|
1.Tanaka, K. & Tsurumi, C. The 26S proteasome: subunits and functions. Molecular biology reports 24, 3-11 (1997). 2.Vierstra, R.D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in plant science 8, 135-142 (2003). 3.Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21 (1994). 4.Ciechanover, A. The ubiquitin-mediated proteolytic pathway: mechanisms of action and cellular physiology. Biological chemistry Hoppe-Seyler 375, 565-581 (1994). 5.Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current opinion in cell biology 7, 215-223 (1995). 6.Rock, K.L., York, I.A., Saric, T. & Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Advances in immunology 80, 1-70 (2002). 7.Goldberg, A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochemical society transactions 35, 12-17 (2007). 8.Goldberg, A.L., Cascio, P., Saric, T. & Rock, K.L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Molecular immunology 39, 147-164 (2002). 9.Orlowski, R.Z. The role of the ubiquitin-proteasome pathway in apoptosis. Cell death and differentiation 6, 303-313 (1999). 10.Schwartz, A.L. & Ciechanover, A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual review of medicine 50, 57-74 (1999). 11.Thompson, S.J., Loftus, L.T., Ashley, M.D. & Meller, R. Ubiquitin-proteasome system as a modulator of cell fate. Current opinion in pharmacology 8, 90-95 (2008). 12.Ciechanover, A., Heller, H., Elias, S., Haas, A.L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proceedings of the National academy of sciences of the United States of America 77, 1365-1368 (1980). 13.Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. The Journal of biological chemistry 255, 7525-7528 (1980). 14.Yeh, E.T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1-14 (2000). 15.Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 10, 335-342 (2000). 16.Schwartz, D.C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends in biochemical sciences 28, 321-328 (2003). 17.Herrmann, J., Lerman, L.O. & Lerman, A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation research 100, 1276-1291 (2007). 18.Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual review of cell and developmental biology 22, 159-180 (2006). 19.Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature reviews 6, 599-609 (2005). 20.Hay, R.T. SUMO: a history of modification. Molecular cell 18, 1-12 (2005). 21.Su, H.L. & Li, S.S. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296, 65-73 (2002). 22.Johnson, E.S., Schwienhorst, I., Dohmen, R.J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. The EMBO journal 16, 5509-5519 (1997). 23.Mannen, H., Tseng, H.M., Cho, C.L. & Li, S.S. Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene. Biochemical and biophysical research communications 222, 178-180 (1996). 24.Hay, R.T. Protein modification by SUMO. Trends in biochemical sciences 26, 332-333 (2001). 25.Vijay-Kumar, S. et al. Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. The Journal of biological chemistry 262, 6396-6399 (1987). 26.Bayer, P. et al. Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of molecular biology 280, 275-286 (1998). 27.Dohmen, R.J. SUMO protein modification. Biochimica et biophysica acta 1695, 113-131 (2004). 28.Johnson, E.S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. The Journal of biological chemistry 272, 26799-26802 (1997). 29.Kurepa, J. et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. The Journal of biological chemistry 278, 6862-6872 (2003). 30.Okura, T. et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. The Journal of immunology 157, 4277-4281 (1996). 31.Boddy, M.N., Howe, K., Etkin, L.D., Solomon, E. & Freemont, P.S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971-982 (1996). 32.Matunis, M.J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. The Journal of cell biology 135, 1457-1470 (1996). 33.Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K. & Chen, D.J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271-279 (1996). 34.Lapenta, V. et al. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family. Genomics 40, 362-366 (1997). 35.Sternsdorf, T., Jensen, K. & Freemont, P.S. Sumo. Current biololgy 13, R258-259 (2003). 36.Desterro, J.M., Rodriguez, M.S., Kemp, G.D. & Hay, R.T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. The Journal of biological chemistry 274, 10618-10624 (1999). 37.Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N. & Yasuda, H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochemical and biophysical research communications 254, 693-698 (1999). 38.Desterro, J.M., Thomson, J. & Hay, R.T. Ubch9 conjugates SUMO but not ubiquitin. FEBS letters 417, 297-300 (1997). 39.Tang, Z., Hecker, C.M., Scheschonka, A. & Betz, H. Protein interactions in the sumoylation cascade: lessons from X-ray structures. The FEBS journal 275, 3003-3015 (2008). 40.Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687-692 (2005). 41.Liu, Q. et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). The Journal of biological chemistry 274, 16979-16987 (1999). 42.Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744 (2001). 43.Jackson, P.K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes & development 15, 3053-3058 (2001). 44.Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proceedings of the National Academy of Sciences of the United States of America 99, 2872-2877 (2002). 45.Schmidt, D. & Muller, S. PIAS/SUMO: new partners in transcriptional regulation. Cellular and molecular life sciences 60, 2561-2574 (2003). 46.Kagey, M.H., Melhuish, T.A., Powers, S.E. & Wotton, D. Multiple activities contribute to Pc2 E3 function. The EMBO journal 24, 108-119 (2005). 47.Wotton, D. & Merrill, J.C. Pc2 and SUMOylation. Biochemical Society transactions 35, 1401-1404 (2007). 48.Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. The EMBO journal 21, 2682-2691 (2002). 49.Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120 (2002). 50.Matic, I. et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular and cellular proteomics 7, 132-144 (2008). 51.Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. The Journal of biological chemistry 276, 21664-21669 (2001). 52.Knipscheer, P., van Dijk, W.J., Olsen, J.V., Mann, M. & Sixma, T.K. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. The EMBO journal 26, 2797-2807 (2007). 53.Vertegaal, A.C. Small ubiquitin-related modifiers in chains. Biochemical society transactions 35, 1422-1423 (2007). 54.Yunus, A.A. & Lima, C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nature structural & molecular biology 13, 491-499 (2006). 55.Mukhopadhyay, D. & Dasso, M. Modification in reverse: the SUMO proteases. Trends in biochemical sciences 32, 286-295 (2007). 56.Johnson, E.S. Protein modification by SUMO. Annual review of biochemistry 73, 355-382 (2004). 57.Schwienhorst, I., Johnson, E.S. & Dohmen, R.J. SUMO conjugation and deconjugation. Mollecular and general genetics 263, 771-786 (2000). 58.Hay, R.T. SUMO-specific proteases: a twist in the tail. Trends in cell biology 17, 370-376 (2007). 59.Mikolajczyk, J. et al. Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs. The Journal of biological chemistry 282, 26217-26224 (2007). 60.Li, S.J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246-251 (1999). 61.Suzuki, T. et al. A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain. The Journal of biological chemistry 274, 31131-31134 (1999). 62.Li, S.J. & Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and cellular biology 20, 2367-2377 (2000). 63.Yeh, E.T. SUMOylation and de-SUMOylation: Wrestling with life''s processes. The Journal of biological chemistry (2008). 64.Gutierrez, G.J. & Ronai, Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends in biochemical sciences 31, 324-332 (2006). 65.Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H. & Miyamoto, S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115, 565-576 (2003). 66.Stade, K. et al. A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. The Journal of biological chemistry 277, 49554-49561 (2002). 67.Wuerzberger-Davis, S.M., Nakamura, Y., Seufzer, B.J. & Miyamoto, S. NF-kappaB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26, 641-651 (2007). 68.Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107 (1997). 69.Saitoh, H. et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Current biology 8, 121-124 (1998). 70.Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proceedings of the national academy of sciences of the United States of America 94, 3736-3741 (1997). 71.Zheng, G. & Yang, Y.C. Acetylation and alternative splicing regulate ZNF76-mediated transcription. Biochemical and biophysical research communications 339, 1069-1075 (2006). 72.Zheng, G. & Yang, Y.C. ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. The Journal of biological chemistry 279, 42410-42421 (2004). 73.Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. The EMBO journal 21, 1456-1464 (2002). 74.Baba, D. et al. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. Journal of molecular biology 359, 137-147 (2006). 75.Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979-982 (2005). 76.Takahashi, H., Hatakeyama, S., Saitoh, H. & Nakayama, K.I. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. The Journal of biological chemistry 280, 5611-5621 (2005). 77.Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nature structural & molecular biology 12, 264-269 (2005). 78.Ji, Z. et al. Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation. Oncogene 26, 395-406 (2007). 79.Macauley, M.S. et al. Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. The Journal of biological chemistry 281, 4164-4172 (2006). 80.Pichler, A. Clifton, N.J. Analysis of sumoylation. Methods in molecular biology 446, 131-138 (2008). 81.Sacher, M., Pfander, B. & Jentsch, S. Identification of SUMO-protein conjugates. Methods in enzymology 399, 392-404 (2005). 82.Niedenthal, R. Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS). Methods in molecular biology (Clifton, N.J 497, 63-79 (2009). 83.David, G., Neptune, M.A. & DePinho, R.A. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. The Journal of biological chemistry 277, 23658-23663 (2002). 84.Binda, O., Roy, J.S. & Branton, P.E. RBP1 family proteins exhibit SUMOylation-dependent transcriptional repression and induce cell growth inhibition reminiscent of senescence. Molecular and cellular biology 26, 1917-1931 (2006). 85.Ling, Y. et al. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic acids research 32, 598-610 (2004). 86.Santiago, A., Godsey, A.C., Hossain, J., Zhao, L.Y. & Liao, D. Identification of two independent SUMO-interacting motifs in Daxx: Evolutionary conservation from Drosophila to humans and their biochemical functions. Cell cycle 8 (2009). 87.Holmstrom, S.R., Chupreta, S., So, A.Y. & Iniguez-Lluhi, J.A. SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on DAXX. Molecular endocrinology 22, 2061-2075 (2008). 88.Shih, H.M., Chang, C.C., Kuo, H.Y. & Lin, D.Y. Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochemical Society transactions 35, 1397-1400 (2007). 89.Chao, T.T., Chang, C.C. & Shih, H.M. SUMO modification modulates the transrepression activity of PLZF. Biochemical and biophysical research communications 358, 475-482 (2007). 90.Li, X. et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. The Journal of biological chemistry 282, 36177-36189 (2007). 91.Goodson, M.L. et al. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. The Journal of biological chemistry 276, 18513-18518 (2001). 92.Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. A role in transcriptional regulation. EMBO reports 4, 137-142 (2003). 93.Mohan, R.D., Rao, A., Gagliardi, J. & Tini, M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Molecular and cellular biology 27, 229-243 (2007). 94.Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Current biology 15, 616-623 (2005). 95.Zhong, S. et al. Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748-2752 (2000). 96.Seeler, J.S. et al. Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Molecular and cellular biology 21, 3314-3324 (2001). 97.Fu, C. et al. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24, 5401-5413 (2005). 98.Rogers, R.S., Inselman, A., Handel, M.A. & Matunis, M.J. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113, 233-243 (2004). 99.Matsuura, T. et al. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein. Experimental cell research 308, 65-77 (2005). 100.Harder, Z., Zunino, R. & McBride, H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current biology 14, 340-345 (2004). 101.Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Molecular and cellular biology 24, 4267-4274 (2004). 102.Lin, J.Y., Ohshima, T. & Shimotohno, K. Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS letters 573, 15-18 (2004). 103.Rodriguez, M.S. et al. SUMO-1 modification activates the transcriptional response of p53. The EMBO journal 18, 6455-6461 (1999). 104.Mabb, A.M., Wuerzberger-Davis, S.M. & Miyamoto, S. PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nature cell biology 8, 986-993 (2006). 105.Hay, R.T. Modifying NEMO. Nat Cell Biol 6, 89-91 (2004). 106.Riquelme, C., Barthel, K.K. & Liu, X. SUMO-1 modification of MEF2A regulates its transcriptional activity. The Journal of cell biology 10, 132-144 (2006). 107.Valin, A. & Gill, G. Regulation of the dual-function transcription factor Sp3 by SUMO. Biochemical society transactions 35, 1393-1306 (2007). 108.Stielow, B., Sapetschnig, A., Wink, C., Kruger, I. & Suske, G. SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO reports 9, 899-906 (2008). 109.Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65, 2397-2406 (2008). 110.Pickart, C.M. Mechanisms underlying ubiquitination. Annual review of biochemistry 70, 503-533 (2001). 111.Ungureanu, D. et al. PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311-3313 (2003). 112.Tatham, M.H. et al. in J Biol Chem, Vol. 276 35368-353742001). 113.Rodriguez, M.S., Dargemont, C. & Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. The Journal of biological chemistry 276, 12654-12659 (2001). 114.Anckar, J. & Sistonen, L. SUMO: getting it on. Biochemical society transactions 35, 1409-1413 (2007). 115.Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276, 35368-35374 (2001). 116.Perry, J.J., Tainer, J.A. & Boddy, M.N. A SIM-ultaneous role for SUMO and ubiquitin. Trends in biochemical sciences 33, 201-208 (2008). 117.Kerscher, O. SUMO junction-what''s your function? New insights through SUMO-interacting motifs. EMBO reports 8, 550-555 (2007). 118.Tatham, M.H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature cell biology 10, 538-546 (2008). 119.Weisshaar, S.R. et al. Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS letters 582, 3174-3178 (2008). 120.Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. The Journal of biological chemistry 282, 34167-34175 (2007). 121.Schimmel, J. et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mollecular and cellular proteomics 7, 2107-2122 (2008). 122.Sun, H., Leverson, J.D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. The EMBO journal 26, 4102-4112 (2007). 123.Tempe, D., Piechaczyk, M. & Bossis, G. SUMO under stress. Biochemical society transactions 36, 874-878 (2008). 124.Eskiw, C.H., Dellaire, G., Mymryk, J.S. & Bazett-Jones, D.P. Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. Journal of cell science 116, 4455-4466 (2003). 125.Matunis, M.J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. The Journal of cell biology 140, 499-509 (1998). 126.Yan, J., Yang, X.P., Kim, Y.S., Joo, J.H. & Jetten, A.M. RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation. Biochemical and biophysical research communications 362, 132-138 (2007). 127.Kim, J.H. et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nature cell biology 8, 631-639 (2006). 128.Wang, W. & Malcolm, B.A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. BioTechniques 26, 680-682 (1999). 129.Mencia, M. & de Lorenzo, V. Functional transplantation of the sumoylation machinery into Escherichia coli. Protein expression and purification 37, 409-418 (2004). 130.Meulmeester, E. & Melchior, F. Cell biology: SUMO. Nature 452, 709-711 (2008). 131.Jakobs, A.K., Jesko. Himstedt, Fabian. Funk, Martin. Korn, Bernhard. Gaestel, Matthias. Niedenthal, Rainer. Ubc0 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nature methods 4, 245-250 (2007). 132.Yang, M., Hsu, C.T., Ting, C.Y., Liu, L.F. & Hwang, J. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. The Journal of biological chemistry 281, 8264-8274 (2006). 133.Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 (2002). 134.Lin, D.Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular cell 24, 341-354 (2006). 135.Bernier-Billamo, V.S., D.A. Matunis, M.J. Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complesx between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356 (2002). 136.Yang, S.H., Galanis, A., Witty, J. & Sharrocks, A.D. An extended consensus motif enhances the specificity of substrate modification by SUMO. The EMBO journal 25, 5083-5093 (2006). 137.Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Molecular and cellular biology 23, 2953-2968 (2003).
|