跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉士華
研究生(外文):Shi-Hua Liu
論文名稱:臺灣芭蕉細胞懸浮培養及體胚發生之研究
論文名稱(外文):Studies on cell suspension culture and somatic embryogenesisi of Musa formosana
指導教授:許圳塗許圳塗引用關係
指導教授(外文):Chou-Tou Shii
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:台灣芭蕉體胚懸浮培養
外文關鍵詞:Musa formosanabananatissuesomatic embryos
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣芭蕉(Musa formosana)幼雄花序接種於含有IAA 1 mg/L及NAA 1 mg/L之逆分化培養基,另參試組合Auxin 2,4-D 1 mg/L及Picloram 3 mg/L能誘導較高的癒傷組織生成率。幼雄花序第13-17節是較能誘導癒傷組織生成的段節,誘導率皆有58%以上。合子胚培植體當單獨始使用Dicamba或Picloram做為強效培養基,培植體褐化程度較低,並且癒傷組織可以形成較多的亮黃色、粒狀癒傷組織的胚性癒傷組織及擬胚,其癒傷組織誘導率皆有60%以上。繼代培養幼雄花序衍生癒傷組織,培養於黑暗環境下,添加Picloram 1 mg/L或Dicamba 1 mg/L搭配gelrite的培養基,癒傷組織有較佳的表現。雖然將2,4-D做為主要的Auxin來誘導逆分化時,隨著濃度增加,培植體褐化程度增加。但是癒傷組織可以在含有2,4-D的液體培養基中增生,幼雄花序及合子胚衍生癒傷組織懸浮培養2個月後可建立均質的胚性懸浮細胞系。
酸化處理(pH 4.0-4.5)會促進球體相的細胞游離。酸化處理7和14天後,促進球狀體解體,釋放游離單細胞,並朝對稱分裂為主,加速胚性細胞增生。SH3培養基及SH3+MES可將pH提高誘導細胞不對稱分裂,培養於SH3+MES可以加速前胚性細胞提早極化、形成前胚及球狀體。SH3添加PIPES同樣也可以誘導極化和球體胚形成完整個原表皮。胚性懸浮細胞經TB5、SH3及搭配MES 10 g/L預處理誘導極化後平板培養,其中由 SH3預處理的細胞能誘導再生較多的體胚,並且以濾紙棉花墊做為培養介質,較能誘導出正常發育的體胚。
將懸浮細胞利用<60或介於30-60的篩網過篩分級,稀釋成1/30 c.c PCV,平板培養於添加SH3 8 ml液體培養基的濾紙棉花墊上,可以發育成較多的正常體胚。體胚接種於1/2 MS 培養基添加BA 10 mg/L可誘導69%的發芽率。培養基添加NAA無法增加小植株的發根率,然而BA組合NAA可提升小植株的發芽率。培養基中添加GA可增加發芽率及葉長,但是植株會異常脫色及突長。
Summary
The young male inflorescence of Taiwan native diploid banana (Musa formosana) was used as explant, and cultured in modified MS medium supplemented with complex auxin including IAA 1 mg/L, NAA 1 mg/L, and 2,4-D 1 mg/L and Picloram 3 mg/L suitable for callus formation. The top male hand portions ranged from the 13th to 17th sections were capable to give rise 64-82% callus formation on the medium as above. The zygote embryos were aptly to generate embryogenic callus on MS medium added with NAA 1 mg/L, IAA 1 mg/L combined Picloram 1 mg/L or Dicamba 1 mg/L in 2-3 months after inoculation. In further, the callus proliferation could be subcultured on the above medium but supplemented Picloram or Dicamba as the sole auxin. The male inflorescence-derived callus was subcultured in liquid TB5 medium ( Ma, 1988), and obtained homogenous cell population about 2 month after suspension culture.
The extracellular pH level in TB5 medium of the cell suspension culture was varied in the range pH 4.45±0.37, and also concordantly associated with growth phase change. The addition of MES 10 g/L could upgrade the extracellular pH in the stable level 4.51±0.17, and also induce the preembryogenic cells destine to polar growth depicted by the asymmetric division. Controlling extracellular pH at 5.7 and culture in SH3、SH3 with MES led up to the polar growth. The cells culture in SH3 with MES were polarized earlier, and remain extracellular pH over 5.46. After polarization treatment for 7 days, the embryogenic cells could formed proembryo and globoids. Used PIPES with SH3 medium could also be induced to polarization and formed globoids with complete protoderm
Acidic treatment (pH 4.0-4.5) promoted globoids to disunite small mass and release single cells. After acidic treatment for 7 and 14 days, the bicellular trended to do symmetric division. Controlling extracellular pH at 5.7 and culture in SH3、SH3 with MES led up to the polar growth. The cells culture in SH3 with MES were polarized earlier, and kept extracellular pH over 5.0. After polarization treatment for 7 days, the embryogenic cells could formed proembryo and globoids. Used PIPES with SH3 medium could also be induced to polarization and formed globoids with complete protoderm
Before plating, the suspension prembryogenic cells were pretreated on TB5, SH3 medium with or without was consistent 10 g/L MES. The SH3 pretreated cells regenerated higher quantity of somatic embryos on plating medium than those on TB5, TB5+MES and SH3+MES pretreated.
The size of suspension cell cluster was separated with <60 or 30-60 meshes and were diluted 1/30 c.c PCV proceeding to plat on 8ml SH3 medium with filter paper and cotton as the culture bridge, could development normal somatic embryos than agar, gelrite and 4 ml SH3 addition.
Somatic embryo inoculated on 1/2 MS medium supplement with 10 mg/L BA induced 69% of shooting. The rooting rate did not increase, when medium supplement NAA. However, the shooting rate increase of plantlets on medium complex added NAA with BA. The increase of shooting rate and leave length in medium GA, but the leaves had exceptional discoloration and elongation.
目 錄
口試委員會審定書…………………………….…...…………...……………………….i
誌謝…………………………………………..….……..………..…...………………….ii
縮寫字……………………………………………………..……………………………iii
中文摘要………………………………………….…….……..…...…...………………iv
英文摘要……………………………………………..….…..………..…………………v
壹、 前言 .................................................................................................................1
貳、 前人研究 .........................................................................................................2
一、體胚發生.............................................................................................................2
(一)基因型.........................................................................................................2
(二)培植體.........................................................................................................3
(三)植物生長調節劑.........................................................................................4
(四)培養基pH....................................................................................................5
(五)光照.............................................................................................................6
(六)氣體……………….....................................................................................7
二、 pH緩衝劑對細胞之影響..................................................................................8
三、體胚發生相關之基因.........................................................................................8
叁、 材料方法 .......................................................................................................10
一、參試材料...........................................................................................................10 二、胚性癒傷組織誘導...........................................................................................10
(一)、幼雄花序培植體節位對癒傷組織形成之影響.....................................10
(二)、強活性生長素對幼雄花序培植體誘導癒傷組織之影響.....................10
(三)、幼雄花序癒傷組織之繼代培養…………………………………….....11
(四)、強活性生長素對合子胚培植體誘導癒傷組織之影響.........................11
(五)、癒合組織之切片解剖觀察……………….............................................12
三、細胞懸浮培養...................................................................................................12
(一)、建立胚性懸浮細胞系……………………….........................................12
(二)、酸化(pH 4.0-4.5)處理球胚相細胞….....................................................13
四、體胚誘導...........................................................................................................13
(一)、TB5增生培養基及SH3再生培養基及MES緩衝液預處理試驗........13
(二)、TB5及SH3與PIPES緩衝液處理誘導極化生長試驗……….............14
(三)、培養介質對幼雄花序衍生胚性細胞體胚發生之影響……….............15
(四)、台灣芭蕉懸浮細胞大小及濾紙棉花墊溼度對體胚發生之影響.........15
五、胚苗轉換………………………………...........................................................15
(一)、固化劑及PGR組合對胚苗轉換之影響…………................................15
(二)、BA及NAA對台灣芭蕉幼雄花序衍生體胚胚苗轉換之影.................15
(三)、IBA及活性碳對臺灣芭蕉芽體發根之影響………………………….16
六、小植株建立………….......................................................................................16
肆、 結果 ...............................................................................................................17
一、胚性懸浮細胞之建立…………………………...............................................17
(一)、幼雄花序培植體誘導癒傷組織………………….................................17
(二)、幼雄花序節位對癒傷組織誘導之影響.................................................17
(三)、結合子胚培植體誘導胚性癒傷組織…………….................................18
(四)、幼雄花序衍生癒合組織增生繼代培養之生長情形….........................19
二、懸浮細胞系建立………………………………...............................................19
三、極化與非極化生長調控………………………………...................................20
(一)、球體相生長型以pH 4.0-4.5調控之生長之影響….…......................20
(二)、pH緩衝劑及再生培養基預處理對胚性細胞極性誘導.......................21
(三)、PIPES對胞外pH 變化及細胞極化生長之關係...................................22
四、平板培養與擬胚誘導……………...................................................................22
(一)、台灣芭蕉體胚發育過程…………………….........................................22
(二)、預處理對平板培養後體胚形成之影響…………….............................22
(三)、不同基質對幼雄花序衍生胚性細胞分化之影響………………….....23
(四)、台灣芭蕉懸浮細胞群大小及濾紙棉花墊溼度對體胚發生之影響….24
五、生長調節劑組合對胚苗轉換之影響...............................................................24
(一)、植物生長調節劑及培養介質對幼雄花序衍生體胚胚苗轉換之影響.24
(二)、BA及NAA處理對幼雄花序衍生體胚苗生長發育之影響………….25
(三)、IBA及活性碳對臺灣芭蕉芽體發根之影響………………………….25
五、台灣芭蕉小植株建立………………………………………………...………25
伍、 討論.................................................................................................................73
一、胚性懸浮細胞之建立………………………...................................................73
(一)、幼雄花序及合子胚培植體誘導癒傷組織…………….........................73
二、胚性懸浮細胞建立……………………….......................................................75
三、台灣芭蕉幼雄花序衍生胚性細胞極化及非極化生長誘導...........................76
(一)、極化生長誘導轉換非極化生長……………….....................................76
(二)、pH緩衝劑對胞外pH變化及細胞極化生長發育之影響……………...76
四、平板培養與擬胚誘導………………………...................................................77
(一)、預處理對平板效力之探討……………….............................................77
(二)、培養基介質對體胚再生之影響……….................................................78
(三)、細胞團大小及濕度對平板之探討……….............................................78
五、 胚苗轉換………………………………….............................................79
(一)、PGR及培養介質對胚苗轉換之影響…………….................................79
(二)、BA及NAA對胚苗轉換之影響……………………..............................80
(三)、IBA及活性碳對臺灣芭蕉芽體發根之影響…………………………..80
陸、 結語………………………………………………………………………….81
參考文獻.........................................................................................................................82
附錄、台灣芭蕉懸浮細胞及體胚發生建立之流程…………………………………...91
1.邱輝龍、許圳塗. 2007. 芭蕉屬植物野生近緣種之遺傳資源與利用. 林業研究專訓. Vol.14 No.4. 6-10.
2.邱輝龍. 2005. 台灣芭蕉[Musa formosana (Warb.) Hayata]種源之蒐集、評估與遺傳歧異度分析. 國立台灣大學園藝學研究所博士論文.
3.呂政彰. 2001. 三倍體香蕉cv. Raja胚性細胞極化與非極化生長之調控與質量化體胚生產. 國立台灣大學園藝研究所碩士班論文.
4.卓麗貞. 1989. 香蕉體胚形成及發芽的影響因子. 國立台灣大學園藝研究所碩士論文.
5.孫崇欽. 2008. 二倍體香蕉胚乳組織程序性細胞凋零及其體外培養與再生。國立台灣大學園藝研究所碩士論文.
6.馬溯軒、許圳塗. 1972. 香蕉幼莖切頂組織培養應用於不定芽誘發之研究. 中國園藝. 18:135-142.
7.馬溯軒. 1991. 香蕉之體胚發生與植株再生. 園藝作物組織培養之應用研討會專輯. pp. 181-188.
8.郭斕婷.2006. 三倍體香蕉懸浮細胞培養及體胚發生. 國立台灣大學園藝學研究所碩士論文.
9.黃怡菁. 1994. 香蕉細胞懸浮培養及原生質體培養體胚誘導研究. 國立台灣大學園藝學研究所博士論文.
10.黃鵬林. 1980. 香蕉花序莖頂組織培養. 國立台灣大學園藝學研究所碩士論文.
11.劉秋芳. 1999. 二倍體香蕉胚乳培養器官再生及體胚發生之研究. 國立台灣大學園藝學研究所碩士論文.
12.鐘仁彬. 2001. 香蕉胚性細胞懸浮培養胞外pH變化與極化生長調控及皺褶生物反應器機能之探討. 國立台灣大學園藝學研究所碩士論文.
13.鍾明娟. 2001.二倍體拔蕉胚乳組織衍生胚性細胞懸浮培養及胚發生與多倍體植株建立. 國立台灣大學園藝學研究所碩士論文.
14.Antonietta, G. M., C. Benedetta, I. Calogero, M. Rosario. 2005. The effect of light quality on anther culture of Citrus clementina Hort. ex Tan. Acta physiologiae plantarum. 27: 717-721.
15.Aslam, J., A. Mujib. S. Fatima, and M. P. Sharma. 2008. Cultural conditions affect somatic embryogenesis in Catharanthus roseus L. (G.) Don. Plant Biotechnol. Rep. 2:179-189.
16.Arroyo-Herrera, A., A. K. Gonzalez, R. C. Moo, F. R. Quiroz-Figueroa, V. M. Loyola-Vagas, L. C. Rodriguez-Zapata, C. B. D''Hondt, V. M. Suárez-Solís, and E. Castaño. 2008. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant cell, Tiss. organ Cult. 94:171–180.
17.Banthorpe, D. V. and G. D. Brown. 1990. Growth and secondary metabolism in cell cultures of Tanacetum, Mentha and Anethum species in buffered media. Plant sci. 67:107-113.
18.Barbas, E., C. Jay-Allemand, P. Doumas, S. Chaillou, and D Cornu. 1993. Effects of gelling agents on growth mineral composition and naphthoquinone content of in vitro explants of hybrid walnut tree. Ann. Sci. For. 50 : 177-186.
19.Chung, J. P., T. L. Chang, A. Y. M. Chi, C. T. Shii. 2006. Triploid banana cell growth phases and the correlation of medium pH changes with somatic embryogenesis in embryogenic cell suspension culture. Plant Cell, Tiss. Organ Cult. 87:305-314.
20.Conrad, P. L., J. M. Conrad, R. D. Durbin, and J. P. Helgeson. Effects of some organic buffers on division of protoplast derived cells and plant regeneration. Plant physiol. 67, Supple., 116.
21.Cooke, T. J., R. H. Racusen, and J. D. Cohen. 1993. The role of auxin in plant embryogenesis. Plant Cell. 5:1494–1495.
22.Colins, G. B., W. E. Vian, and G. C. Phillips. 1978. Use of 4-amino-3,5,6-
trichloropicolinic acid as an auxin source in plant tissue cultures. Crop Sci. 18:286-288.
23.DeWald, S. G., R. E. Litz, and G. A. Moore. 1989. Optimizing somatic embryo production in mango. J. Amer. Soc. Hort. Sci. 114:712-716.
24.Dhed’a, D., F. Dumortier, B. Panis, D. Vuylsteke, and E. De Langhe. 1991. Plant regeneration in cell suspension cultures of the cooking banana cv. ‘Bluggoe’ (Musa spp. ABB group). Fruits 46:125-135.
25.Danso K. E. and B. V. Ford-Lloyd. 2002.Induction of high-frequency somatic embryos in cassava for cryopreservation. Plant cell Rep. 21:226-232.
26.Ducos, P. J. and A. Pareilleux. 1986. Effect of aeration rate and influence of pCO2 in large-scale cultures of Catharanthus roseus cells. Appl. Microbiol. Biotechnol. 25:101-105.
27.Ekia, H. and C. F. Konzak. 1997. Effects of light regimes on anther culture response in bread wheat. Plant Cell, Tiss. and Organ Cult. 50:7-12.
28.Escalant, J. V., C. Teisson, and F. Cote. 1994. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro Cell. Dev. Biol., Plant. 30:181-186.
29.Escalant, J.V. and C. Teisson. 1989. Somatic embryogenesis and plants from immature zygotic embryos of species Musa acuminata and Musa balbisiana. Plant Cell Rep 7:181-186.
30.Fukuoka, H., T. Ogawa, H. Minami, H. Yano, and Y. Ohkawa. 1996. Developmental stage-specific and nitrate-independent regulation of nitrate reductase gene expression in rapeseed. Plant Physiol. 111:39-47.
31.Feher, A., T. Pasternak, D. Dudits. 2002. Activation of embryogenic cell division in leaf protoplast-derived alfalfa cells: the role of auxin and stress. Acta Biologica Szegediensis. 46:13-14.
32.Filippi, S. B., B. Appezzato-Da-Gloria, A. Pinheiro, Martinellirodriguez. 2001. Histological changes in banana explants, cv. Nanicao (Musa spp., Group AAA), submitted to different auxins for induction of somatic embryogenesis. Revta Brasil. Bot., Sao Paulo. 24:595-602.
33.Feria, M., E. Jiménez, R. Barbón, A. Capote, M. Chávez, and E. Quiala. 2003. Effect of dissolved oxygen concentration on differentiation of somatic embryos of coffea arabica cv. Catimor 9722. Plant Cell, Tiss. and organ Cult. 72:1-6.
34.Gould J., S. Banister, O. Hasegawa, M. Fahima, and R. H. Smith. 1991. Regeneration of Gossypium hirsutum and G.barbadebse from shoot spex tissues for transformation. Plant Cell Rep.10:12–16
35.Gaj, M. D. 2004. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant growth Regul. 43: 27-47.
36.Grapin, A., J. Schwendiman, and C. Teisson. 1996. Somatic embryogenesis in plantain banana. In vitro Cell. Dev. Biol-Plant. 32:66-71.
37.Grapin, A., J.L. Ortiz, R. Domergue, J. Babeau, S. Monmarson, J.V. Escalant, C. Teisson, and F.X. Côte. 1998. Establishment of embryogenic callus and initiation and regeneration of embryogenic cell suspensions from female and male immature flowers of Musa. INFOMUSA. 7:13-15.
38.Grapin, A., J.L. Ortíz, T. Lescot, N. Ferrière, and F.X. Côte. 2000. Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain (Musa AAB). Plant Cell, Tiss. and Organ Cult. 61:237-244.
39.Hohe, A., T. Winkelmann, and H.-G. Schwenkel. 1999. CO2 accumulation in bioreactor suspension cultures of Cyclamen persicum Mill. and its effect on cell growth and regeneration of somatic embryos. Plant cell Rep. 18:863-867.
40.Hecht, V., J-P Vielle-Calzada, M. V. Hartog, E. D. L. Schmidt, K. Boutilier, U. Grossniklaus, and S. C. de Vries. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant physiol. 127:803-816.
41.Harada, J. J., T. Lotan, R. L. Fischer, and R. B. Goldberg. 1998. Embryos without sex. Trends in plant Sci. 3:452-453.
42.Hegarty, P. K., N. J. Smart, A. H. Scragg, and M. W. Fowler. 1986. The aeration of Catharanthus roseus L. G. Don suspension cultures in airlift bioreactors: The inhibitory effect at high aeration rates. J. Exp. Bot. 188:1911-1920.
43.Huang, L. C and D. L. Chi.1988. Pivotal roles of Picloram and Gelrite in banana callus culture. Environ. Exp. Bot. 28: 249-258.
44.Jay, V., S. Genestier, and J. C. Courduroux. 1994. Bioreactor studies of the effect of medium pH on carrot (Daucus carota L.) somatic embryogenesis. Plant Cell, Tiss. and Organ Cult. 36: 205-209
45.Kang, K. S., G. T. Veeder, P. J. Mirrasoul, T. Kaneko, and I. W. Cottrell. 1982. Agar-like polysaccharide produced by a Pseudomonas species: production and basic properties. Appl. Env. Micro. 43: 1086-1091.
46.Kefford, N. P. and O. H. Caso. 1966. A potent auxin with unique chemical structure 4-amino-3,5,6-trichloropicolinic acid. Bot. Gaz. 127:159-163.
47.Kwong, R. W., A .Q. Bui, H. Lee, L. W. Kwong, R. L. Fischer, R. B. Goldberg, and J. J. Harada. 2003. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant cell. 15:5-18.
48.Kurata, K and E. Fukuda. 1995. Effect of dissolved oxygen concentration on carrot somatic embryo production. Acta Hortic. 393:91-96.
49.Kvaalen, H. and S. Arnold. 1991. Effect of various partial pressures of oxygen and carbon dioxide on different stages of somatic embryogenesis in Picea abies. Plant Cell, Tiss. And Organ Cult. 27:49-57.
50.Khalil, S. M., K. T. Cheah, E. A. Perez., D. A. Gaskill, and J. S. Hu. 2002. Regeneration of banana ( Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant cell Rep. 20: 1128-1134.
51.Kosky, R. G., M. F. Silva, L. P. Perez, T. Gilliard, F. B. Martinez, M. R. Vega, M. C. Milian, E. Q. Mendoza. 2002. Somatic embryogenesis of the banana hybrid cultivar FHIA-18(AAAB) in liquid medium and scaled-up in a bioreactor. Plant Cell, Tiss. Organ Cult. 68: 21-26.
52.Koda, T., T. Ichi, H. Yamamgishi, and H. Yoshikawa. 1988. Effect of phytohormones and gelling agents on plant regeneration from protoplasts of red cabbage. Agric. Boil. Chem. 52:2337-2340.
53.Malik, M. 2008. Comparison of different liquid/solid culture systems in the production of somatic embryos from Narcissus L. ovary explants. Plant Cell, Tiss, Organ Cult. 94:337–345.
54.Marino, G., G. Berardi, and M. Ancherani. 1995. The effect of the type of closure on the gas composition of the headspace and the growth of GF 677 peach × almond rootstock cell suspension cultures. In vitro Cell. Dev. Biol.-Plant. 31: 207-210.
55.Ma, S. S. and. C. T. Shii. 1972. In vitro formation of adventitious buds in banana shoot apical following decapitation. J. Chin. Soc. Hort. Sci. 18:135-142.
(Chinese with English summary)
56.Maurel, B. and A. Pareilleux. 1986. Carbon dioxide fixation and growth of heterotrophic cell suspensions of Catharanthus roseus. J. Plant Physiol. 122:347-355.
57.Moltrasion, R., C. G. Robredo, M. C. Gómez, A. H. D. Paleo, D. G. Díaz, R. D. Rios, and P. M. Franzone. 2004. Alfalfa (Medicago sativa) somatic embryogenesis: genetic control and introduction of favourable alleles into elite Argentinean germplasm. Plant Cell, Tiss. and organ Cult. 77:119-124.
58.Murashige, T. and F. S. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.
59.Novak, F. J., R. Afza, M. Van Duren, M. Perea-Dallos, B.V. Confer, and T. Xiolang. 1989. Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp.). Bio/Technology 46:125-135.
60.Nagira, K., M. Hayashida, M. Shiga, K. Sasamoto, K. Kina, K. Osada, T. Sugahara, and H. Murakami. 1995. Effects of organic pH buffers on a cell growth and an antibody production of human-human hybridoma HB4C5 cells in a serum-free culture. Cytotechnology. 17:117-125.
61.Ouma, J. P., M. M. Young, and N. A. Reichert. 2004. Rooting of in vitro regenerated cotton (Gossypium hirsutum L.) is influenced by genotype, medium composition, explant type and age. Afri. J. Bio. 3: 313-318.
62.Okamoto, A., S. Kishine, T. Hirosawa, and A. Nakazono. 1996. Effect of oxygen-enriched aeration on regeneration of rice (Oryza sativa L.) cell culture. Plant cell Rep. 15:731-736.
63.Pasternak, T. P., E. Prinsen, F. Ayaydin, P. Miskolczi, G. Potters, H. Asard, H. A. V. Onckelen, D. Dudits, and A. Feher. 2002. The role of auxins, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol. 129: 1807–1819.
64.Ptak, A. and A Bach. 2007. Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures. In Vitro Cell. Dev. Biol., Plant. 43:35–39.
65.Pérez-Hernández, J. B. and P. Rosell-García. 2008. Inflorescence proliferation for somatic embryogenesis induction and suspension-derived plant regeneration from banana (Musa AAA, cv. ‘Dwarf Cavendish’) male flowers. Plant Cell Rep. 27: 965-971.
66.Parfitt, D. E., A. A. Almehdi, and L. N. Bloksberg. 1988. Use of organic buffers in plant tissue-culture systems. Sci. hortic. 36:157-163.
67.Quiroz-Figueroa, F. R., R. Rojas-Herrera, R. M. Galaz-Avalos, and V. M. Lovola-Vargas. 2006. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tiss. Organ Cult. 86: 285-301.
68.Rider, S. D., J. T. Henderson, R. E. Jerome, H. J. Edenberg, J. Romero-Severson, and J. Ogas. 2003. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. The plant journal. 35: 33–43
69.Saji, K. V. and M. Sujatha. 1998. Embryogenesis and plant regeneration in anther culture of sunflower (Helianthus annuus L.). Euphytica. 103:1-7
70.Sanchez, MC., MC. San-Jose, A. Ballester, and AM Vieitez. 1996. Requirements for in vitro rooting of Quercus robur and Qrubra rubra shoots derived from mature trees. Tree Physio 16:673–680.
71.Scherer, P. A. and E. Muller. 1988. Multitlement analysis of agar and gelrite impurities investigated by inductively coupled plasma emission spectrometry as well as physical properties of tissue culture media prepared with agar of the gellan gum gelrite. Acta Hortic. 225:655-658.
72.Stuart, D.A., Strickland, S. C., and K. A. Walker. 1987. Bioreactor production of alfalfa somatic embryos. Hortscience. 22:800-803.
73.Smith, D. L. and A. D. Krikorian. 1990. Somatic embryogenesis of carrot in hormone-free medium : external pH control over morphogenesis. Am. J. Bot. 12 : 1634-1647.
74.Sharp, W. R., M. R. Shondahl, L. S. Caldas, and S. B. Maraffa. 1980. The physiology of in vitro asexual embryogenesis. Hort. Rev. 2:268-309.
75.Steward, F., M. O. Mapes, and K Mears. 1958. Growth and organized development of cultured cells. Am. J. Bot. 45:705–708.
76.Strosse H., R. Domergue, B. Panis, J.V. Escalant, and F. Côte. 2003. Banana and plantain embryogenic cell suspensions. INIBAP Technical Guidelines 8. The International Network for the Improvement of Banana and Plantain, Montpellier, France.
77.Stover, R.H. and I. W. Buddenhagen. 1986. Banana breeding, polyploidy, disease resistance and productivity. Fruits 41:175–191.
78.Schmidt, E. D. L., F. Guzzo, M. A. J. Toonen, and S. C. Vries. 1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development. 123:2049-2062.
79.Somleva, M. N., E. D. L. Schmidt, and S .C. Vries. 2000. Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant cell Rep. 19:718-726.
80.Sang-un, P and P. J. Facchini. 2001 somatic embryogenesis from embryogenic cell suspension cultures of California poppy, Eschscholzia californica cham. In Vitro Cell. Dev. Biol. Plant. 37:35-39.
81.Stone, S. L., L. W. Kwong, K. M. Yee, J. Pelletier, L. Lepiniec, R. L. Fischer, R. B. Goldberg, and J. J. Harada. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 98:11806–11811.
82.Shimazu, T. and K. Kurata. 2003. Dynamic dissolved oxygen concentration control for enhancing the formation rate of torpedo-stage embryos in carrot somatic embryo culture. Journal of bioscience and bioengineering. 95:384-390.
83.Schenk, R.U. and Hildebrandt, A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany 50:199-204.
84.Toonen, M. A. J., T. Hendriks, E. D. L. Schmidt, Harrie A. Verhoeven, A. van Kammen, S. C. Vries. 1994. Description of somatic-embryo-forming single cells in carrot suspension cultures employin video cell tracking. Planta. 194: 565-572.
85.Thomas, C., R. Bronner, J. M. E. Prinsen, H. Onckelen, and G. Hahne. 2002. Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta. 215:577-583.
86.Verdeil, J-L., L. Alemanno, N. Niemenak, and T. J. Tranbarger. 2007. Pluripotent versus totipotent plant stem cells: dependence versus. Trends plant Sci. 12: 243-252.
87.Vakili, N.G.1967. The experimental formation of polyploidy and its effect in the genus Musa. American Journal of Botany 54: 24-36.
88.Van Ark, H. F., M. A. C. M. Zaal, J. Creemers-Molenaar, and P. Van der Valk. 1991. Improvement of the tissue culture response of seed-derived callus cultures of Poa pratensis L.: effect of gelling agent and abscisic acid. Plant Cell, Tiss. Organ Cult. 27:275-280.
89.Wang, X., X. L. Huang, X. Huang, Y. P. Chen, X. M. Dai, and J. T. Zhao. 2007. Plant regeneration from protoplasts of Musa acuminate cv. Mas (AA) via somatic embryogenesis. Plant Cell, Tiss. Organ Cult. 90:191-200.
90.XU, C. X., B. Panis, H. Strosse, H. P. Li, H. G. Xiao, H. Z. Fan, and R. Swennen. 2005. Establishment of embryogenic cell suspension s and plant regeneration of the dessert banana‘Williams’ (Musa AAA group). Journal of Horticultural Science & Biotechnology. 5: 523-528.
91.Zimmerman, T. W and C. D. Robacker. 1988. Media and gelling agent effect on cotton callus initiation from excised seed hypocotyls. Plant Cell, Tiss. Organ Cult. 15: 269-274.
92.Zuo, J., Q. W. Niu, G. Frugis, and N. H. Chua. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal. 30:349-359.
93.Zimmerman, T. W. and B . G. Cobb. 1989. Vitrification and soluble carbohydrate levels in Petunia leaves as influenced by media Gelrite and sucrose concentrations. Plant Cell Rep. 8:358-360.
94.Zimmerman, R. H., S. V. Bhardwaj, and I. M. Fordham. 1989. Use of starch-gelled medium for tissue culture of some fruit crops. Plant Cell, Tiss. Organ Cult. 43:207-213.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊