跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佳芸
研究生(外文):Jia-Yun Tsai
論文名稱:胞外SUMO化系統之建立與多SUMO化機制之探討
論文名稱(外文):Establishment of in vitro SUMOylation system and study of the mechanism of polySUMOylation
指導教授:張世宗張世宗引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:125
中文關鍵詞:蛋白質轉譯後修飾類泛素細胞生理
外文關鍵詞:SUMO
相關次數:
  • 被引用被引用:2
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SUMO的全名為 small ubiquitin-like modifier,雖然在序列上只和泛素擁有約18%的相似度,其摺疊完成後之立體構形卻和泛素極度相似。SUMO亦藉由和泛素類似的作用機制與目標蛋白質進行共價結合,即 SUMO化 (SUMOylation) 過程也是經由E1活化酶、E2銜接酶和E3黏合酶三種酵素依序參與活化、銜接與黏合的步驟;但泛素化與SUMO化間存有三項顯著的差異:(1)在脊椎動物的系統中,目前已知參與泛素化作用的酵素有許多種類,但SUMO化僅有一種E1 (SAE1/SAE2 複合體) 和一種E2 (Ubc9) 參與;(2) 在許多in vitro研究中顯示,SUMO化可能不須要E3的參與,而僅藉由E1及E2的活性完成;(3) SUMO化是一個可逆的反應,可經由一類去SUMO化酵素破壞SUMO與目標蛋白質間的異胜肽鍵。此類SUMO蛋白酶亦負責SUMO蛋白質的成熟化,能將C端末尾的片段經水解去除,使SUMO露出雙甘胺酸序列 (di-glycine motif) 而能和目標蛋白質進行鍵結。相較於絕大多數經泛素修飾的蛋白質所導向的蛋白酶體降解途徑,SUMO化在細胞中已被發現有更多樣且範圍廣泛的生理功能,如訊息傳遞、蛋白質穩定性、酵素活性調控,以及細胞內分子運送等,因而使其相關的研究受到高度的重視。
相較於只有一種形式的泛素,目前發現的SUMO在不同生物間有許多種類,其中脊椎動物共擁有三種型式的SUMO (SUMO1-3);其中SUMO-2和SUMO-3享有95%的序列相同性,卻僅和SUMO-1有約50%的序列相同,因此在目前的研究中,多把SUMO-2及SUMO-3總稱為 SUMO-2/3一類,而將SUMO-1獨立為另一類。特別的是,由於近年來發現SUMO-2/3的序列中具有一個SUMO化偏好發生的保守序列VKTE,因能夠像多泛素般產生聚合長鏈對目標蛋白質進行修飾,而SUMO-1由於缺乏此序列而僅能進行單一SUMO化;此項發現使單一SUMO化或多SUMO化各自帶有的生理意義受到極度重視,並引發廣泛的研究。
本論文實驗藉由點突變方法製造出帶有SUMO化共有基序的SUMO-1 (D15V)、SUMO-1 (D15V/K17T) 及SUMO-1 (K25E) 三種SUMO-1突變株,以及失去SUMO化共有基序的SUMO-2突變株SUMO-2 (K11A),並建立在in vitro或在大腸桿菌中進行的SUMO化系統,以及能表現帶有tag之SUMO的動物穩定細胞株,作為研究SUMO化作用的工具,並探討SUMO化共有基序對SUMO聚合作用造成的影響。
Although SUMO (small ubiquitin-like modifier) shares only 18% sequence identity with ubiquitin, its folding structure highly resembles that of ubiquitin except for the N terminal extension. In addition, SUMO conjugates to its substrates through a mechanism similar to that of ubiquitination. That is, SUMOylation is also a sequential enzyme catalytic cascade, which includes E1 activation, E2 conjugation and E3 ligation. However, there are three major differences between these two post-translational modifications: (1) in the mammalian system, there is only one SUMO E1 and one SUMO E2 compared to the many known ubiquitination enzymes; (2) many in vitro studies have shown that SUMOylation may not need the participation of E3 ligase; (3) SUMOylation can be reversed by de-SUMOylation enzymes. These enzymes are not only responsible for de-conjugation of SUMO but are also in charge of its C-terminal maturation. In contrast to ubiquitination, sumoylation does not target modified proteins for degradation, but can affect their signal transduction, stability, enzyme activity and localization showing its importance.
Higher eukaryotes express three SUMO family members, SUMO1-3. Mature SUMO-2 and SUMO-3 (referred to as SUMO2/3) are 97% identical but differ substantially from SUMO1 (~50% identity). Interestingly, SUMO2/3 contains an internal consensus motif that is missing in SUMO1 which is responsible for polychain formation. This gives rise to vast research on the physiological consequences of mono- and poly-SUMOylation.
To investigate the importance of SUMOylation consensus motif on SUMO polymerization, we have generated three different SUMO-1 mutants, SUMO-1(D15V), SUMO-1(D15V/K17T) and SUMO-1(K25E), which bear a SUMOylation site in their sequences. We also produced a SUMO-2 mutant losing the Lys11 SUMOylation residue by the same site-directed mutagenesis method. We have conducted several experiments with these SUMO mutants in our in vivo or in vitro SUMOylation systems, and successfully obtained some interesting findings among different types of poly-SUMOylation events.
目錄 i
縮寫表 v
摘要 vi
Abstract vii
第一章 緒論 1
1.1類泛素蛋白質家族 1
1.2 SUMO化修飾系統 1
1.2.1 SUMO簡介 1
1.2.2 SUMO化與去SUMO化 2
1.2.3 SUMO化參與之生理作用 4
1.3 SUMO之聚合反應 6
1.3.1 SUMO化共有基序 6
1.3.2 SUMO-2/3 之聚合反應與生理作用 7
1.4 研究動機與方向 7
第二章 材料與方法 11
2.1 實驗材料 11
2.1.1 大腸桿菌菌株 11
2.1.2 動物細胞 11
2.2 各目標基因表現載體之建構 12
2.2.1 真核表現系統載體 12
2.2.2 原核表現系統載體 12
2.2.3 核酸引子設計 13
2.2.4 聚合酶鏈鎖反應 14
2.2.5 限制酶切反應 16
2.2.6 接合反應 17
2.2.7 點突變聚合酶鏈鎖反應 18
2.3 原核宿主細胞表現系統 22
2.3.1 化學法勝任細胞製備 22
2.3.2 大腸桿菌細胞轉形 23
2.3.3 重組蛋白質誘導表現 24
2.4 重組蛋白質之純化方法 25
2.4.1 6xHis重組蛋白質親和性層析法 25
2.4.2 GST重組蛋白質親和性層析法 26
2.4.3 離子交換法 27
2.4.4 蛋白質脫鹽與濃縮 28
2.5 真核宿主細胞表現系統 29
2.5.1 動物細胞培養 29
2.5.2 真核細胞轉染 31
2.5.3 細胞冷凍保存 32
2.6 DNA相關基本操作方法 33
2.6.1 小量質體DNA製備 33
2.6.2 大量質體 DNA 製備 35
2.6.3 洋菜膠體電泳 36
2.6.4 核酸定量 37
2.6.5 核酸純化 38
2.7 蛋白質相關基本操作方法 39
2.7.1 蛋白質定量 39
2.7.2 蛋白質電泳檢定 40
2.7.3 蛋白質電泳膠片染色法 43
2.7.4 蛋白質轉印法 45
2.7.5 酵素免疫染色 46
2.7.6 蛋白質免疫沉澱 47
2.8 單株抗體製備 48
2.8.1 抗原製備 48
2.8.2 小鼠免疫與採血 48
2.8.3 細胞融合 50
2.8.4 篩選有效價之細胞株 52
2.8.5 細胞單株化 54
2.8.6 單株抗體篩選 55
2.8.7 單株抗體生產 57
2.8.8 單株抗體純化 58
2.9 胞外SUMO化修飾 59
第三章 結果 60
3.1 In vitro SUMO化與去SUMO化系統之建立 60
3.1.1 SUMO1、SUMO2 表現質體之建構及確認 60
3.1.2 SUMO與SUMO化酵素之蛋白質表現 61
3.1.3 In vitro SUMO化系統之建立 63
3.1.4 SENP1蛋白質表現與活性分析 63
3.2 In vitro多SUMO聚合反應系統之建立與分析 64
3.2.1 SUMO 化共有基因序列之點突變與表現質體建構 65
3.2.2SUMO突變株蛋白質表現 67
3.2.3 野生型與突變型SUMO之in vitro聚合反應分析 67
3.2.4 SENP1對野生型與突變型多SUMO聚合鏈之活性分析 69
3.3 大腸桿菌內SUMO化修飾系統之建立與分析 70
3.3.1 大腸桿菌宿主細胞之轉形 70
3.3.2 SUMO化系統於大腸桿菌之誘導表現 71
3.4 真核細胞胞內 SUMO 化修飾目標蛋白質之分析 72
3.4.1 野生型SUMO1與SUMO2動物細胞表現質體之建立 72
3.4.2 SUMO突變株蛋白質表現質體之建立 73
3.4.3 動物細胞轉染與穩定細胞株之建立 74
3.4.4 動物細胞內SUMO化現象之分析 75
3.5 SUMO突變株對目標蛋白質之修飾作用 76
3.5.1 大腸桿菌轉形勝任細胞製備 76
3.5.2 野生型與突變型SUMO對p53之修飾作用 77
3.6 SUMO 單株抗體製備 78
3.6.1 抗原準備與小鼠免疫 78
3.6.2 融合瘤細胞株建立與單株抗體篩選 79
3.6.3 抗體純化與效價測試 80
第四章 討論 81
4.1 In vitro SUMO化與去SUMO化系統能作為有用之研究工具 81
4.2 SUMO-1能於In vitro SUMO化系統中產生聚合現象 82
4.3 SUMO化共有基序對SUMO聚合反應之影響 83
4.4 SENP1對不同種類SUMO之選擇性 85
4.5細胞中SUMO-1與SUMO-2對目標蛋白質之共同修飾現象 86
第五章 未來展望 88
圖與表 90
參考文獻 119
1.Tanaka, K. & Tsurumi, C. The 26S proteasome: subunits and functions. Molecular biology reports 24, 3-11 (1997).
2.Vierstra, R.D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in plant science 8, 135-142 (2003).
3.Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13-21 (1994).
4.Ciechanover, A. The ubiquitin-mediated proteolytic pathway: mechanisms of action and cellular physiology. Biological chemistry Hoppe-Seyler 375, 565-581 (1994).
5.Hochstrasser, M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Current opinion in cell biology 7, 215-223 (1995).
6.Rock, K.L., York, I.A., Saric, T. & Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Advances in immunology 80, 1-70 (2002).
7.Goldberg, A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochemical society transactions 35, 12-17 (2007).
8.Goldberg, A.L., Cascio, P., Saric, T. & Rock, K.L. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Molecular immunology 39, 147-164 (2002).
9.Orlowski, R.Z. The role of the ubiquitin-proteasome pathway in apoptosis. Cell death and differentiation 6, 303-313 (1999).
10.Schwartz, A.L. & Ciechanover, A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual review of medicine 50, 57-74 (1999).
11.Thompson, S.J., Loftus, L.T., Ashley, M.D. & Meller, R. Ubiquitin-proteasome system as a modulator of cell fate. Current opinion in pharmacology 8, 90-95 (2008).
12.Ciechanover, A., Heller, H., Elias, S., Haas, A.L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proceedings of the National academy of sciences of the United States of America 77, 1365-1368 (1980).
13.Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. The Journal of biological chemistry 255, 7525-7528 (1980).
14.Yeh, E.T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1-14 (2000).
15.Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 10, 335-342 (2000).
16.Schwartz, D.C. & Hochstrasser, M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends in biochemical sciences 28, 321-328 (2003).
17.Herrmann, J., Lerman, L.O. & Lerman, A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circulation research 100, 1276-1291 (2007).
18.Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual review of cell and developmental biology 22, 159-180 (2006).
19.Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature reviews 6, 599-609 (2005).
20.Hay, R.T. SUMO: a history of modification. Molecular cell 18, 1-12 (2005).
21.Su, H.L. & Li, S.S. Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296, 65-73 (2002).
22.Johnson, E.S., Schwienhorst, I., Dohmen, R.J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. The EMBO journal 16, 5509-5519 (1997).
23.Mannen, H., Tseng, H.M., Cho, C.L. & Li, S.S. Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene. Biochemical and biophysical research communications 222, 178-180 (1996).
24.Hay, R.T. Protein modification by SUMO. Trends in biochemical sciences 26, 332-333 (2001).
25.Vijay-Kumar, S. et al. Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin. The Journal of biological chemistry 262, 6396-6399 (1987).
26.Bayer, P. et al. Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of molecular biology 280, 275-286 (1998).
27.Dohmen, R.J. SUMO protein modification. Biochimica et biophysica acta 1695, 113-131 (2004).
28.Johnson, E.S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. The Journal of biological chemistry 272, 26799-26802 (1997).
29.Kurepa, J. et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. The Journal of biological chemistry 278, 6862-6872 (2003).
30.Okura, T. et al. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. The Journal of immunology 157, 4277-4281 (1996).
31.Boddy, M.N., Howe, K., Etkin, L.D., Solomon, E. & Freemont, P.S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971-982 (1996).
32.Matunis, M.J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. The Journal of cell biology 135, 1457-1470 (1996).
33.Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K. & Chen, D.J. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271-279 (1996).
34.Lapenta, V. et al. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family. Genomics 40, 362-366 (1997).
35.Sternsdorf, T., Jensen, K. & Freemont, P.S. Sumo. Current biololgy 13, R258-259 (2003).
36.Desterro, J.M., Rodriguez, M.S., Kemp, G.D. & Hay, R.T. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. The Journal of biological chemistry 274, 10618-10624 (1999).
37.Okuma, T., Honda, R., Ichikawa, G., Tsumagari, N. & Yasuda, H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochemical and biophysical research communications 254, 693-698 (1999).
38.Desterro, J.M., Thomson, J. & Hay, R.T. Ubch9 conjugates SUMO but not ubiquitin. FEBS letters 417, 297-300 (1997).
39.Tang, Z., Hecker, C.M., Scheschonka, A. & Betz, H. Protein interactions in the sumoylation cascade: lessons from X-ray structures. The FEBS journal 275, 3003-3015 (2008).
40.Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687-692 (2005).
41.Liu, Q. et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). The Journal of biological chemistry 274, 16979-16987 (1999).
42.Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735-744 (2001).
43.Jackson, P.K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes & development 15, 3053-3058 (2001).
44.Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proceedings of the National Academy of Sciences of the United States of America 99, 2872-2877 (2002).
45.Schmidt, D. & Muller, S. PIAS/SUMO: new partners in transcriptional regulation. Cellular and molecular life sciences 60, 2561-2574 (2003).
46.Kagey, M.H., Melhuish, T.A., Powers, S.E. & Wotton, D. Multiple activities contribute to Pc2 E3 function. The EMBO journal 24, 108-119 (2005).
47.Wotton, D. & Merrill, J.C. Pc2 and SUMOylation. Biochemical Society transactions 35, 1401-1404 (2007).
48.Kirsh, O. et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. The EMBO journal 21, 2682-2691 (2002).
49.Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120 (2002).
50.Matic, I. et al. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular and cellular proteomics 7, 132-144 (2008).
51.Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. The Journal of biological chemistry 276, 21664-21669 (2001).
52.Knipscheer, P., van Dijk, W.J., Olsen, J.V., Mann, M. & Sixma, T.K. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. The EMBO journal 26, 2797-2807 (2007).
53.Vertegaal, A.C. Small ubiquitin-related modifiers in chains. Biochemical society transactions 35, 1422-1423 (2007).
54.Yunus, A.A. & Lima, C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nature structural & molecular biology 13, 491-499 (2006).
55.Mukhopadhyay, D. & Dasso, M. Modification in reverse: the SUMO proteases. Trends in biochemical sciences 32, 286-295 (2007).
56.Johnson, E.S. Protein modification by SUMO. Annual review of biochemistry 73, 355-382 (2004).
57.Schwienhorst, I., Johnson, E.S. & Dohmen, R.J. SUMO conjugation and deconjugation. Mollecular and general genetics 263, 771-786 (2000).
58.Hay, R.T. SUMO-specific proteases: a twist in the tail. Trends in cell biology 17, 370-376 (2007).
59.Mikolajczyk, J. et al. Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs. The Journal of biological chemistry 282, 26217-26224 (2007).
60.Li, S.J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246-251 (1999).
61.Suzuki, T. et al. A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain. The Journal of biological chemistry 274, 31131-31134 (1999).
62.Li, S.J. & Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and cellular biology 20, 2367-2377 (2000).
63.Yeh, E.T. SUMOylation and de-SUMOylation: Wrestling with life''s processes. The Journal of biological chemistry (2008).
64.Gutierrez, G.J. & Ronai, Z. Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends in biochemical sciences 31, 324-332 (2006).
65.Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H. & Miyamoto, S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115, 565-576 (2003).
66.Stade, K. et al. A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. The Journal of biological chemistry 277, 49554-49561 (2002).
67.Wuerzberger-Davis, S.M., Nakamura, Y., Seufzer, B.J. & Miyamoto, S. NF-kappaB activation by combinations of NEMO SUMOylation and ATM activation stresses in the absence of DNA damage. Oncogene 26, 641-651 (2007).
68.Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107 (1997).
69.Saitoh, H. et al. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Current biology 8, 121-124 (1998).
70.Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proceedings of the national academy of sciences of the United States of America 94, 3736-3741 (1997).
71.Zheng, G. & Yang, Y.C. Acetylation and alternative splicing regulate ZNF76-mediated transcription. Biochemical and biophysical research communications 339, 1069-1075 (2006).
72.Zheng, G. & Yang, Y.C. ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. The Journal of biological chemistry 279, 42410-42421 (2004).
73.Hardeland, U., Steinacher, R., Jiricny, J. & Schar, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. The EMBO journal 21, 1456-1464 (2002).
74.Baba, D. et al. Crystal structure of SUMO-3-modified thymine-DNA glycosylase. Journal of molecular biology 359, 137-147 (2006).
75.Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979-982 (2005).
76.Takahashi, H., Hatakeyama, S., Saitoh, H. & Nakayama, K.I. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. The Journal of biological chemistry 280, 5611-5621 (2005).
77.Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nature structural & molecular biology 12, 264-269 (2005).
78.Ji, Z. et al. Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation. Oncogene 26, 395-406 (2007).
79.Macauley, M.S. et al. Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. The Journal of biological chemistry 281, 4164-4172 (2006).
80.Pichler, A. Clifton, N.J. Analysis of sumoylation. Methods in molecular biology 446, 131-138 (2008).
81.Sacher, M., Pfander, B. & Jentsch, S. Identification of SUMO-protein conjugates. Methods in enzymology 399, 392-404 (2005).
82.Niedenthal, R. Enhanced detection of in vivo SUMO conjugation by Ubc9 fusion-dependent sumoylation (UFDS). Methods in molecular biology (Clifton, N.J 497, 63-79 (2009).
83.David, G., Neptune, M.A. & DePinho, R.A. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. The Journal of biological chemistry 277, 23658-23663 (2002).
84.Binda, O., Roy, J.S. & Branton, P.E. RBP1 family proteins exhibit SUMOylation-dependent transcriptional repression and induce cell growth inhibition reminiscent of senescence. Molecular and cellular biology 26, 1917-1931 (2006).
85.Ling, Y. et al. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic acids research 32, 598-610 (2004).
86.Santiago, A., Godsey, A.C., Hossain, J., Zhao, L.Y. & Liao, D. Identification of two independent SUMO-interacting motifs in Daxx: Evolutionary conservation from Drosophila to humans and their biochemical functions. Cell cycle 8 (2009).
87.Holmstrom, S.R., Chupreta, S., So, A.Y. & Iniguez-Lluhi, J.A. SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on DAXX. Molecular endocrinology 22, 2061-2075 (2008).
88.Shih, H.M., Chang, C.C., Kuo, H.Y. & Lin, D.Y. Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochemical Society transactions 35, 1397-1400 (2007).
89.Chao, T.T., Chang, C.C. & Shih, H.M. SUMO modification modulates the transrepression activity of PLZF. Biochemical and biophysical research communications 358, 475-482 (2007).
90.Li, X. et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. The Journal of biological chemistry 282, 36177-36189 (2007).
91.Goodson, M.L. et al. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. The Journal of biological chemistry 276, 18513-18518 (2001).
92.Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. A role in transcriptional regulation. EMBO reports 4, 137-142 (2003).
93.Mohan, R.D., Rao, A., Gagliardi, J. & Tini, M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Molecular and cellular biology 27, 229-243 (2007).
94.Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Current biology 15, 616-623 (2005).
95.Zhong, S. et al. Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748-2752 (2000).
96.Seeler, J.S. et al. Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Molecular and cellular biology 21, 3314-3324 (2001).
97.Fu, C. et al. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24, 5401-5413 (2005).
98.Rogers, R.S., Inselman, A., Handel, M.A. & Matunis, M.J. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113, 233-243 (2004).
99.Matsuura, T. et al. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein. Experimental cell research 308, 65-77 (2005).
100.Harder, Z., Zunino, R. & McBride, H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current biology 14, 340-345 (2004).
101.Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Molecular and cellular biology 24, 4267-4274 (2004).
102.Lin, J.Y., Ohshima, T. & Shimotohno, K. Association of Ubc9, an E2 ligase for SUMO conjugation, with p53 is regulated by phosphorylation of p53. FEBS letters 573, 15-18 (2004).
103.Rodriguez, M.S. et al. SUMO-1 modification activates the transcriptional response of p53. The EMBO journal 18, 6455-6461 (1999).
104.Mabb, A.M., Wuerzberger-Davis, S.M. & Miyamoto, S. PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nature cell biology 8, 986-993 (2006).
105.Hay, R.T. Modifying NEMO. Nat Cell Biol 6, 89-91 (2004).
106.Riquelme, C., Barthel, K.K. & Liu, X. SUMO-1 modification of MEF2A regulates its transcriptional activity. The Journal of cell biology 10, 132-144 (2006).
107.Valin, A. & Gill, G. Regulation of the dual-function transcription factor Sp3 by SUMO. Biochemical society transactions 35, 1393-1306 (2007).
108.Stielow, B., Sapetschnig, A., Wink, C., Kruger, I. & Suske, G. SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO reports 9, 899-906 (2008).
109.Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65, 2397-2406 (2008).
110.Pickart, C.M. Mechanisms underlying ubiquitination. Annual review of biochemistry 70, 503-533 (2001).
111.Ungureanu, D. et al. PIAS proteins promote SUMO-1 conjugation to STAT1. Blood 102, 3311-3313 (2003).
112.Tatham, M.H. et al. in J Biol Chem, Vol. 276 35368-353742001).
113.Rodriguez, M.S., Dargemont, C. & Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. The Journal of biological chemistry 276, 12654-12659 (2001).
114.Anckar, J. & Sistonen, L. SUMO: getting it on. Biochemical society transactions 35, 1409-1413 (2007).
115.Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276, 35368-35374 (2001).
116.Perry, J.J., Tainer, J.A. & Boddy, M.N. A SIM-ultaneous role for SUMO and ubiquitin. Trends in biochemical sciences 33, 201-208 (2008).
117.Kerscher, O. SUMO junction-what''s your function? New insights through SUMO-interacting motifs. EMBO reports 8, 550-555 (2007).
118.Tatham, M.H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature cell biology 10, 538-546 (2008).
119.Weisshaar, S.R. et al. Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS letters 582, 3174-3178 (2008).
120.Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. The Journal of biological chemistry 282, 34167-34175 (2007).
121.Schimmel, J. et al. The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mollecular and cellular proteomics 7, 2107-2122 (2008).
122.Sun, H., Leverson, J.D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. The EMBO journal 26, 4102-4112 (2007).
123.Tempe, D., Piechaczyk, M. & Bossis, G. SUMO under stress. Biochemical society transactions 36, 874-878 (2008).
124.Eskiw, C.H., Dellaire, G., Mymryk, J.S. & Bazett-Jones, D.P. Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. Journal of cell science 116, 4455-4466 (2003).
125.Matunis, M.J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. The Journal of cell biology 140, 499-509 (1998).
126.Yan, J., Yang, X.P., Kim, Y.S., Joo, J.H. & Jetten, A.M. RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation. Biochemical and biophysical research communications 362, 132-138 (2007).
127.Kim, J.H. et al. Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nature cell biology 8, 631-639 (2006).
128.Wang, W. & Malcolm, B.A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. BioTechniques 26, 680-682 (1999).
129.Mencia, M. & de Lorenzo, V. Functional transplantation of the sumoylation machinery into Escherichia coli. Protein expression and purification 37, 409-418 (2004).
130.Meulmeester, E. & Melchior, F. Cell biology: SUMO. Nature 452, 709-711 (2008).
131.Jakobs, A.K., Jesko. Himstedt, Fabian. Funk, Martin. Korn, Bernhard. Gaestel, Matthias. Niedenthal, Rainer. Ubc0 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nature methods 4, 245-250 (2007).
132.Yang, M., Hsu, C.T., Ting, C.Y., Liu, L.F. & Hwang, J. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. The Journal of biological chemistry 281, 8264-8274 (2006).
133.Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 (2002).
134.Lin, D.Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Molecular cell 24, 341-354 (2006).
135.Bernier-Billamo, V.S., D.A. Matunis, M.J. Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complesx between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356 (2002).
136.Yang, S.H., Galanis, A., Witty, J. & Sharrocks, A.D. An extended consensus motif enhances the specificity of substrate modification by SUMO. The EMBO journal 25, 5083-5093 (2006).
137.Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Molecular and cellular biology 23, 2953-2968 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top