跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡賢屏
研究生(外文):Hsien-Ping Hu
論文名稱:探討登革病毒前驅膜/外套膜蛋白質之功能及其與殼蛋白質之間的交互作用
論文名稱(外文):Study of the functions of precursor membrane and envelope proteins of dengue virus and their interactions with capsid protein
指導教授:王維恭
指導教授(外文):Wei-Kung Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:98
中文關鍵詞:登革病毒偽報告病毒外套膜蛋白質前驅膜蛋白質核心蛋白質組裝似病毒顆粒
外文關鍵詞:dengue viruspseudotype reporter virusenvelopeprecursor membranecapsidincorporationvirus-like particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
四種血清型的登革病毒(DENV)在熱帶及亞熱帶造成最重要的經由節肢動物傳播的疾病,包括登革熱及嚴重型的登革出血熱。在過去30年來,全球每年登革出血熱之病例數及報告出現登革出血熱的國家數目增加4倍以上。登革病毒的前驅膜蛋白質(precursor membrane)及外套膜蛋白質(envelope)可形成異質雙體位於病毒顆粒表面,而另一個結構性蛋白質殼蛋白質(capsid)及RNA基因體則位於病毒顆粒內部。前驅膜/外套膜蛋白質是登革病毒細胞嗜性的主要決定因子,也是與保護性或促進疾病有密切相關的中和性抗體及促進性抗體的主要標的。探討前驅膜/外套膜蛋白質的功能以及其與殼蛋白質及病毒顆粒之形成,對於登革疾病致病機轉的瞭解與疫苗之設計與策略將提供重要訊息。
發展登革病毒的全長及嵌合型感染性克隆,可以在完整病毒顆粒的狀態下研究前驅膜蛋白質及外套膜蛋白質的功能,但是由於操作起來費時費力,限制了其廣泛的應用。本研究的第一個目標,是要發展以反轉錄病毒為基礎的報告病毒系統來探討登革病毒前驅膜/外套膜蛋白質的功能。我們已成功的建立了以反轉錄病毒為核心,由第二型登革病毒前驅膜/外套膜蛋白質所構成的偽報告病毒D2(HIVluc)。利用蔗糖梯度分析偽報告病毒,顯示大部分登革病毒的外套膜蛋白質及人類免疫缺乏病毒(HIV-1)的核心蛋白質沉澱在同一個濃度梯度。此外,在免疫沉澱實驗中,利用抗外套膜蛋白質單株抗體沉澱偽報告病毒可以偵測到人類免疫缺乏病毒的核心蛋白質,這些證據顯示登革病毒的外套膜蛋白質及人類免疫缺乏病毒的核心蛋白質是組裝在偽報告病毒中。偽報告病毒的感染力可以被趨溶酶體性(lysosomotropic)藥物抑制,顯示偽報告病毒感染進入細胞是經由受pH值影響的機制完成。另一方面我們也建立了由其他三型登革病毒的前驅膜/外套膜蛋白質所構成的偽報告病毒。把外套膜蛋白質上融合環(fusion loop)中參與外套膜與細胞膜融合步驟之重要胺基酸,即第107位置的白胺酸(leucine)改變為離胺酸(lysine)時,會造成偽報告病毒感染力嚴重的影響,顯示偽報告病毒進入細胞與外套膜蛋白質所主導的融合步驟有關。隨著越來越多的登革病毒序列在全球爆發疫情之中國家陸續被報告出來,我們所發展的四型登革病毒之偽報告病毒是靈敏度高又方便的工具,有潛力可促進對田野登革病毒株前驅膜蛋白質及外套膜蛋白質分子特性之瞭解,並且可助於未來抑制登革病毒進入細胞藥物的篩選。
以低溫電子顯微鏡研究登革病毒顆粒顯示病毒的核心及膜之間有一個明顯的空隙,這個發現引發一個重要的問題,病毒的前驅膜蛋白質與外套膜蛋白質在病毒組裝的過程中是否與殼蛋白質交互作用而影響其組裝。在前驅膜蛋白質與外套膜蛋白質的C端中各有兩個穿膜區域(transmembrane domains),而在兩個穿膜區域之間均有一個在許多黃病毒科成員中都高度保守性的正電性胺基酸,包括精胺酸(arginine)或是離胺酸(lysine)。在本研究的第二個目標中,我們使用點突變法以第一型及第四型登革病毒的前驅膜/外套膜蛋白質表現質體,探討這兩個胺基酸在似病毒顆粒(virus-like particles)形成以及組裝核心蛋白質的過程中扮演的角色。當前驅膜蛋白質的精胺酸或是離胺酸被取代為麩胺酸(glutamic acid)會降低似病毒的形成量。然而,將外套膜蛋白質胺基酸471的精胺酸(arginine)取代為丙胺酸(alanine) (E471RA)或是麩胺酸(glutamic acid) (E471RE)會增加殼蛋白質組裝進入似病毒顆粒。這種殼蛋白質在組裝時增加的情形,也會在殼蛋白質α1上端的兩個正電性胺基酸突變為負電性胺基酸時發生,但是同樣在殼蛋白質α2上有兩個正電性胺基酸突變負電性胺基酸,則不會增加殼蛋白質組裝進入似病毒顆粒。除此之外,殼蛋白質可以在同時表現殼蛋白質、前驅膜蛋白質及外套膜蛋白質的細胞中被抗外套膜蛋白質之單株抗體免疫沉澱下來。但是將缺乏前驅膜/外套膜蛋白質的複製子(replicon)與突變之前驅膜/外套膜蛋白質E471RA或是E471RE一同送入細胞中,殼蛋白質組裝進入似病毒顆粒反而會減少。總結來說,這些結果暗示著在病毒顆粒組裝的過程中,外套膜蛋白質會與殼蛋白質交互作用,並且外套膜蛋白質E471R會調節殼蛋白質組裝進入似病毒顆粒。我們提出一個模式來解釋這些發現,外套膜蛋白質胺基酸471的精胺酸以及周圍非疏水性(non-hydrophobic)胺基酸暴露在細胞膜的細胞溶質側(cytosolic side)而非埋在細胞膜內。並且,外套膜蛋白質胺基酸471的正電性可以阻止與新合成切割好的鹼性(basic)殼蛋白質的結合以及組裝,同時也可以等候殼蛋白質將新合成的RNA基因體組包裹好後再組裝起來。這兩個位於α1螺旋的正電性胺基酸可能參與在一開始外套膜蛋白質胺基酸471的精胺酸與負電性的細胞膜表面交互作用。未來利用建立在全長感染性克隆中前驅膜/外套膜蛋白質及殼蛋白質上相似的突變,探討其產生具感染性病毒顆粒的情形,可以進一步的証實這個模式。
總結本研究的目的是要建立一個四型登革病毒的報告偽病毒系統,有助於前驅膜/外套膜蛋白質的分子特性之研究,同時探討前驅膜/外套膜蛋白質與殼蛋白質在形成病毒顆粒時的交互作用。未來將擴展這個系統及觀察不僅可證明我們提出的模式及其應用性,而且可就我們對前驅膜/外套膜蛋白質及殼蛋白質的功能、交互作用及致病機轉的瞭解,提供新的啟示。
The four serotypes of dengue viruses (DENV) cause the most important arboviral diseases in the tropical and subtropical regions, including dengue fever (DF) and dengue hemorrhagic fever (DHF), a severe form of disease. During the past 30 years, the numbers of DHF cases and of countries reported to have DHF have increased by more than 4 folds. The precursor membrane (PrM) and envelope (E) proteins, which form a heterodimer, are present on the surface of virion, whereas capsid (C) protein, another structural protein, and RNA genome are present inside the virion. PrM/E proteins are the major determinants of cellular tropism and the major targets of both neutralizing and enhancing antibodies, which are known to play a critical role in protection or enhancement of disease. Studying the functions of PrM/E proteins as well as the relationships to C protein in the formation of DENV particles would provide important information not only for our understanding of the pathogenesis of dengue diseases, but also for vaccine strategies against DENV.
The development of full-length and chimeric infectious clones of DENV has made it possible to study the functions of PrM/E proteins in the context of viral particles, however, the laborious and time-consuming steps involved have restricted its wide use. The first specific aim of this study is to generate retrovirus-based reporter viral system containing PrM/E proteins of DENV to study their functions. We have successfully established a retrovirus-based reporter virus pseudotyped with the PrM/E proteins of DENV2, D2(HIVluc). Co-sedimentation of the majority of E protein and HIV-1 core proteins by sucrose gradient analysis and detection of HIV-1 core proteins by immunoprecipitation of particles with anti-E monoclonal antibody (Mab) suggested that the PrM/E proteins were incorporated into the pseudotype viral particles. The infectivity in target cells can be quickly assessed by the luciferase activity, which was found to be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Pseudotype reporter viruses containing the PrM/E proteins of other three serotypes, D1(HIVluc), D3(HIVluc) and D4(HIVluc), were also established. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more DENV sequences available from outbreaks in different countries of the world, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates and to screen for entry inhibitors in the future.
Cryo-electron microscopic study of DENV particles revealed a distinct gap between core and membrane, and raised the question whether PrM and E proteins interact with C protein during assembly and affect its incorporation. Between the two transmembrane (TM) domains of both PrM and E proteins, there is a positively charged residue, arginine or lysine, highly conserved by different flaviviruses. In the second specific aim of this study, we investigated the roles of these two residues in the formation of virus-like particles (VLPs) and incorporation of C protein by site-directed mutagenesis in the DENV1 and DENV4 PrM/E expressing constructs. Substitutions of the lysine or arginine of PrM protein with glutamic acid reduced the formation of VLPs. Substitutions of the arginine of E protein with alanine (E471RA) or glutamic acid (E471RE) but not lysine increased the incorporation of C protein into VLPs. The incorporation was also increased by substitutions of two positively charged residues at the upper edge of α1 helix of C protein, but not by those atα2 helix, with two negatively charged residues. Moreover, C protein was co-immunoprecipitated by anti-E Mab in cells expressing C and PrM/E proteins. Co-transfection of mutants E471RA or E471RE with a previously described replicon containing deletion of PrM/E genes decreased rather than increased the incorporation of C protein. Taken together, these findings suggest that during the process of assembly, E protein interacts with C protein and residue E471R is involved in modulating the incorporation of C protein into VLPs. We proposed a model, in which residue E471R as well as the surrounding non-hydrophobic residue is exposed on the cytosolic side rather than buried inside the membrane and the presence of the positively charged residue E471R could prevent the binding and incorporation of the newly cleaved basic C protein and await the C protein already packaged with nascent RNA genome to incorporate. The two positively charged residues atα1 helix are probably involved in the initial interaction with E471R on the negative surface of membrane. Further studies introducing similar mutations into PrM/E and C proteins in the context of full-length infectious clones are needed to verify this model in the production of infectious virions.
The overall objective of this study is to establish a reporter viral system of 4 serotypes of DENV to facilitate molecular characterization of PrM/E proteins as well as to understand how PrM/E proteins interact with C protein to form virus particles. Future studies extending the system and the observations in this study would not only validate the applications and the model established here but also provide new insights into our understanding of the functions and interaction of PrM/ E and C proteins as well as the pathogenesis of dengue disease.
口試委員會審定書…………………………………………………………………. i
Acknowledgement…………………………………………………………………. ii
Abstract (Chinese)…………………………………………………………………. iii
Abstract……...……………………………………………………………………... vi
Chapter 1: Introduction……..…………………………………………………….. 1
1.1 History and classification of dengue virus……………………………………………………... 1
1.2 Clinical features of DENV infection…………………………………………………………… 2
1.3 Genome organization of DENV………………………………………………………………... 4
1.4 Replication cycle of DENV…………………………………………………............................. 5
1.5 Structural proteins……………………………………………………………………………… 6
1.6 VLPs………………………………………….………………………………………………… 12
1.7 Pseudotype reporter virus…………………………….………………………………………… 13
1.8 Specific aims…………………………………………………………………………………… 15
Chapter 2: Materials and Methods….…………………………………………… 17
2.1 Construction of PrM/E and C expression plasmids…………………………………………….. 17
2.2 Cell culture……………………………………………………………………………………... 21
2.3 DNA Transfection……………………………………………………………………………… 22
2.4 Sucrose cushion ultracentrifugation…………………………………………............................. 23
2.5 Pseudotype reporter virus infection…………………………………………............................. 24
2.6 Inhibition of entry……………………………………………………………………………… 24
2.7 Cytotoxicity Assay……………………………………………………………………………... 25
2.8 Western bolt analysis……………………………………………….…………………………... 25
2.9 Sucrose gradient ultracentrifugation…………………………………………………………… 27
2.10 Electron microscopy…………………………………………………………………………... 28
2.11 Immunoprecipitation………………………………………………………………………….. 28
2.12 Binding of pseudotype reporter virus to target cells………………………………………….. 29
2.13 Radioimmunoprecipitation…………………………………………………............................. 30
2.14 Quantification software……………………………………………………………………….. 31
2.15 Immunoprecipitation of VLPs containing C protein………………………………………….. 31
2.16 Incorporation of replicon into VLPs………………………………………………………….. 31
2.17 Detection of dengue viral RNA in VLPs……………………………………………………… 32
2.18 Infectivity of VLPs…...…………………………………………………….............................. 33
Chapter 3: Results…………………………………………………………………. 35
3.1 Generation of pseudotype reporter viruses containing PrM/E protein of DENV2……………………………………………………………………….............................
35
3.2 Incorporation of PrM/E proteins into pseudotype reporter virus……………............................. 36
3.3 The pseudotype reporter viruses are infectious………………………………………………… 38
3.4 pH-dependent entry of pseudotype reporter virus……………………………………………… 39
3.5 Pseudotype reporter viruses containing PrM/E proteins of other serotypes…………………… 40
3.6 Pseudotype reporter viruses containing mutant E proteins…………………………………….. 40
3.7 Highly conserved positively charged residue between M-T1 and M-T2 is involved in VLP formation………………………………………………………………………………………..
42
3.8 Substitutions introduced to the highly conserved positively charged residues between T1 and T2 domains of PrM and E proteins do not inhibit PrM-E heterodimerization………………………………………………………………………………

44
3.9 Highly conserved positively charged residue between E-T1 and E-T2 is involved in incorporation of C protein into VLPs…………………………………………………………...
44
3.10 Positively charged residues atα1 helix of C protein affect the incorporation of C protein into VLPs……………………………………………………………………………………...
47
3.11 Interaction between C and E proteins………………………………………………………… 49
3.12 Highly conserved positively charged residue between E-T1 and E-T2 is involved in incorporation of C protein derived from replicon into VLPs………………………………….
50
Chapter 4: Discussion…..…………………………………………………………. 52
4.1 Establishment and application of the pseudotype reporter viruses of DENV………………..… 52
4.2 Physical properties and infectivity of the pseudotype reporter viruses………………………… 53
4.3 Infectivity of the pseudotype reporter viruses………………………………………………….. 56
4.4 The interaction between C and PrM/E proteins during viral assembly……............................... 58
4.5 A proposed model of incorporation of nucleocapsid into particles…………............................. 59
4.6 Studies of charged residues between E-T1, E-T2 and M-T1, M-T2 in different members of flavivirus………………………………………………………………………………………..
63
Chapter 5: References……………………………………………………………... 65
Figures…...…………………………………………………………………………. 79

Fig.1. Schematic drawing of DENV PrM/E proteins and the positively charged residues between two TM domains of PrM and E proteins highly conserved among different flaviviruses...………...
79
Fig.2. Generation of pseudotype reporter viruses, D2(HIVluc) and D2VSV(HIVluc).……………… 81
Fig.3. Sucrose gradient analysis of pseudotype reporter viruses, D2(HIVluc) and D2VSV(HIVluc).. 82
Fig.4. Immunoprecipitation of the pseudotype reporter virus, D2(HIVluc).….................................... 83
Fig.5. Relationship between inoculum and luciferase activity of the pseudotype reporter viruses.…. 84
Fig.6. pH dependency of infectivity of the pseudotype reporter virus, D2(HIVluc).……….....…….. 85
Fig.7. Generation of pseudotype reporter viruses, D1(HIVluc), D3(HIVluc) and D4(HIVluc).…….. 86
Fig.8. Pseudotype reporter viruses containing mutant E proteins.………............................................ 87
Fig.9. Expression of PrM/E proteins and production of VLPs by constructs containing mutations in the highly conserved positively charged residues between two TM domains of PrM and E proteins of DENV1 (A) and DENV4 (B).……………………………………………………..........

88
Fig.10. Heterodimerization between PrM and E proteins.…................................................................ 89
Fig.11. Incorporation of C protein into VLPs containing mutations of the positively charged residue between E-T1 and E-T2 (A) or of two positively charged residues atα1 (B) orα2 (C) helix of C protein.…............................................................................................................................................

90
Fig.12. Incorporation of C protein into VLPs containing mutations in the highly conserved positively charged residues between two TM domains of E and PrM proteins of DENV1...............
91
Fig.13. Sucrose gradient analysis and immunoprecipitation of VLPs containing C protein (A, B, C). 92
Fig.14. Interaction between C and E proteins....................................................................................... 93
Fig.15. Incorporation of replicon into VLPs containing mutations in the highly conserved positively charged residues between E-T1 and E-T2 of DENV4 (A, B) and DENV1 (C, D)............
94
Fig.16. Electron micrographs of pellets of D2(HIVluc) derived from ultracentrifugation of culture supernatants of 293T cells transfected with pCB-D2 and pNL4-3.Luc.R-E-…………………….…
95
Fig.17. Binding of the pseudotype reporter virus, D2(HIVluc) to target cells………………….…..... 96
Fig.18. Recognition of E and PrM proteins of four serotypes of DENV by serum from a confirmed DENV2 patient.………………………………………………………………...…………………...
97
Fig.19. A proposed model of interaction between C and E proteins in the cells and incorporation of nucleocapsid into VLPs.…………………………………………………………………...............
98
Akkina,R.K., Walton,R.M., Chen,M.L., Li,Q.X., Planelles,V., and Chen,I.S. (1996). High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581-2585.
Allison,S.L., Schalich,J., Stiasny,K., Mandl,C.W., and Heinz,F.X. (2001). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268-4275.
Allison,S.L., Schalich,J., Stiasny,K., Mandl,C.W., Kunz,C., and Heinz,F.X. (1995a). Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695-700.
Allison,S.L., Stadler,K., Mandl,C.W., Kunz,C., and Heinz,F.X. (1995b). Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J. Virol. 69, 5816-5820.
Allison,S.L., Stiasny,K., Stadler,K., Mandl,C.W., and Heinz,F.X. (1999). Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. J. Virol. 73, 5605-5612.
Allison,S.L., Tao,Y.J., O''Riordain,G., Mandl,C.W., Harrison,S.C., and Heinz,F.X. (2003). Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus. J. Virol. 77, 11357-11366.
Amberg,S.M., Nestorowicz,A., McCourt,D.W., and Rice,C.M. (1994). NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J. Virol. 68, 3794-3802.
Amberg,S.M. and Rice,C.M. (1999). Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J. Virol. 73, 8083-8094.
Anderson,R., Wang,S., Osiowy,C., and Issekutz,A.C. (1997). Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J. Virol. 71, 4226-4232.
Ashburn,P.M. and Craig,C.F. (2004). Experimental investigations regarding the etiology of dengue fever. 1907. J. Infect. Dis. 189, 1747-1783.
Bancroft,T.I. (1906). On the aetiology of dengue fever. Austr. Med. Gazette. 25, 17-18.
Bartosch,B., Dubuisson,J., and Cosset,F.L. (2003). Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J. Exp. Med. 197, 633-642.
Bartz,S.R., Rogel,M.E., and Emerman,M. (1996). Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J. Virol. 70, 2324-2331.
Besnier,C., Takeuchi,Y., and Towers,G. (2002). Restriction of lentivirus in monkeys. Proc. Natl. Acad. Sci. U. S. A 99, 11920-11925.
Blaney,J.E., Jr., Hanson,C.T., Firestone,C.Y., Hanley,K.A., Murphy,B.R., and Whitehead,S.S. (2004). Genetically modified, live attenuated dengue virus type 3 vaccine candidates. Am. J. Trop. Med. Hyg. 71, 811-821.
Bray,M. and Lai,C.J. (1991). Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc. Natl. Acad. Sci. U. S. A 88, 10342-10346.
Bray,M., Men,R., Tokimatsu,I., and Lai,C.J. (1998). Genetic determinants responsible for acquisition of dengue type 2 virus mouse neurovirulence. J. Virol. 72, 1647-1651.
Bressanelli,S., Stiasny,K., Allison,S.L., Stura,E.A., Duquerroy,S., Lescar,J., Heinz,F.X., and Rey,F.A. (2004). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728-738.
Buonocore,L., Blight,K.J., Rice,C.M., and Rose,J.K. (2002). Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J. Virol. 76, 6865-6872.
Burns,J.C., Friedmann,T., Driever,W., Burrascano,M., and Yee,J.K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci U. S. A 90, 8033-8037.
Carrington,C.V., Foster,J.E., Pybus,O.G., Bennett,S.N., and Holmes,E.C. (2005). Invasion and maintenance of dengue virus type 2 and type 4 in the Americas. J. Virol. 79, 14680-14687.
Chan,S.Y., Empig,C.J., Welte,F.J., Speck,R.F., Schmaljohn,A., Kreisberg,J.F., and Goldsmith,M.A. (2001). Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 106, 117-126.
Chang,G.J., Hunt,A.R., Holmes,D.A., Springfield,T., Chiueh,T.S., Roehrig,J.T., and Gubler,D.J. (2003). Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus. Virology 306, 170-180.
Chen,C. and Okayama,H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell Biol. 7, 2745-2752.
Chen,W., Kawano,H., Men,R., Clark,D., and Lai,C.J. (1995). Construction of intertypic chimeric dengue viruses exhibiting type 3 antigenicity and neurovirulence for mice. J. Virol. 69, 5186-5190.
Ciczora,Y., Callens,N., Penin,F., Pecheur,E.I., and Dubuisson,J. (2007). Transmembrane domains of hepatitis C virus envelope glycoproteins: residues involved in E1E2 heterodimerization and involvement of these domains in virus entry. J. Virol. 81, 2372-2381.
Cleaves,G.R. and Dubin,D.T. (1979). Methylation status of intracellular dengue type 2 40 S RNA. Virology 96, 159-165.
Cleland,J.B. (1918). Dengue fever in Australia: its history and clinical course, its experimental tansmission by Stegomyia fasciata, and the results of inoculation and other experiments. The Journal of hygiene 16, 317-419.
Cocquerel,L., Wychowski,C., Minner,F., Penin,F., and Dubuisson,J. (2000). Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. J. Virol. 74, 3623-3633.
Connor,R.I., Chen,B.K., Choe,S., and Landau,N.R. (1995). Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206, 935-944.
Crill,W.D. and Chang,G.J. (2004). Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J. Virol. 78, 13975-13986.
Cronin,J., Zhang,X.Y., and Reiser,J. (2005). Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387-398.
Davis,B.S., Chang,G.J., Cropp,B., Roehrig,J.T., Martin,D.A., Mitchell,C.J., Bowen,R., and Bunning,M.L. (2001). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J. Virol. 75, 4040-4047.
Deng,H., Liu,R., Ellmeier,W., Choe,S., Unutmaz,D., Burkhart,M., Di Marzio,P., Marmon,S., Sutton,R.E., Hill,C.M., Davis,C.B., Peiper,S.C., Schall,T.J., Littman,D.R., and Landau,N.R. (1996). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661-666.
Deng,H.K., Unutmaz,D., KewalRamani,V.N., and Littman,D.R. (1997). Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296-300.
Diamond,M.S., Edgil,D., Roberts,T.G., Lu,B., and Harris,E. (2000). Infection of human cells by dengue virus is modulated by different cell types and viral strains. J. Virol. 74, 7814-7823.
Dietz,V., Gubler,D.J., Ortiz,S., Kuno,G., Casta-Velez,A., Sather,G.E., Gomez,I., and Vergne,E. (1996). The 1986 dengue and dengue hemorrhagic fever epidemic in Puerto Rico: epidemiologic and clinical observations. P. R. Health Sci J. 15, 201-210.
Ferlenghi,I., Clarke,M., Ruttan,T., Allison,S.L., Schalich,J., Heinz,F.X., Harrison,S.C., Rey,F.A., and Fuller,S.D. (2001). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol. Cell 7, 593-602.
Fukushi,S., Mizutani,T., Saijo,M., Matsuyama,S., Miyajima,N., Taguchi,F., Itamura,S., Kurane,I., and Morikawa,S. (2005). Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein. J. Gen. Virol. 86, 2269-2274.
Giroglou,T., Cinatl,J., Jr., Rabenau,H., Drosten,C., Schwalbe,H., Doerr,H.W., and von Laer,D. (2004). Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J. Virol. 78, 9007-9015.
Goff,S.P. (2007). Retroviridae: The retroviruses and their replication. In Fields Virology, D.M.Knipe and P.M.Howley, eds. (Philadelphia, Pa: Lippincott Williams & Wilkins), pp. 1999-2069.
Green,S. and Rothman,A. (2006). Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr. Opin. Infect. Dis. 19, 429-436.
Gualano,R.C., Pryor,M.J., Cauchi,M.R., Wright,P.J., and Davidson,A.D. (1998). Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J. Gen. Virol. 79 ( Pt 3), 437-446.
Gubler,D.J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480-496.
Gubler,D.J. (2002). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100-103.
Gubler,D.J., Kuno,G., and Markoff,L. (2007). Flaviviruses. In Fields Virology, D.M.Knipe and P.M.Howley, eds., pp. 1155-1252.
Guirakhoo,F., Hunt,A.R., Lewis,J.G., and Roehrig,J.T. (1993). Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology 194, 219-223.
Guzman,M.G. and Kouri,G. (2002). Dengue: an update. Lancet Infect. Dis. 2, 33-42.
Halstead,S.B. (1988). Pathogenesis of dengue: challenges to molecular biology. Science 239, 476-481.
Hanika,A., Larisch,B., Steinmann,E., Schwegmann-Wessels,C., Herrler,G., and Zimmer,G. (2005). Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J. Gen. Virol. 86, 1455-1465.
He,R.T., Innis,B.L., Nisalak,A., Usawattanakul,W., Wang,S., Kalayanarooj,S., and Anderson,R. (1995). Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J. Med. Virol. 45, 451-461.
Heinz,F.X., Stiasny,K., Puschner-Auer,G., Holzmann,H., Allison,S.L., Mandl,C.W., and Kunz,C. (1994). Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109-117.
Henchal,E.A., Gentry,M.K., McCown,J.M., and Brandt,W.E. (1982). Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am. J. Trop. Med. Hyg. 31, 830-836.
Hsieh,P.K., Chang,S.C., Huang,C.C., Lee,T.T., Hsiao,C.W., Kou,Y.H., Chen,I.Y., Chang,C.K., Huang,T.H., and Chang,M.F. (2005). Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79, 13848-13855.
Hsieh,S.C., Liu,I.J., King,C.C., Chang,G.J., and Wang,W.K. (2008). A strong endoplasmic reticulum retention signal in the stem-anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology 374, 338-350.
Hsu,M., Zhang,J., Flint,M., Logvinoff,C., Cheng-Mayer,C., Rice,C.M., and McKeating,J.A. (2003). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. U. S. A 100, 7271-7276.
Hu,H.P., Hsieh,S.C., King,C.C., and Wang,W.K. (2007). Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses. Virology 368, 376-387.
Hunt,A.R., Cropp,C.B., and Chang,G.J. (2001). A recombinant particulate antigen of Japanese encephalitis virus produced in stably-transformed cells is an effective noninfectious antigen and subunit immunogen. J. Virol. Methods 97, 133-149.
Jones,C.T., Ma,L., Burgner,J.W., Groesch,T.D., Post,C.B., and Kuhn,R.J. (2003). Flavivirus capsid is a dimeric alpha-helical protein. J. Virol. 77, 7143-7149.
Kapoor,M., Zhang,L., Mohan,P.M., and Padmanabhan,R. (1995). Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene 162, 175-180.
Keelapang,P., Sriburi,R., Supasa,S., Panyadee,N., Songjaeng,A., Jairungsri,A., Puttikhunt,C., Kasinrerk,W., Malasit,P., and Sittisombut,N. (2004). Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J. Virol. 78, 2367-2381.
Khromykh,A.A., Varnavski,A.N., Sedlak,P.L., and Westaway,E.G. (2001). Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J. Virol. 75, 4633-4640.
Kiermayr,S., Kofler,R.M., Mandl,C.W., Messner,P., and Heinz,F.X. (2004). Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles. J. Virol. 78, 8078-8084.
Kimura,R. and Hotta,S. (1944). Studies on dengue fever (VI). On the inoculation of dengue virus to mice (in Japanese). Nippon Igaku 3380, 629-633.
Kinney,R.M., Butrapet,S., Chang,G.J., Tsuchiya,K.R., Roehrig,J.T., Bhamarapravati,N., and Gubler,D.J. (1997). Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230, 300-308.
Kofler,R.M., Heinz,F.X., and Mandl,C.W. (2002). Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence. J. Virol. 76, 3534-3543.
Kofler,R.M., Leitner,A., O''Riordain,G., Heinz,F.X., and Mandl,C.W. (2003). Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C. J. Virol. 77, 443-451.
Konishi,E. and Fujii,A. (2002). Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20, 1058-1067.
Konishi,E. and Mason,P.W. (1993). Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J. Virol. 67, 1672-1675.
Konishi,E., Pincus,S., Paoletti,E., Shope,R.E., Burrage,T., and Mason,P.W. (1992). Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology 188, 714-720.
Kroeger,M.A. and McMinn,P.C. (2002). Murray Valley encephalitis virus recombinant subviral particles protect mice from lethal challenge with virulent wild-type virus. Arch. Virol. 147, 1155-1172.
Kuhn,R.J., Zhang,W., Rossmann,M.G., Pletnev,S.V., Corver,J., Lenches,E., Jones,C.T., Mukhopadhyay,S., Chipman,P.R., Strauss,E.G., Baker,T.S., and Strauss,J.H. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717-725.
Kummerer,B.M. and Rice,C.M. (2002). Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 76, 4773-4784.
Kurane,I., Kontny,U., Janus,J., and Ennis,F.A. (1990). Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch. Virol. 110, 91-101.
Lai,C.J., Zhao,B.T., Hori,H., and Bray,M. (1991). Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc. Natl. Acad. Sci. U. S. A 88, 5139-5143.
Lai,C.Y., Hu,H.P., King,C.C., and Wang,W.K. (2008). Incorporation of dengue virus replicon into virus-like particles by a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2. J. Biomed. Sci. 15, 15-27.
Landau,N.R., Page,K.A., and Littman,D.R. (1991). Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J. Virol. 65, 162-169.
Lee,C.N., Wang,W.K., Fan,W.S., Twu,S.J., Chen,S.C., Sheng,M.C., and Chen,M.Y. (2000a). Determination of human immunodeficiency virus type 1 subtypes in Taiwan by vpu gene analysis. J. Clin. Microbiol. 38, 2468-2474.
Lee,E., Stocks,C.E., Amberg,S.M., Rice,C.M., and Lobigs,M. (2000b). Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage In vitro is lethal for virus production. J. Virol. 74, 24-32.
Li,L., Lok,S.M., Yu,I.M., Zhang,Y., Kuhn,R.J., Chen,J., and Rossmann,M.G. (2008). The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 1830-1834.
Liao,M. and Kielian,M. (2005). Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J. Cell Biol. 171, 111-120.
Lin,S.R., Hsieh,S.C., Yueh,Y.Y., Lin,T.H., Chao,D.Y., Chen,W.J., King,C.C., and Wang,W.K. (2004). Study of sequence variation of dengue type 3 virus in naturally infected mosquitoes and human hosts: implications for transmission and evolution. J. Virol. 78, 12717-12721.
Lin,Y.J. and Wu,S.C. (2005). Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus. J. Virol. 79, 8535-8544.
Lindenbach,B.D., Thiel,H.J., and Rice,C.M. (2007). Flaviviridae: the viruses and their replication. In Fields virology, D.M.Knipe and P.M.Howley, eds. (Philadelphia,Pa.: Lippincott William & Wilkins), pp. 1101-1152.
Liu,M.T., Hu,H.P., Hsu,T.Y., and Chen,J.Y. (2003a). Site-directed mutagenesis in a conserved motif of Epstein-Barr virus DNase that is homologous to the catalytic centre of type II restriction endonucleases. J. Gen. Virol. 84, 677-686.
Liu,W.J., Chen,H.B., and Khromykh,A.A. (2003b). Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J. Virol. 77, 7804-7813.
Liu,W.J., Sedlak,P.L., Kondratieva,N., and Khromykh,A.A. (2002). Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J. Virol. 76, 10766-10775.
Lobigs,M. (1993). Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc. Natl. Acad. Sci. U. S. A 90, 6218-6222.
Lobigs,M. and Lee,E. (2004). Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J. Virol. 78, 178-186.
Lok,S.M., Kostyuchenko,V., Nybakken,G.E., Holdaway,H.A., Battisti,A.J., Sukupolvi-Petty,S., Sedlak,D., Fremont,D.H., Chipman,P.R., Roehrig,J.T., Diamond,M.S., Kuhn,R.J., and Rossmann,M.G. (2008). Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat. Struct. Mol. Biol. 15, 312-317.
Lorenz,I.C., Allison,S.L., Heinz,F.X., and Helenius,A. (2002). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 76, 5480-5491.
Lozach,P.Y., Burleigh,L., Staropoli,I., Navarro-Sanchez,E., Harriague,J., Virelizier,J.L., Rey,F.A., Despres,P., Arenzana-Seisdedos,F., and Amara,A. (2005). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J. Biol. Chem. 280, 23698-23708.
Lyles,D.S. and Rupprecht,C.E. (2007). Rhabdoviridae. In Fields Virology, D.M.Knipe and P.M.Howley, eds. (Philadelphia, Pa: Lippincott Williams & Wilkins), pp. 1363-1408.
Ma,L., Jones,C.T., Groesch,T.D., Kuhn,R.J., and Post,C.B. (2004). Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl. Acad. Sci. U. S. A 101, 3414-3419.
Ma,M., Kersten,D.B., Kamrud,K.I., Wool-Lewis,R.J., Schmaljohn,C., and Gonzalez-Scarano,F. (1999). Murine leukemia virus pseudotypes of La Crosse and Hantaan Bunyaviruses: a system for analysis of cell tropism. Virus Res. 64, 23-32.
Makarova,O., Kamberov,E., and Margolis,B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972.
Marguet,D., Lenne,P.F., Rigneault,H., and He,H.T. (2006). Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J. 25, 3446-3457.
Markoff,L., Falgout,B., and Chang,A. (1997). A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233, 105-117.
Marovich,M., Grouard-Vogel,G., Louder,M., Eller,M., Sun,W., Wu,S.J., Putvatana,R., Murphy,G., Tassaneetrithep,B., Burgess,T., Birx,D., Hayes,C., Schlesinger-Frankel,S., and Mascola,J. (2001). Human dendritic cells as targets of dengue virus infection. J. Investig. Dermatol. Symp. Proc. 6, 219-224.
Mason,P.W., Pincus,S., Fournier,M.J., Mason,T.L., Shope,R.E., and Paoletti,E. (1991). Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology 180, 294-305.
Matsuura,Y., Tani,H., Suzuki,K., Kimura-Someya,T., Suzuki,R., Aizaki,H., Ishii,K., Moriishi,K., Robison,C.S., Whitt,M.A., and Miyamura,T. (2001). Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286, 263-275.
Mellman,I., Fuchs,R., and Helenius,A. (1986). Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663-700.
Modis,Y., Ogata,S., Clements,D., and Harrison,S.C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. U. S. A 100, 6986-6991.
Modis,Y., Ogata,S., Clements,D., and Harrison,S.C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313-319.
Moore,M.J., Dorfman,T., Li,W., Wong,S.K., Li,Y., Kuhn,J.H., Coderre,J., Vasilieva,N., Han,Z., Greenough,T.C., Farzan,M., and Choe,H. (2004). Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J. Virol. 78, 10628-10635.
Mukhopadhyay,S., Kuhn,R.J., and Rossmann,M.G. (2005). A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13-22.
Murray,J.M., Aaskov,J.G., and Wright,P.J. (1993). Processing of the dengue virus type 2 proteins prM and C-prM. J. Gen. Virol. 74 ( Pt 2), 175-182.
Naldini,L., Blomer,U., Gallay,P., Ory,D., Mulligan,R., Gage,F.H., Verma,I.M., and Trono,D. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-267.
Navarro-Sanchez,E., Altmeyer,R., Amara,A., Schwartz,O., Fieschi,F., Virelizier,J.L., Arenzana-Seisdedos,F., and Despres,P. (2003). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 4, 723-728.
Nie,Y., Wang,P., Shi,X., Wang,G., Chen,J., Zheng,A., Wang,W., Wang,Z., Qu,X., Luo,M., Tan,L., Song,X., Yin,X., Chen,J., Ding,M., and Deng,H. (2004). Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem. Biophys. Res. Commun. 321, 994-1000.
Nowak,T. and Wengler,G. (1987). Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology 156, 127-137.
Nybakken,G.E., Oliphant,T., Johnson,S., Burke,S., Diamond,M.S., and Fremont,D.H. (2005). Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437, 764-769.
Op,D.B., Molenkamp,R., Caron,M., Ben Younes,A., Bredenbeek,P., and Dubuisson,J. (2003). Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope. J. Virol. 77, 813-820.
Op,D.B., Montserret,R., Duvet,S., Cocquerel,L., Cacan,R., Barberot,B., Le Maire,M., Penin,F., and Dubuisson,J. (2000). The transmembrane domains of hepatitis C virus envelope glycoproteins E1 and E2 play a major role in heterodimerization. J. Biol. Chem. 275, 31428-31437.
Op,D.B., Rouille,Y., Caron,M., Duvet,S., and Dubuisson,J. (2004). The transmembrane domains of the prM and E proteins of yellow fever virus are endoplasmic reticulum localization signals. J. Virol. 78, 12591-12602.
Page,K.A., Landau,N.R., and Littman,D.R. (1990). Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270-5276.
Patkar,C.G., Jones,C.T., Chang,Y.H., Warrier,R., and Kuhn,R.J. (2007). Functional requirements of the yellow fever virus capsid protein. J. Virol. 81, 6471-6481.
Patkar,C.G. and Kuhn,R.J. (2008). Yellow Fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J. Virol. 82, 3342-3352.
Pijlman,G.P., Kondratieva,N., and Khromykh,A.A. (2006). Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J. Virol. 80, 11255-11264.
Pokidysheva,E., Zhang,Y., Battisti,A.J., Bator-Kelly,C.M., Chipman,P.R., Xiao,C., Gregorio,G.G., Hendrickson,W.A., Kuhn,R.J., and Rossmann,M.G. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485-493.
Purdy,D.E. and Chang,G.J. (2005). Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology 333, 239-250.
Purdy,D.E., Noga,A.J., and Chang,G.J. (2004). Noninfectious recombinant antigen for detection of St. Louis encephalitis virus-specific antibodies in serum by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 42, 4709-4717.
Puri,B., Polo,S., Hayes,C.G., and Falgout,B. (2000). Construction of a full length infectious clone for dengue-1 virus Western Pacific,74 strain. Virus Genes 20, 57-63.
Randolph,V.B. and Stollar,V. (1990). Low pH-induced cell fusion in flavivirus-infected Aedes albopictus cell cultures. J. Gen. Virol. 71 ( Pt 8), 1845-1850.
Randolph,V.B., Winkler,G., and Stollar,V. (1990). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 174, 450-458.
Reiser,J., Harmison,G., Kluepfel-Stahl,S., Brady,R.O., Karlsson,S., and Schubert,M. (1996). Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci U. S. A 93, 15266-15271.
Rey,F.A., Heinz,F.X., Mandl,C., Kunz,C., and Harrison,S.C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375, 291-298.
Russel,P.K., Brandt,W.E., and Dalrymple,J. (1980). The Togaviruses., R.W.Schlesinger, ed. (New York: Academic Press), pp. 503-529.
Sabin,A.B. and Schlesinger,R.W. (1945). Production of immunity to dengue with virus modified by propagation in mice. Science 101, 640-642.
Schalich,J., Allison,S.L., Stiasny,K., Mandl,C.W., Kunz,C., and Heinz,F.X. (1996). Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. J. Virol. 70, 4549-4557.
Schlegel,R., Tralka,T.S., Willingham,M.C., and Pastan,I. (1983). Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 32, 639-646.
Schrauf,S., Schlick,P., Skern,T., and Mandl,C.W. (2008). Functional analysis of potential carboxy-terminal cleavage sites of tick-borne encephalitis virus capsid protein. J. Virol. 82, 2218-2229.
Siler,J.F., Hall,M.W., and Hitchens,A.P. (1926). Dengue: its history, epidemiology,mechanism of transmission, etiology, clinical manifestations, immunity, and prevention. Philippine. J. Sci 29, 1-304.
Simmons,G., Reeves,J.D., Rennekamp,A.J., Amberg,S.M., Piefer,A.J., and Bates,P. (2004). Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. U. S. A 101, 4240-4245.
Simmons,J.S., St John,H.F., and Reynolds,H.K. (1931). Experimental studies of dengue. Philippine. J. Sci 44, 1-251.
Smith,T.J., Brandt,W.E., Swanson,J.L., McCown,J.M., and Buescher,E.L. (1970). Physical and biological properties of dengue-2 virus and associated antigens. J. Virol. 5, 524-532.
Spearman,P. and Ratner,L. (1996). Human immunodeficiency virus type 1 capsid formation in reticulocyte lysates. J. Virol. 70, 8187-8194.
Sriburi,R., Keelapang,P., Duangchinda,T., Pruksakorn,S., Maneekarn,N., Malasit,P., and Sittisombut,N. (2001). Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. J. Virol. Methods 92, 71-82.
Stadler,K., Allison,S.L., Schalich,J., and Heinz,F.X. (1997). Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 71, 8475-8481.
Stiasny,K., Allison,S.L., Mandl,C.W., and Heinz,F.X. (2001). Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. J. Virol. 75, 7392-7398.
Stiasny,K., Allison,S.L., Marchler-Bauer,A., Kunz,C., and Heinz,F.X. (1996). Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70, 8142-8147.
Tassaneetrithep,B., Burgess,T.H., Granelli-Piperno,A., Trumpfheller,C., Finke,J., Sun,W., Eller,M.A., Pattanapanyasat,K., Sarasombath,S., Birx,D.L., Steinman,R.M., Schlesinger,S., and Marovich,M.A. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med 197, 823-829.
Wang,S., He,R., and Anderson,R. (1999a). PrM- and cell-binding domains of the dengue virus E protein. J. Virol. 73, 2547-2551.
Wang,W.K., Chen,H.L., Yang,C.F., Hsieh,S.C., Juan,C.C., Chang,S.M., Yu,C.C., Lin,L.H., Huang,J.H., and King,C.C. (2006). Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin. Infect. Dis. 43, 1023-1030.
Wang,W.K., Dudek,T., Essex,M., and Lee,T.H. (1999b). Hypervariable region 3 residues of HIV type 1 gp120 involved in CCR5 coreceptor utilization: therapeutic and prophylactic implications. Proc. Natl. Acad. Sci. U. S. A 96, 4558-4562.
Wang,W.K., Lee,C.N., Kao,C.L., Lin,Y.L., and King,C.C. (2000). Quantitative competitive reverse transcription-PCR for quantification of dengue virus RNA. J. Clin. Microbiol. 38, 3306-3310.
Wengler,G., Wengler,G., and Gross,H.J. (1978). Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology 89, 423-437.
Whitehead,S.S., Falgout,B., Hanley,K.A., Blaney,J.J., Jr., Markoff,L., and Murphy,B.R. (2003a). A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3'' untranslated region is highly attenuated and immunogenic in monkeys. J. Virol. 77, 1653-1657.
Whitehead,S.S., Hanley,K.A., Blaney,J.E., Jr., Gilmore,L.E., Elkins,W.R., and Murphy,B.R. (2003b). Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated for mosquitoes, mice, and rhesus monkeys. Vaccine 21, 4307-4316.
WHO (1997). Dengue Hemorrhagic Fever: Diagnosis, Treatment, Prevention, and Control. Geneva WHO.
Wool-Lewis,R.J. and Bates,P. (1998). Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol. 72, 3155-3160.
Wu,S.J., Grouard-Vogel,G., Sun,W., Mascola,J.R., Brachtel,E., Putvatana,R., Louder,M.K., Filgueira,L., Marovich,M.A., Wong,H.K., Blauvelt,A., Murphy,G.S., Robb,M.L., Innes,B.L., Birx,D.L., Hayes,C.G., and Frankel,S.S. (2000). Human skin Langerhans cells are targets of dengue virus infection. Nat. Med 6, 816-820.
Yamshchikov,V.F. and Compans,R.W. (1994). Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study. J. Virol. 68, 5765-5771.
Yu,I.M., Zhang,W., Holdaway,H.A., Li,L., Kostyuchenko,V.A., Chipman,P.R., Kuhn,R.J., Rossmann,M.G., and Chen,J. (2008). Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834-1837.
Zavada,J. (1982). The pseudotypic paradox. J. Gen. Virol. 63 (Pt 1), 15-24.
Zhang,C., Mammen,M.P., Jr., Chinnawirotpisan,P., Klungthong,C., Rodpradit,P., Monkongdee,P., Nimmannitya,S., Kalayanarooj,S., and Holmes,E.C. (2005). Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J. Virol. 79, 15123-15130.
Zhang,S., Li,L., Woodson,S.E., Huang,C.Y., Kinney,R.M., Barrett,A.D., and Beasley,D.W. (2006). A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus. Virology 353, 35-40.
Zhang,W., Chipman,P.R., Corver,J., Johnson,P.R., Zhang,Y., Mukhopadhyay,S., Baker,T.S., Strauss,J.H., Rossmann,M.G., and Kuhn,R.J. (2003). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Biol. 10, 907-912.
Zhang,Y., Zhang,W., Ogata,S., Clements,D., Strauss,J.H., Baker,T.S., Kuhn,R.J., and Rossmann,M.G. (2004). Conformational changes of the flavivirus E glycoprotein. Structure. 12, 1607-1618.
Zhu,W., Qin,C., Chen,S., Jiang,T., Yu,M., Yu,X., and Qin,E. (2007). Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone. Virus Res. 126, 226-232.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊