跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘仕軒
研究生(外文):Shih-Hsuan Pan
論文名稱:EB病毒核抗原第二型對細胞週期與染色體穩定性的影響
論文名稱(外文):The Effects of Epstein-Barr Virus Nuclear Antigen 2 on Cell Cycle and Chromosomal Stability
指導教授:王萬波
指導教授(外文):Won-Bo Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:108
中文關鍵詞:EB病毒EB病毒第二型核抗原染色體不穩定性(CIN)多套體非整倍體有絲分裂紡錘絲停止點(MSC)MAD2PLK1
外文關鍵詞:Epstein-Barr virus(EBV)EBNA2chromosomal instability(CIN)polyploidymitotic spindle checkpoint(MSC)MAD2Plk1aneupolidy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Epstein-Barr 病毒 (EB病毒, EBV) 第二型核抗原 (EBNA2) 在EBV造成的B細胞轉形扮演關鍵的角色,同時在轉殖鼠中亦可以誘發腫瘤的形成。然而,EBNA2造成癌化的確切機制仍不清楚。這裡我們報告了EBNA2可以透過干擾CDK1-Cdc25C的途徑而減緩細胞週期在G2時期的進行。擾亂細胞週期的進行會造成染色體的不穩定性,進而造成癌化,是為大家所熟知的。我們也發現EBNA2可以在HEp-2、U2-OS、BJAB等細胞中干擾有絲分裂紡錘絲檢查點 (MSC),並且造成多套體。因為多套體是造成非整倍體的原因,因此我們想知道EBNA2是否能造成非整倍體。的確,利用karyptyping的技術,我們發現EBNA2表現的細胞非整倍體的數目會大量增加。利用BrdU嵌合分析,我們發現EBNA2表現的細胞在nocodazole存在下不會停在metaphase,反而會離開有絲分裂而開始另一次的DNA複製。EBNA2會減少Mad2並增加Plk1的表現,而Mad2、Plk1不正常調控會造成APC/C的活化以及securin提早被降解。的確,我們發現在EBNA2表現的細胞中,當nocodazole誘發MSC時,securin會提早被降解。我們也發現了EBNA2在HEp-2與U2-OS細胞中會誘導微核以及多核的形成。最後我們也證明了EBNA2誘發的多套體是由於DNA的內複製以及細胞質分裂失敗所造成的。綜合以上,這些研究發現了EBNA2在調控細胞週期及染色體穩定上的新功能,並且提供了EBNA2在EBV造成的癌化過程扮演新的角色。
The Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) plays a key role in transformation of B-lymphocytes mediated by EBV and can induce tumor formation in transgenic mice. However, the precise mechanism underlying EBNA2-mediated tumorigenesis remains elusive. Here we report that EBNA2 can retard cell cycle at G2/M phase by disrupting CDK1-Cdc25C pathway. It is well known that dys- regulating cell cycle causes chromosomal instability and results in turmerigenesis. We found that EBNA2 can compromise mitotic spindle checkpoint (MSC) and cause polyploidy in HEp-2, U2-OS and BJAB cells. Because polyploidy is thought the route to aneuploidy, we also tested whether EBNA2 can induce aneuploidy. Indeed, by using karyotyping, we found aneuploidy is increased in EBNA2-expressing cells. Furthermore, EBNA2-expressing cells initiated another round of DNA synthesis during nocodazole-induced metaphase arrest by using BrdU incorporation assay. EBNA2 was shown to be able to down-regulate Mad2 and up-regulate Plk1. The dysregulation of Mad2 and Plk1 may lead to activation of APC/C and premature degradation of Securin. Indeed, we found that when MSC was induced by nocodazole, Securin was prematurely degraded in EBNA2-expressing cells. We also showed that EBNA2 could induce micronuclei and multinuclei formation in HEp-2 and U2-OS cells. Finally, we demonstrated that EBNA2-induced polyploidy is due to both DNA endo-replication and cytokinesis failure. Together, these studies reveal a new function of EBNA2 in cell cycle regulation and chromosomal instability, and may shed light on the role of EBNA2 in EBV-mediated tumorigenesis.
中文摘要…………………………………………………………………………… i
Abstract…………………………………………………………………………….. ii Abbreviation……………………………………………………………………….. iv
Contents…………………………………………………………………………..... v
Chapter 1. Introduction………………………………………………………... 1
1.1 Epstein-Barr virus……………………………………………………... 2
1.1.1 Structure and genome of EBV…………………………………….. 2
1.1.2 Infection of EBV…………………………………………………... 2
1.1.3 EBV-associated diseases…………………………………………... 6
1.2 EBV nuclear antigen 2 (EBNA2)…………………………………….. 10
1.3 Cell cycle and its regulators……………………………………….…. 12
1.3.1 Cell cycle…………………………………………………….……. 12
1.3.2 Cyclin and cyclin-dependent kinases (CDKs)……………..……… 13
1.3.3 Mitotic spindle checkpoint (MSC)………………………….…….. 14
1.3.4 Polo-like kinase 1 (PLK1)……………………………………….... 15
1.3.5 p53 and tetraploid checkpoint………………………………….…. 16
1.4 Chromosome instability (CIN)..……………………...…………….... 18
1.5 Specific aims……………………………………………………….….. 21
Chapter 2. Materials and Methods……………………………………….…... 22
2.1 Materials………………………………………………………….….... 22
2.1.1 Chemicals, reagents and kit…………………………………….…. 22
2.1.2 Plasmids………………………………………………………….... 25
2.1.3 Cell lines…………………………………………………………... 26
2.1.4 Antibodies…………………………….…………………………… 27
2.2 Methods…………………………………….………………………….. 28
2.2.1 Transfection…………………………….…………………………. 28
2.2.2 Estabilishment of stable clones………….………………………… 29
2.2.3 RT-PCR………………………………….…………………. …….. 29
2.2.4 Western bot……………………………….……………………….. 29
2.2.5 Immunofluorescence assay……………….……………………….. 30
2.2.6 Flow cytometry…………………………….……………………… 30
2.2.7 BrdU-incorporation assay………………….……………………… 31
2.2.8 Mitotic index assay………………………….…………………….. 31
Chapter 3. Results………………………………………………….…………... 32
3.1 EBNA2 expression retards cell cycle progression at G2 phase....….. 32
3.1.1 Stable expression of EBNA2 induces G2/M retardation……….….. 32
3.1.2 Transient expression of EBNA2 induces G2/M retardation…….…. 32
3.1.3 G2/M retardation induced by EBNA2 is dependent on nuclear translocation of EBNA2………………………………………….... 33
3.1.4 Phosphorylation of Cdc25C is increased in EBNA2-expressing cells 34
3.1.5 Phosphorylation of Chk2 is increased in EBNA2-expressing cells.. 35
3.2 EBNA2 induces chromosomal instability…………………….……… 35
3.2.1 Stable expression of EBNA2 induces polyploidy………..….…….. 35
3.2.2 Transient expression of EBNA2 induces polyploidy……….…...… 37
3.2.3 Polyploidy induced by EBNA2 is dependent on nuclear
translocation of EBNA2……………………………………...……. 38
3.2.4 EBNA2-expressing cells can overcome mitotic spindle checkpoint 38
3.2.5 Expression of EBNA2 induces endoreduplication and c-Myc
expression………………………………………………………...... 39
3.2.6 Aneuploidy is induced in EBNA2-expressing cells.……….……… 40
3.2.7 MAD2 is down-regulated in EBNA2-expressing cells…….…….... 41
3.2.8 PLK1 is up-regulated in EBNA2-expressing cells…………...……. 42
3.2.9 Securin is degraded prematurely during mitosis in EBNA2-
expressing cells……………………………………………….......... 42
3.2.10 Bcl-2 is up-regulated in EBNA2-expressing cells………….…...... 44
3.2.11 Micronuclei are induced by EBNA2 expression…………….……. 44
3.2.12 Multinuclei are induced by EBNA2 expression…………….…….. 45
3.2.13 Nuclei isolated from EBNA2-expressing cells contain polyploidy
DNA…………………………………………………………….…. 45
Chapter 4. Discussion………………………………………………….….…….. 47
4.1 EBNA2 induces G2 retardation……….……………………….….…….. 47
4.2 EBNA2 induces chromosomal instability……………………….….…... 48
4.2.1 Possible mechanisms by which EBNA2 compromises MSC……........ 49
4.2.2 Possible mechanisms by which EBNA2 represses MAD2 transcription 51
4.2.3 EBNA2-expressing cells exit mitosis aberrantly in at least three
different ways…………………………………………………….…… 52
4.2.4 EBNA2-expressing cells can escape p53-mediated tetraploidy
checkpoint and undergo endoreduplication…………………………… 53
4.3 The role of EBNA2-induced CIN in the development of EBV-
associated cancers ……………………………………………………..… 55
4.4 Conclusion………………………………………………….…………...... 55
Table and Figures………………………………………………………………..... 57
References……………………………………………………………………......... 87
Appendix: Accompanying paper with this thesis
Abrieu, A., Magnaghi-Jaulin, L., Kahana, J.A., Peter, M., Castro, A., Vigneron, S., Lorca, T., Cleveland, D.W. and Labbe, J.C. (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell, 106, 83-93.
Ahonen, L.J., Kallio, M.J., Daum, J.R., Bolton, M., Manke, I.A., Yaffe, M.B., Stukenberg, P.T. and Gorbsky, G.J. (2005) Polo-like kinase 1 creates the tension- sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol, 15, 1078-89.
Ansieau, S. and Leutz, A. (2002) The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem, 277, 4906- 10.
Arentson, E., Faloon, P., Seo, J., Moon, E., Studts, J.M., Fremont, D.H. and Choi, K. (2002) Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene, 21, 1150-8.
Arias, E.E. and Walter, J.C. (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev, 21, 497-518.
Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C. and et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 310, 207-11.
Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K. and Vogelstein, B. (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 249, 912-5.
Bermejo, R., Vilaboa, N. and Cales, C. (2002) Regulation of CDC6, geminin, and CDT1 in human cells that undergo polyploidization. Mol Biol Cell, 13, 3989-4000.
Biggin, M., Bodescot, M., Perricaudet, M. and Farrell, P.J. (1987) Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol, 61, 3120-32.
Blangy, A., Lane, H.A., d''Herin, P., Harper, M., Kress, M. and Nigg, E.A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin- related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159-69.
Brousset, P., Knecht, H., Rubin, B., Drouet, E., Chittal, S., Meggetto, F., Saati, T.A., Bachmann, E., Denoyel, G. and Sergeant, A. (1993) Demonstration of Epstein-Barr virus replication in Reed-Sternberg cells of Hodgkin''s disease. Blood, 82, 872-6
Bulavin, D.V., Higashimoto, Y., Popoff, I.J., Gaarde, W.A., Basrur, V., Potapova, O., Appella, E. and Fornace, A.J., Jr. (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature, 411, 102-7.
Burke, A.P., Yen, T.S., Shekitka, K.M. and Sobin, L.H. (1990) Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol, 3, 377-80.
Capello, D., Cerri, M., Muti, G., Berra, E., Oreste, P., Deambrogi, C., Rossi, D., Dotti, G., Conconi, A., Vigano, M., Magrini, U., Ippoliti, G., Morra, E., Gloghini, A., Rambaldi, A., Paulli, M., Carbone, A. and Gaidano, G. (2003) Molecular histogenesis of posttransplantation lymphoproliferative disorders. Blood, 102, 3775-85.
Casenghi, M., Meraldi, P., Weinhart, U., Duncan, P.I., Korner, R. and Nigg, E.A. (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell, 5, 113-25.
Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P., Pequignot, M.O., Casares, N., Valent, A., Mouhamad, S., Schmitt, E., Modjtahedi, N., Vainchenker, W., Zitvogel, L., Lazar, V., Garrido, C. and Kroemer, G. (2006) Apoptosis regulation in tetraploid cancer cells. EMBO J, 25, 2584-95.
Castro, A., Bernis, C., Vigneron, S., Labbe, J.C. and Lorca, T. (2005) The anaphase- promoting complex: a key factor in the regulation of cell cycle. Oncogene, 24, 314-25.
Cesarman, E. and Mesri, E.A. (1999) Virus-associated lymphomas. Curr Opin Oncol, 11, 322-32.
Chang, B.D., Broude, E.V., Fang, J., Kalinichenko, T.V., Abdryashitov, R., Poole, J.C. and Roninson, I.B. (2000) p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene, 19, 2165-70.
Chang, F., Re, F., Sebastian, S., Sazer, S. and Luban, J. (2004) HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes. Mol Biol Cell, 15, 1793-801.
Chang, Y., Sheen, T.S., Lu, J., Huang, Y.T., Chen, J.Y., Yang, C.S. and Tsai, C.H. (1998) Detection of transcripts initiated from two viral promoters (Cp and Wp) in Epstein- Barr virus-infected nasopharyngeal carcinoma cells and biopsies. Lab Invest, 78, 715-26.
Chang, Y., Tung, C.H., Huang, Y.T., Lu, J., Chen, J.Y. and Tsai, C.H. (1999) Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol, 73, 8857-66.
Chen, J.G. and Horwitz, S.B. (2002) Differential mitotic responses to microtubule- stabilizing and-destabilizing drugs. Cancer Res, 62, 1935-8.
Clements, G.B., Klein, G. and Povey, S. (1975) Production by EBV infection of an EBNA-positive subline from an EBNA-negative human lymphoma cell line without detectable EBV DNA. Int J Cancer, 16, 125-33.
Cochet, C., Martel-Renoir, D., Grunewald, V., Bosq, J., Cochet, G., Schwaab, G., Bernaudin, J.F. and Joab, I. (1993) Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology, 197, 358-65.
Coffey, A.J., Brooksbank, R.A., Brandau, O., Oohashi, T., Howell, G.R., Bye, J.M., Cahn, A.P., Durham, J., Heath, P., Wray, P., Pavitt, R., Wilkinson, J., Leversha, M., Huckle, E., Shaw-Smith, C.J., Dunham, A., Rhodes, S., Schuster, V., Porta, G., Yin, L., Serafini, P., Sylla, B., Zollo, M., Franco, B., Bolino, A., Seri, M., Lanyi, A., Davis, J.R., Webster, D., Harris, A., Lenoir, G., de St Basile, G., Jones, A., Behloradsky, B.H., Achatz, H., Murken, J., Fassler, R., Sumegi, J., Romeo, G., Vaudin, M., Ross, M.T., Meindl, A. and Bentley, D.R. (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet, 20, 129-35.
Cotsiki, M., Lock, R.L., Cheng, Y., Williams, G.L., Zhao, J., Perera, D., Freire, R., Entwistle, A., Golemis, E.A., Roberts, T.M., Jat, P.S. and Gjoerup, O.V. (2004) Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci U S A, 101, 947-52.
Czar, M.J., Kersh, E.N., Mijares, L.A., Lanier, G., Lewis, J., Yap, G., Chen, A., Sher, A., Duckett, C.S., Ahmed, R. and Schwartzberg, P.L. (2001) Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc Natl Acad Sci U S A, 98, 7449-54.
Dash, B.C. and El-Deiry, W. (2004) Cell cycle checkpoint control mechanisms that can be disrupted in cancer. Axel H. Schonthal (ed.), Checkpoint controls and cancer. Humana Press, New Jersey, vol. 1, pp. 99-161.
Deacon, E.M., Pallesen, G., Niedobitek, G., Crocker, J., Brooks, L., Rickinson, A.B. and Young, L.S. (1993) Epstein-Barr virus and Hodgkin''s disease: transcriptional analysis of virus latency in the malignant cells. J Exp Med, 177, 339-49.
Djokic, M., Le Beau, M.M., Swinnen, L.J., Smith, S.M., Rubin, C.M., Anastasi, J. and Carlson, K.M. (2006) Post-transplant lymphoproliferative disorder subtypes correlate with different recurring chromosomal abnormalities. Genes Chromosomes Cancer, 45, 313-8.
Dobles, M., Liberal, V., Scott, M.L., Benezra, R. and Sorger, P.K. (2000) Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell, 101, 635-45.
Dolbeare, F., Gratzner, H., Pallavicini, M.G. and Gray, J.W. (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A, 80, 5573-7.
Draetta, G. and Eckstein, J. (1997) Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta, 1332, M53-63.
Eckerdt, F., Yuan, J. and Strebhardt, K. (2005) Polo-like kinases and oncogenesis. Oncogene, 24, 267-76.
El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, E., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W. and Vogelstein, B. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell, 75, 817-25.
Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley, L.C., Smerdon, S.J. and Yaffe, M.B. (2003) The molecular basis for phospho-dependent substrate targeting and regulation of Plks by the Polo-box domain. Cell, 115, 83-95.
Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus particles in cultured lymphoblasts from Burkitt''s lymphoma. Lancet, 1, 702-3.
Epstein, M.A., Henle, G., Achong, B.G. and Barr, Y.M. (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt''s lymphoma. J Exp Med, 121, 761-70.
Fahraeus, R., Fu, H.L., Emberg, I., Finke, J., Rowe, M., Klein, G., Falk, K, Nilsson, E., Yadav, M. and Busson, P. (1988) Expression of Epstein–Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer, 42, 329-38.
Fahraeus, R., Palmqvist, L., Nerdstedt, A., Farzad, S., Rymo, L. and Lain, S. (1994) Response to cAMP levels of the Epstein-Barr virus EBNA2-inducible LMP1 oncogene and EBNA2 inhibition of a PP1-like activity. EMBO J, 13, 6041-51.
Fesquet, D., Labbe, J.C., Derancourt, J., Capony, J.P., Galas, S., Girard, F., Lorca, T., Shuttleworth, J., Doree, M. and Cavadore, J.C. (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J, 12, 3111-21.
Finke, J., Fritzen, R., Ternes, P., Trivedi, P., Bross, K.J., Lange, W., Mertelsmann, R. and Dolken, G. (1992) Expression of bcl-2 in Burkitt''s lymphoma cell lines: induction by latent Epstein-Barr virus genes. Blood, 80, 459-69.
Fixman, E.D., Hayward, G.S. and Hayward, S.D. (1992) Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol, 66, 5030-9.
Fries, K.L., Miller, W.E. and Raab-Traub, N. (1996) Epstein-Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol, 70, 8653-9.
Furnari, B., Rhind, N. and Russell, P. (1997) Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science, 277, 1495-7.
Gandhi, R., Gillespie, P.J. and Hirano, T. (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol, 16, 2406-17.
Grafi, G. (1998) Cell cycle regulation of DNA replication: the endoreduplication perspective. Exp Cell Res, 244, 372-8.
Gorbsky, G.J., Chen, R.H. and Murray, A.W. (1998) Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J Cell Biol, 141, 1193-205.
Gregory, C.D., Tursz, T., Edwards, C.F., Tetaud, C., Talbot, M., Caillou, B., Rickinson, A.B. and Lipinski, M. (1987) Identification of a subset of normal B cells with a Burkitt''s lymphoma (BL)-like phenotype. J Immunol, 139, 313-8.
Hammerschmidt, W. and Sugden, B. (1988) Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell, 55, 427-33.
Hardwick, K.G. (2005) Checkpoint signalling: Mad2 conformers and signal propagation. Curr Biol, 15, R122-4.
Hartwell, L.H. and Kastan, M.B. (1994) Cell cycle control and cancer. Science, 266, 1821-8.
He, J., Choe, S., Walker, R., Di Marzio, P., Morgan, D.O. and Landau, N.R. (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol, 69, 6705-11.
Heldin, C.H., Johnsson, A., Wennergren, S., Wernstedt, C., Betsholtz, C. and Westermark, B. (1986) A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature, 319, 511-4.
Henderson, S., Rowe, M., Gregory, C., Croom-Carter, D., Wang, F., Longnecker, R., Kieff, E. and Rickinson, A. (1991) Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell, 65, 1107-15.
Henkel, T., Ling, P.D., Hayward, S.D. and Peterson, M.G. (1994) Mediation of Epstein- Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science, 265, 92-5.
Henle, G. and Henle, W. (1976) Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int J Cancer, 17, 1-7.
Henle, G. and Henle, W. (1966) Immunofluorescence in cells derived from Burkitt''s lymphoma. J Bacteriol, 91, 1248-56.
Henle, G., Henle, W. and Diehl, V. (1968) Relation of Burkitt''s tumor-associated herpes- type virus to infectious mononucleosis. Proc Natl Acad Sci U S A, 59, 94-101.
Hennessy, K. and Kieff, E. (1985) A second nuclear protein is encoded by Epstein-Barr virus in latent infection. Science, 227, 1238-40.
Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W. and Vogelstein, B. (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell, 1, 3-11.
Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hemann, M., Michel, L., Mittal, V., Gerald, W., Benezra, R., Lowe, S.W. and Cordon-Cardo, C. (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature, 430, 797-802.
Hoagland, R.J. (1955) The transmission of infectious mononucleosis. Am J Med Sci, 229, 262-72.
Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C.C. (1991) p53 mutations in human cancers. Science, 253, 49-53.
Howman, E.V., Fowler, K.J., Newson, A.J., Redward, S., MacDonald, A.C., Kalitsis, P. and Choo, K.H. (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A, 97, 1148-53
Hummeler, K., Henle, G. and Henle, W. (1966) Fine structure of a virus in cultured lymphoblasts from Burkitt lymphoma. J Bacteriol, 91, 1366-8.
Hutt-Fletcher, L.M. (2007) Epstein-Barr virus entry. J Virol, 81, 7825-32.
Imai, S., Koizumi, S., Sugiura, M., Tokunaga, M., Uemura, Y., Yamamoto, N., Tanaka, S., Sato, E. and Osato, T. (1994) Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci U S A, 91, 9131-5.
Jelluma, N., Brenkman, A.B., van den Broek, N.J., Cruijsen, C.W., van Osch, M.H., Lens, S.M., Medema, R.H. and Kops, G.J. (2008a) Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell, 132, 233-46.
Jelluma, N., Brenkman, A.B., McLeod, I., Yates, J.R., 3rd, Cleveland, D.W., Medema, R.H. and Kops, G.J. (2008b) Chromosomal instability by inefficient Mps1 auto- activation due to a weakened mitotic checkpoint and lagging chromosomes. PLoS ONE, 3, e2415.
Jesnowski, R., Liebe, S. and Lohr, M. (1998) Increasing the transfection efficacy and subsequent long-term culture of resting human pancreatic duct epithelial cells. Pancreas, 17, 262-5.
Jin, D.Y., Spencer, F. and Jeang, K.T. (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell, 93, 81- 91.
Johansen, L.M., Deppmann, C.D., Erickson, K.D., Coffin, W.F., 3rd, Thornton, T.M., Humphrey, S.E., Martin, J.M. and Taparowsky, E.J. (2003) EBNA2 and activated Notch induce expression of BATF. J Virol, 77, 6029-40.
Kaiser, C., Laux, G., Eick, D., Jochner, N., Bornkamm, G.W. and Kempkes, B. (1999) The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol, 73, 4481-4.
Kato, J., Matsushime, H., Hiebert, S.W., Ewen, M.E. and Sherr, C.J. (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 7, 331-42.
Kempkes, B., Pawlita, M., Zimber-Strobl, U., Eissner, G., Laux, G. and Bornkamm, G.W. (1995) Epstein-Barr virus nuclear antigen 2-estrogen receptor fusion proteins transactivate viral and cellular genes and interact with RBP-J kappa in a conditional fashion. Virology, 214, 675-9.
Keyomarsi, K., O''Leary, N., Molnar, G., Lees, E., Fingert, H.J. and Pardee, A.B. (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res, 54, 380-5.
Kieff, E. and Rickinson, A.B. (2001) Epstein-Barr Virus and its Replication. In Bernard N. Fields, D.M.K., Peter M. Howley (ed.), Fields Virology. Lippincott-Raven, Philadelphia, vol. 2, pp. 2511-73.
Klein, G., Sugden, B., Leibold, W. and Menezes, J. (1974) Infection of EBV-genome- negative and -positive human lymphoblastoid cell lines with biologically different preparations of EBV. Intervirology, 3, 232-44.
Knutson, J.C. (1990) The level of c-fgr RNA is increased by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. J Virol, 64, 2530-6.
Kops, G.J., Weaver, B.A. and Cleveland, D.W. (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer, 5, 773-85.
Kotani, S., Tugendreich, S., Fujii, M., Jorgensen, P.M., Watanabe, N., Hoog, C., Hieter, P. and Todokoro, K. (1998) PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell, 1, 371-80.
Krueger, G.R., Kottaridis, S.D., Wolf, H., Ablashi, D.V., Sesterhenn, K. and Bertram, G. (1981) Histological types of nasopharyngeal carcinoma as compared to EBV serology. Anticancer Res, 1, 187-94.
Kueng, S., Hegemann, B., Peters, B.H., Lipp, J.J., Schleiffer, A., Mechtler, K. and Peters, J.M. (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell, 127, 955-67.
Kuroda, M., Kiyono, T., Oikawa, K., Yoshida, K. and Mukai, K. (2005) The human papillomavirus E6 and E7 inducible oncogene, hWAPL, exhibits potential as a therapeutic target. Br J Cancer, 92, 290-3.
Kwiatkowski, B.A., Ragoczy, T., Ehly, J. and Schubach, W.H. (2004) Identification and cloning of a novel chromatin-associated protein partner of Epstein-Barr nuclear protein 2. Exp Cell Res, 300, 223-33.
Laichalk, L.L. and Thorley-Lawson, D.A. (2005) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol, 79, 1296- 307.
Lanni, J.S. and Jacks, T. (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol, 18, 1055-64.
Larcher, C., Kempkes, B., Kremmer, E., Prodinger, W.M., Pawlita, M., Bornkamm, G.W. and Dierich, M.P. (1995) Expression of Epstein-Barr virus nuclear antigen-2 (EBNA2) induces CD21/CR2 on B and T cell lines and shedding of soluble CD21. Eur J Immunol, 25, 1713-9.
Laux, G., Adam, B., Strobl, L.J. and Moreau-Gachelin, F. (1994) The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J, 13, 5624-32.
Lee, J.M., Lee, K.H., Weidner, M., Osborne, B.A. and Hayward, S.D. (2002) Epstein- Barr virus EBNA2 blocks Nur77-mediated apoptosis. Proc Natl Acad Sci U S A, 99, 11878-83.
Lengauer, C., Kinzler, K.W. and Vogelstein, B. (1998) Genetic instabilities in human cancers. Nature, 396, 643-9.
Li, Q. and Dang, C.V. (1999) c-Myc overexpression uncouples DNA replication from mitosis. Mol Cell Biol, 19, 5339-51.
Li, Z., Van Calcar, S., Qu, C., Cavenee, W.K., Zhang, M.Q. and Ren, B. (2003) A global transcriptional regulatory role for c-Myc in Burkitt''s lymphoma cells. Proc Natl Acad Sci U S A, 100, 8164-9.
Liang, M.H., Geisbert, T., Yao, Y., Hinrichs, S.H. and Giam, C.Z. (2002) Human T- lymphotropic virus type 1 oncoprotein tax promotes S-phase entry but blocks mitosis. J Virol, 76, 4022-33.
Lin, C.S. (2000) Functions of Epstein-Barr virus nuclear antigen 2 in regulating cell proliferation. Ph. D thesis. Graduate Institute of Microbiology, College of Medicine, National Taiwan University.
Lin, C.S., Kuo, H.H., Chen, J.Y., Yang, C.S. and Wang, W.B. (2000) Epstein-barr virus nuclear antigen 2 retards cell growth, induces p21(WAF1) expression, and modulates p53 activity post-translationally. J Mol Biol, 303, 7-23.
Lin, C.T., Chan, W.Y., Chen, W., Huang, H.M., Wu, H.C., Hsu, M.M., Chuang, S.M. and Wang, C.C. (1993) Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest, 68, 716-27.
Ling, P.D., Hsieh, J.J., Ruf, I.K., Rawlins, D.R. and Hayward, S.D. (1994) EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol, 68, 5375-83.
Liu, B., Liang, M.H., Kuo, Y.L., Liao, W., Boros, I., Kleinberger, T., Blancato, J. and Giam, C.Z. (2003) Human T-lymphotropic virus type 1 oncoprotein tax promotes unscheduled degradation of Pds1p/securin and Clb2p/cyclin B1 and causes chromosomal instability. Mol Cell Biol, 23, 5269-81.
Liu, Q., Guntuku, S., Cui, X.S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini- Rivera, S., DeMayo, F., Bradley, A., Donehower, L.A. and Elledge, S.J. (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev, 14, 1448-59.
Lo, K.W. and Huang, D.P. (2002) Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol, 12, 451-62.
Loeb, L.A. (2001) A mutator phenotype in cancer. Cancer Res, 61, 3230-9.
Luka, J., Kallin, B. and Klein, G. (1979) Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94, 228-31.
Machida, Y.J. and Dutta, A. (2007) The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev, 21, 184-94.
MacMahon, B. (1966) Epidemiology of Hodgkin''s disease. Cancer Res, 26, 1189-201.
Majone, F., Semmes, O.J. and Jeang, K.T. (1993) Induction of micronuclei by HTLV-I Tax: a cellular assay for function. Virology, 193, 456-9.
Martel-Renoir, D., Grunewald, V., Touitou, R., Schwaab, G. and Joab, I. (1995) Qualitative analysis of the expression of Epstein-Barr virus lytic genes in nasopharyngeal carcinoma biopsies. J Gen Virol, 76 ( Pt 6), 1401-8.
Masucci, M.G., Szigeti, R., Ernberg, I., Masucci, G., Klein, G., Chessels, J., Sieff, C., Lie, S., Glomstein, A., Businco, L., Henle, W., Henle, G., Pearson, G., Sakamoto, K. and Purtilo, D.T. (1981) Cellular immune defects to Epstein-Barr virus-determined antigens in young males. Cancer Res, 41, 4284-91.
Matsuoka, S., Huang, M. and Elledge, S.J. (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 282, 1893-7.
Matsushime, H., Roussel, M.F., Ashmun, R.A. and Sherr, C.J. (1991) Colony- stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell, 65, 701-13.
Melchionna, R., Chen, X.B., Blasina, A. and McGowan, C.H. (2000) Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol, 2, 762-5.
Melixetian, M., Ballabeni, A., Masiero, L., Gasparini, P., Zamponi, R., Bartek, J., Lukas, J. and Helin, K. (2004) Loss of Geminin induces rereplication in the presence of functional p53. J Cell Biol, 165, 473-82.
Michel, L.S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., Dobles, M., Sorger, P.K., Murty, V.V. and Benezra, R. (2001) MAD2 haplo- insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409, 355-9.
Miller, S.J., Suthiphongchai, T., Zambetti, G.P. and Ewen, M.E. (2000) p53 binds selectively to the 5'' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol, 20, 8420-31.
Moore, A.E., Sabachewsky, L. and Toolan, H.W. (1955) Culture characteristics of four permanent lines of human cancer cells. Cancer Res, 15, 598-602.
Moormann, A.M., Chelimo, K., Sumba, O.P., Lutzke, M.L., Ploutz-Snyder, R., Newton, D., Kazura, J. and Rochford, R. (2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis, 191, 1233-8.
Moshe, Y., Boulaire, J., Pagano, M. and Hershko, A. (2004) Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci U S A, 101, 7937-42.
Moynahan, M.E. and Jasin, M. (1997) Loss of heterozygosity induced by a chromosomal double-strand break. Proc Natl Acad Sci USA, 94, 8988-93.
Mueller, P.R., Coleman, T.R., Kumagai, A. and Dunphy, W.G. (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science, 270, 86-90.
Mundt, K.E., Golsteyn, R.M., Lane, H.A. and Nigg, E.A. (1997) On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun, 239, 377-85.
Musacchio, A. and Hardwick, K.G. (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol, 3, 731-41.
Natarajan, A.T., Boei, J.J., Vermeulen, S. and Balajee, A.S. (1996) Frequencies of X-ray induced pericentric inversions and centric rings in human blood lymphocytes detected by FISH using chromosome arm specific DNA libraries. Mutat Res, 372, 1-7.
Nemerow, G.R., Wolfert, R., McNaughton, M.E. and Cooper, N.R. (1985) Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J Virol, 55, 347-51.
Ohbayashi, T., Oikawa, K., Yamada, K., Nishida-Umehara, C., Matsuda, Y., Satoh, H., Mukai, H., Mukai, K. and Kuroda, M. (2007) Unscheduled overexpression of human WAPL promotes chromosomal instability. Biochem Biophys Res Commun, 356, 699-704.
Ohta, S., Koide, M., Tokuyama, T., Yokota, N., Nishizawa, S. and Namba, H. (2001) Cdc6 expression as a marker of proliferative activity in brain tumors. Oncol Rep, 8, 1063-6.
Pages, F., Galon, J., Karaschuk, G., Dudziak, D., Camus, M., Lazar, V., Camilleri- Broet, S., Lagorce-Pages, C., Lebel-Binay, S., Laux, G., Fridman, W.H. and Henglein, B. (2005) Epstein-Barr virus nuclear antigen 2 induces interleukin-18 receptor expression in B cells. Blood, 105, 1632-9.
Parker, G.A., Touitou, R. and Allday, M.J. (2000) Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene, 19, 700-9.
Parker, L.L. and Piwnica-Worms, H. (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science, 257, 1955-7.
Patel, D., Incassati, A., Wang, N. and McCance, D.J. (2004) Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res, 64, 1299-306.
Pegman, P.M., Smith, S.M., D''Souza, B.N., Loughran, S.T., Maier, S., Kempkes, B., Cahill, P.A., Simmons, M.J., Gelinas, C. and Walls, D. (2006) Epstein-Barr virus nuclear antigen 2 trans-activates the cellular antiapoptotic bfl-1 gene by a CBF1/RBPJ kappa-dependent pathway. J Virol, 80, 8133-44.
Peng, C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. and Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 277, 1501-5.
Petronczki, M., Lenart, P. and Peters, J.M. (2008) Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell, 14, 646-59.
Pines, J. (1993) Cyclins and cyclin-dependent kinases: take your partners. Trends Biochem Sci, 18, 195-7.
Porter, A.C. (2008) Preventing DNA over-replication: a Cdk perspective. Cell Div, 3, 3.
Prives, C. (1998) Signaling to p53: breaking the MDM2-p53 circuit. Cell, 95, 5-8.
Prosnitz, L.R., Farber, L.R., Fischer, J.J., Bertino, J.R. and Fischer, D.B. (1976) Long term remissions with combined modality therapy for advanced Hodgkin''s disease. Cancer, 37, 2826-33.
Rhim, J.S. and Schell, K. (1967) Cytopathic and plaque assay of rubella virus in a line of African green monkey kiency cells (Vero). Proc Soc Exp Biol Med, 125, 602-6.
Rickinson, A.B. (2002) Epstein-Barr virus. Virus Res, 82, 109-13.
Rickinson, A.B. and Kieff, E. (2001) Epstein-Barr Virus. In Bernard N. Fields, D.M.K., Peter M. Howley (ed.), Fields Virology. Lippincott-Raven, Philadelphia, vol. 2, pp. 2575-2627.
Rieder, C.L. and Maiato, H. (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell, 7, 637-51.
Rudner, A.D. and Murray, A.W. (2000) Phosphorylation by Cdc28 activates the Cdc20- dependent activity of the anaphase-promoting complex. J Cell Biol, 149, 1377-90.
Sarisky, R.T., Gao, Z., Lieberman, P.M., Fixman, E.D., Hayward, G.S. and Hayward, S.D. (1996) A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol, 70, 8340-7.
Sbih-Lammali, F., Berger, F., Busson, P. and Ooka, T. (1996) Expression of the DNase encoded by the BGLF5 gene of Epstein-Barr virus in nasopharyngeal carcinoma epithelial cells. Virology, 222, 64-74.
Schlee, M., Krug, T., Gires, O., Zeidler, R., Hammerschmidt, W., Mailhammer, R., Laux, G., Sauer, G., Lovric, J. and Bornkamm, G.W. (2004) Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol, 78, 3941-52.
Selvakumaran, M., Lin, H.K., Miyashita, T., Wang, H.G., Krajewski, S., Reed, J.C., Hoffman, B. and Liebermann, D. (1994) Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene, 9, 1791-8.
Seo, J., Chung, Y.S., Sharma, G.G., Moon, E., Burack, W.R., Pandita, T.K. and Choi, K. (2005) Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene, 24, 8176-86.
Shanmugaratnam, K., Chan, S.H., de-The, G., Goh, J.E., Khor, T.H., Simons, M.J. and Tye, C.Y. (1979) Histopathology of nasopharyngeal carcinoma: correlations with epidemiology, survival rates and other biological characteristics. Cancer, 44, 1029-44.
Shannon-Lowe, C.D., Neuhierl, B., Baldwin, G., A. B. Rickinson, A.B. and Delecluse, H.J. (2007) Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci U S A, 103, 7065-70
Shao, J.Y., Huang, X.M., Yu, X.J., Huang, L.X., Wu, Q.L., Xia, J.C., Wang, H.Y., Feng, Q.S., Ren, Z.F., Ernberg, I., Hu, L.F. and Zeng, Y.X. (2001) Loss of heterozygosity and its correlation with clinical outcome and Epstein-Barr virus infection in nasopharyngeal carcinoma. Anticancer Res, 21, 3021-9.
Sharifi, R., Sinclair, J.C., Gilmour, K.C., Arkwright, P.D., Kinnon, C., Thrasher, A.J. and Gaspar, H.B. (2004) SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood, 103, 3821-7.
Sheleg, S.V., Peloponese, J.M., Chi, Y.H., Li, Y., Eckhaus, M. and Jeang, K.T. (2007) Evidence for cooperative transforming activity of the human pituitary tumor transforming gene and human T-cell leukemia virus type 1 Tax. J Virol, 81, 7894-901.
Sherr, C.J. and Roberts, J.M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 13, 1501-12.
Shimakage, M., Kurata, A., Inoue, H., Okamoto, Y., Yutsudo, M. and Hakura, A. (1995) Tumorigenicity of EBNA2-transfected cells. FEBS Lett, 371, 245-8.
Shimura, M., Tanaka, Y., Nakamura, S., Minemoto, Y., Yamashita, K., Hatake, K., Takaku, F. and Ishizaka, Y. (1999) Micronuclei formation and aneuploidy induced by Vpr, an accessory gene of human immunodeficiency virus type 1. FASEB J, 13, 621-37.
Sinclair, A.J., Palmero, I., Peters, G. and Farrell, P.J. (1994) EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J, 13, 3321-8.
Sixbey, J.W. and Yao, Q.Y. (1992) Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science, 255, 1578-80.
Spender, L.C., Cornish, G.H., Sullivan, A. and Farrell, P.J. (2002) Expression of transcription factor AML-2 (RUNX3, CBF(alpha)-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol, 76, 4919-27.
Stewart, Z.A., Leach, S.D. and Pietenpol, J.A. (1999) p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol, 19, 205-15.
Su, I.J., Hsieh, H.C., Lin, K.H., Uen, W.C., Kao, C.L., Chen, C.J., Cheng, A.L., Kadin, M.E. and Chen, J.Y. (1991) Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood, 77, 799-808.
Subar, M., Neri, A., Inghirami, G., Knowles, D.M. and Dalla-Favera, R. (1988) Frequent c-myc oncogene activation and infrequent presence of Epstein-Barr virus genome in AIDS-associated lymphoma. Blood, 72, 667-71.
Szekely, L., Selivanova, G., Magnusson, K.P., Klein, G. and Wiman, K.G. (1993) EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci U S A, 90, 5455-9.
Tai, C.C. (2005) Induction of G2 retardation and polyploidy by Epstein-Barr virus EBNA2 protein in human epithelial cells. Master thesis. Graduate Institute of Microbiology, College of Medicine, National Taiwan University.
Taylor, S.S. and McKeon, F. (1997) Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell, 89, 727-35.
Thompson, M.P. and Kurzrock, R. (2004) Epstein-Barr virus and cancer. Clin Cancer Res, 10, 803-21.
Thorley-Lawson, D.A. (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol, 1, 75-82.
Thorley-Lawson, D.A. and Allday, M.J. (2008) The curious case of the tumour virus: 50 years of Burkitt''s lymphoma. Nat Rev Microbiol, 6, 913-24.
Tien, H.F., Su, I.J., Tang, J.L., Liu, M.C., Lee, F.Y., Chen, Y.C. and Chuang, S.M. (1997) Clonal chromosomal abnormalities as direct evidence for clonality in nasal T/natural killer cell lymphomas. Br J Haematol, 97, 621-5.
Tong, X., Drapkin, R., Reinberg, D. and Kieff, E. (1995a) The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A, 92, 3259-63.
Tong, X., Drapkin, R., Yalamanchili, R., Mosialos, G. and Kieff, E. (1995b) The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol, 15, 4735-44.
Tong, X., Wang, F., Thut, C.J. and Kieff, E. (1995c) The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol, 69, 585-8.
Tornell, J., Farzad, S., Espander-Jansson, A., Matejka, G., Isaksson, O. and Rymo, L. (1996) Expression of Epstein-Barr nuclear antigen 2 in kidney tubule cells induce tumors in transgenic mice. Oncogene, 12, 1521-8.
Vogel, C., Kienitz, A., Hofmann, I., Muller, R. and Bastians, H. (2004) Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene, 23, 6845-53.
Waltzer, L., Perricaudet, M., Sergeant, A. and Manet, E. (1996) Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol, 70, 5909- 15.
Wang, F., Gregory, C.D., Rowe, M., Rickinson, A.B., Wang, D., Birkenbach, M., Kikutani, H., Kishimoto, T. and Kieff, E. (1987) Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci U S A, 84, 3452-6.
Wang, R., He, G., Nelman-Gonzalez, M., Ashorn, C.L., Gallick, G.E., Stukenberg, P.T., Kirschner, M.W. and Kuang, J. (2007) Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition. Cell, 128, 1119-32.
Wang, L., Grossman, S.R. and Kieff, E. (2000a) Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A, 97, 430-5.
Wang, X., Jin, D.Y., Wong, Y.C., Cheung, A.L., Chun, A.C., Lo, A.K., Liu, Y. and Tsao, S.W. (2000b) Correlation of defective mitotic checkpoint with aberrantly reduced expression of MAD2 protein in nasopharyngeal carcinoma cells. Carcinogenesis, 21, 2293-7.
Weaver, B.A. and Cleveland, D.W. (2005) Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7-12.
Wright, D.H. (1971) Burkitt''s lymphoma: a review of the pathology, immunology, and possible etiologic factors. Pathol Annu, 6, 337-63.
Wu, D.Y., Kalpana, G.V., Goff, S.P. and Schubach, W.H. (1996) Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol, 70, 6020-8.
Wu, X., Bayle, J.H., Olson, D. and Levine, A.J. (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev, 7, 1126-32.
Wysokenski, D.A. and Yates, J.L. (1989) Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J Virol, 63, 2657-66.
Young, L.S. and Rickinson, A.B. (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer, 4, 757-68.
Zhivotovsky, B. and Kroemer, G. (2004) Apoptosis and genomic instability. Nat Rev Mol Cell Biol, 5, 752-62.
Zhou, S., Fujimuro, M., Hsieh, J.J., Chen, L. and Hayward, S.D. (2000) A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol, 74, 1939-47.
Zimber-Strobl, U., Kempkes, B., Marschall, G., Zeidler, R., Van Kooten, C., Banchereau, J., Bornkamm, G.W. and Hammerschmidt, W. (1996) Epstein-Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. EMBO J, 15, 7070-8.
zur Hausen, H., Bornkamm, G.W., Schmidt, R. and Hecker, E. (1979) Tumor initiators and promoters in the induction of Epstein-Barr virus. Proc Natl Acad Sci U S A, 76, 782-5.
zur Hausen, H., O''Neill, F.J., Freese, U.K. and Hecker, E. (1978) Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature, 272, 373-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top