 1992. Effect of root zone temperature and shoot demand on uptake and xylem transport of macronutrients in maize (Zea mays L.). J. Exp. Bot. 43:537-547.
Fajardo, D., F. Angel, M. Grum, J. Tohme, M. Lobo, W. M. Roca, and I. Sanchez. 1997. Genetic variation analysis of the genus Passiora L. using RAPD markers. Euphytica 101: 341–347.
Fonnesbech, M. 1974. Temperature effects on shoot and root development from Begonia x cheimantha petiole segments grown in vitro. Physiol. Plant. 32:282-286.
Gent, M. P. N. and Y. Z. Ma. 2000. Mineral nutrition of tomato under diurnal temperature variation of root and shoot. Crop Sci. 40:1629-1636.
George, H. L., F. S. Davies, J. H. Crane, and B. Schaffer. 2002. Root temperature effects on “Arkin” carambola ( Averrhoa carambola L.) trees II. Growth and mineral nutrition. Scientia Hort. 96:67-79.
Georgelis N. and L. C. Hannah. 2008. Isolation of a heat-stable maize endosperm ADP-glucose pyrophosphorylase variant. Plant Science 175:247–254.
Grover, A., M. Agarwal, S. Katiyar-Argarwal, C. Sahi, and S. Argarwal. 2000. Production of high temperature tolerant transgenic plants through manipulation of membrane lipids. Current Science 79: 557-559.
Hardin, R. B., D. J. Eakes, J. L. Sibley, C. H. Gilliam, and G. J. Keever. 1999. Root membrane thermostability of Cornus florida L. provenances. J. Therm. Bio. 24 :237-240.
Hartmann, H. T., D. E. Kester, F. T. Davies and R. L. Geneve. 1997. Chap 12. The biology of grafting. p 392-436. In: Plant propagation: principles and practices. Prentice Hall. London.
Heckman, N. L., G. L. Horst, R. E. Gaussoin and B. T. Tavener. 2002. Trinexapac-ethyl influence on cell membrane thermostability of Kentucky bluegrass leaf tissue. Scientia Hort. 92:183-186.
Ho, W. F. and C. T. Shii. 1986. Incompatibility system in passion fruit (Passiflora edulis Sims). Acta Hort. 194:31-38.
Hood, T. M. and H. A. Mills. 1994. Root-zone temperature affects nutrient uptake and growth of snapdragon. J. Plant Nutri. 17: 279-291.
Horvath, I., A. Glatz, V. Varvasovszki, T. Zsolt, T. Pali, G. Balogh, E. Kovacs, L. Nadasdi, S. Benko, F. Joo, and Vigh, L., 1998. Membrane physical state controls the signalling mechanism of the heat shock response in Synechocystis PC 6803: Identification of HSP17 as a fluidity gene. Proc. Natl. Acad. Sci. 95, 3513–3518.
Howarth, C. J., C. J. Pollock, and J. M. Peacock. 1997. Development of laboratory-based methods for assessing seedling thermotolerance in pearl millet. New Phytol. 137:129-139.
Hurewitz, J. and H. W. Janes. 1983. Effect of altering the root-zone temperature on growth, translocation, carbon exchange rate, and leaf starch accumulation in the tomato. Plant Physiol.73:46-50.
Iba, K. 2006. Section II –Temperature stress. In: Rai, A. K. and Takabe, T (edts). Abiotic stress tolerance in plants. Springer. Dordrecht.
Ibrahim, A. M. H. and J. S. Quick. 2001a. Heritability of heat tolerance in winter and spring wheat. Crop Sci. 41:1401-1405.
Ibrahim, A. M. H. and J. S. Quick. 2001b. Genetic control of high temperature tolerance in wheat as measured by membrane thermostability. Crop Sci. 41:1405-1407.
Jacobs, D. F., K.F. Salifu, and J. R. Seifert. 2005. Relative contribution of initial root and shoot morphology in predicting field performance of hardwood seedlings. New Forests 30:235-251.
Kao, M. T. 1979. The Passifloraceae of Taiwan. Proc. Nat. Sci. Counc. R.O.C. 3:437-439.
Keeler, S. J., C. M. Boettger, G. Haynes, K. A. Kuches, M. M. Johnson, D. L. Thureen, C. L. Keeler Jr., and S. L. Kitto. 2000. Acquired thermotolerance and expression of the HSP 100/ ClpB genes of lima bean. Plant Physiol. 123:1121-1132.
Kennedy, C. D. and F. A. N. Gonsalves. 1988. H+ efflux and trans-root potential measured while increasing the temperature of solutions bathing excised roots of Zea mays. J. Exp. Bot. 39: 37-49,
Kleier, C., B. Farnsworth, and W. Winner. 2001, Photosynthesis and biomass allocation of raddish cv. ”Cherry Belle” in response to root temperature and ozone. Env. Poll. 111:127-133.
Knight, R. J. Jr. and H. F. Winters. 1962. Pollination and fruit set of yellow passion fruit in southern Florida. Proc. Fla. Sta. Hort. Soc. 75: 412-418.
Larkindale, J. anf B. Huang. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Envi. Exp. Bot.51 :57–67.
Larkindale, J. and M. R. Knight. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128:682-695.
Lanneau, D., M. Brunet, E. Frisan, E. Solary, M. Fontenay, and C. Garrido. 2008. Heat shock proteins: essential proteins for apoptosis regulation. J. Cell. Mol. Med. 12:743-761.
Leal, F. 1990. Granadilla. p. 322-327. In: Navy, S., P. E. Shaw, and W. F. Wardowski (edts). Fruits of tropical and subtropical origin – composition, properties and uses. Florida Science Source, INC. Lake Alfred, FL. USA.
Leidi, E. O. M. Gomez, and M. D. de la Guardia. 1986. Evaluation of catalase and peroxidase activity as indicators of Fe and Mn nutrition for soybean. J. Plant Nutri. 9:1239-1249.
Liu, X. Z. and B. G. Huang. 2005. Root physiological factors involved in cool-season grass response to high soil temperature. Envi. Exp. Bot. 53: 233–245.
Liu, Y., T. Cao, and J. M. Glime 2003. The changes of membrane permeability of mosses under high temperature stress. The Bryologist 106: 53-60.
MacKee, H. S. 1994. Catalogue des plantes introduites et cultivées. In: Nouvelle-Calédonie. Muséum National d''Histoire Naturelle, Paris. France. p.p.164.
Maletta, M. and H. W. Janes. 1987. Interaction of root and shoot temperature on dry matter accumulation and root growth in tomato seedlings. J. Hort. Sci. 62:49-54.
Marcum, K. B. 1998. Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Sci. 38:1214-1218 .
Markhart, A. H., E. L. Fiscus, A. W. Naylor, and P. J. Kramer. 1979. Effect of temperature on water and ion transport in soybean and broccoli systems. Plant Physiol. 64:83-87.
Martineau, J. R., J. E. Specht, J. H. Williams, and C. Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.
McMichael, B. L., D. R. Upchurch, and J. J. Burke. 1996. Soil temperature derived prediction of root density in cotton. Environ. Exp. Bot. 36:303-312.
Menzel, C. M., C. W. Winks, and D. R. Simpson. 1990. Passionfruit. p.690-721. In: Bose, T. K. and S. K. Mitra (edts). Fruits: tropical and subtropical. Naya Prokash Co. Calcutta, India.
Menzel, C. M., D. W. Turnur, V. J. Doogan, and D. R. Simpson. 1994. Root shoot interactions in passionfruit ( Passiflora sp.) under the influence of changing root volumes and soil temperatures. J. Hort. Sci. 69:533-564.
Nakasone, H. Y. and R. E. Paull. 1998. Tropical fruits. CAB International press, Oxford, UK. p270-291.
Naoki, U. 1992. Fruit set and fruit growth of purple passion fruit affected by temperature. Acta Hort. 321:641-647.
Nielsen, K. F. 1973. Root and root temperature. p.293-333. In: Carso, E. W. The plant root and its environment.
Nilsen, E. T. and D. M. Orcutt. 1996. Physiology of plants s under stress. Wiley, INC, NY, USA.
Pandey, K. K. 1970. Elements of the S-gene complax VI. mutations of the self-incompatibility gene, pseudo-compatibility and origin of new self-incompatibility alleles. Genetica 41:477-516.
Pitman, M. G., U. Luttge, A. Lauchli and E. Ball. 1974. Action of abscisic acid on ion transport as affected by root temperature and nutrient status. J. Exp. Bot. 25:147-155.
Rego, M. M., C. H. Bruckner, E. M. A. da Silva, F. L. Finger, D. L. de Siqueira, and A. A. Fernandes. 1999. Self-incompatibility in passion fruit: evidence of two locus genetic control. Theor. Appl. Genet. 98:564-568.
Rego, M. M., E. R. Rego, C. H. Bruckner, E. M. A. da Silva, F. L. Finger, and K. J. C. Pereira. 2000. Pollen tube behavior in yellow passion fruit following compatible and incompatible crosses. Theor. Appl. Genet. 101:685-689.
Senthil-Kumar, M., G. Kumar1, V. Srikanthbabu1 and M. Udayakumar. 2007. Review:Assessment of variability in acquired thermotolerance: Potential option to study genotypic response and the relevance of stress genes. J. Plant Physiol. 164:111-125.
Shii, C. T., M. C. Mok, and D. W. S. Mok. 1981. Developmental controls of morphological mutants of Phaseolus vulgaris L.: differential expression of mutant loci in plant organs. Devel. Genet. 2:279-290.
Sibley, J.L., J. M. Ruter, and D. J. Eakes. 1999. Root membrane thermostability of red maple cultivars. J. Ther. Bio. 24 : 79-89.
Souza, M. M., T. N. S. Pereira, A. P. Viana, M. G. Pereira, A. T do Amaral. Jr, and H. C. Madureira. 2004. Flower receptivity and fruit characteristics associated to time of pollination in the yellow passion fruit Passiflora edulis sims f .flavicarpa Degener (Passifloraceae). Scientia Hort. 101:373-385.
Suassuna, T. de M. F., C. H. Bruckner, C. R. de Carvalho, and A. Boren. 2003. Self-incompatibility in passion fruit: evidence of gametophytic- sporophytic control. Theor. Appl. Genet.106:298-302.
Sukumaran, N. P. And C. J. Weiser, 1972. An excised leaflet test for evaluating patato frost tolerance. HortScience 7:467-468.
Sullivan, C. Y. 1972. Mechanism of heat and drought resistance in grain sorghum and methods of measurement. p.247-264. In: Rao, N.G.P., House, L.R. (Eds.), Sorghum in the Seventies. Oxford and IBH Publishing Co., New Delhi, India.
Tachibana, S. 1987. Effect of root temperature on the rate of water and nutrient absorption in cucumber cultivars and figleaf gourd. J. Jpn. Soc. Hort. Sci. 55 :461-467.
Terry, N. 1980. Limiting factors in photosynthesis. I. Use of iron stress to control photochemical capacity in vivo. Plant Physiol. 65: 114-120.
Tominaga, T. and D. Dubourdieu. 2000. Identification of cysteinylated aroma precursors of certain volatile thiols in passion fruit juice. J. Agric. Food. Chem. 48:2874-2876.
Tommonaro, G., C. S. S. Rodriguez, M. Santillana, B. Immirzi, R. De Prisco, B. Nicolaus, and A. Poli. 2007. Chemical composition and biotechnological properties of a polysaccharide from peels and antioxidative content from the pulp of Passiflora ligularis fruits. J. Agric. Food. Chem.55:7427-7433.
Vanderplank, J. 2000. Passion flowers. The MIT press. Cambridge, Mass, UK. pp.224
Vigh, L., D.A. Los, I. Horvath, and N. Murata. 1993. The primary signal in the biological perception of temperature: Pd catalysed hydrogenation of the membrane lipids stimulated the expression of the desA gene in Synecchocystis PC6803. Proc. Natl. Acad. Sci. 90, 9090–9094.
Wagner, W.L., D.R. Herbst, and S.H. Sohmer. 1999. Manual of the Flowering Plants of Hawaii. University of Hawaii and Bishop Museum Press, Honolulu, HI. pp.1948.
Wahid. A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Envi. Exp. Bot. 61 :199–223.
West, D. W. and J. A. Taylor. 1980. The effect of temperature on salt uptake by tomato plants with diurnal and noctural waterlogging of salinized rootzones. Plant and Soil. 56: 113-121.
Xu, Q. and B. Huang. 2001. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Sci. 41:127-133.
Yasuo, O. 1970. Diagnostic methods for the measurement of root activity in rice plants. J. Agri. Res. Quart. 5:1-6.
Yeh, D. M. and H. F. Lin. 2003. Thermostability of cell membrane as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128:656-660.
Yusof, I. M., D. W. Buchanan and J. F. Gerber. 1969. The response of avocado and mango to soil temperature. J. Am. Soc. Hort. Sci. 94: 619–621.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top