跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林庭豪
研究生(外文):Ting-Hao Lin
論文名稱:EB病毒BGLF4蛋白激酶對於LAMR1調控及細胞骨架重組之探討
論文名稱(外文):Regulatory Effects of EBV BGLF4 Kinase on LAMR1 and Cytoskeleton Rearrangement
指導教授:陳美如陳美如引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:45
中文關鍵詞:EB病毒BGLF4LAMR1Rho GTPases細胞骨架重組
外文關鍵詞:EBVBGLF4LAMR1Rho GTPasescytoskeleton rearrangement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
BGLF4是EB病毒的Serine/Throenine蛋白激酶,可以磷酸化數個哺乳動物細胞中的Cdc2受質。BGLF4的表現已知會造成細胞染色體濃縮、核板離散與細胞骨架重組等類似細胞周期M期之現象。透過類似Cdc2之作用機制,BGLF4對condensin與lamin的磷酸化,產生染色體濃縮與核板離散之現象,但對細胞骨架重組的機制仍不清楚。本篇研究第一部份是探討BGLF4與利用酵母菌雙雜交試驗找尋到與BGLF4有交互作用的細胞蛋白質LAMR1 (Laminin receptor 1) 間的交互作用,與BGLF4對LAMR1功能可能之影響。LAMR1是一個與細胞外基質蛋白質Laminin-1有高度親合性之細胞膜受器,在細胞貼附與移動上可能扮演重要角色,並且在許多癌細胞中有高量表現。因此在本研究中首先在HeLa細胞轉染表現BGLF4,以共同免疫沉澱方式證明細胞內生性的LAMR1可與BGLF4產生交互作用,同時以免疫螢光染色發現BGLF4會改變LAMR1的分佈位置,但BGLF4不影響LAMR1在細胞內的表現量。利用純化的GST-LAMR1與BGLF4進行試管內激酶試驗,發現BGLF4不會磷酸化LAMR1。為了探討BGLF4是否參與在LAMR1功能上面的調控,以可受tetracycline誘導之293 T-REx-BGLF4 (B22) 與293 T-RE-K102I (K9) 細胞進行貼附試驗與細胞移動試驗觀察,在初步實驗中未發現BGLF4對於LAMR1對於細胞貼附Laminin-1有明顯影響。另外先前已報導在酵母菌中的Cdk1會調節Rho GTPases中的Cdc42,對於酵母菌出芽生殖過程扮演重要角色,因此第二部份探討Rho GTPases是否參與在BGLF4所造成的細胞骨架重組過程中。將可表現顯性抑制型GFP Rho GTPases (dominant negative GFP RhoA, Rac1, Cdc42) 與BGLF4的質體轉染至細胞,初步實驗中發現顯性抑制型GFP Rho GTPases可以降低BGLF4造成細胞圓形化的比例。但這些初步觀察均有待未來實驗的進一步確認。
BGLF4 of Epstein-Barr virus (EBV) is a proline dependent Serine/throenine protein kinase which shares multiple protein substrates with cyclin-dependent kinase 1 (cdk1, or cdc2). Transient expression of BGLF4 induces multiple mitotic events, including premature chromosome condensation, nuclear lamina disassembly and cytoskeleton rearrangement. BGLF4 induces nuclear changes through the phosphorylation of condensin and nuclear lamin in a cdc2 mimicking manner, whereas the mechanism involved in cytoskeleton change remains unclear. The first part of this study is to characterize the interaction between BGLF4 and one of its interacting partner, Laminin receptor 1 (LAMR1), identified in yeast-two hybrid screening. LAMR1 is a membrane receptor that has a high affinity to extracellular matrix (ECM) Lminin-1. LAMR1 not only plays an important role in cell adhesion and migration but also correlates with metastastic potentials in multiple human malignancies. The interaction between LAMR1 and BGLF4 was first confirmed in co-immunoprecipitation. Immunofluorescence staining revealed that endogenous LAMR1 is redistributed and colocalized with BGLF4 or kinase dead K102I in transiently transfected HeLa cells. Phosphorylation signal was not observed in in vitro BGLF4 kinase assay using bacterially recombinant GST-LAMR1 as a substrate. Possible effects of BGLF4 on LAMR1 function were examined using tetracycline inducible 293 T-REx-BGLF4 (B22) and 293 T-REx-K102I (K9). The preliminary data indicate that BGLF4 seems not to affect cell binding to Laminin-1 coated surface significantly. Secondly, it was observed that yeast Rho GTPase cdc42 is regulated by cdk1 in yeast and Rho GTPases are important regulators for cell morphology and migration. Therefore it was addressed whether Rho GTPases are involved in BGLF4 induced cytoskeleton rearrangement by expressing GFP-tagged dominant negatives of Cdc42, RhoA and Rac1. In transiently transfected HeLa cells, BGLF4 mediated cell rounding was reduced in the presence of these dominant negative Rho GTPases. The biological significance of these observations will need further study in the future.
口試委員會審定書 …………………………………… I
中文摘要 ……………………………………  II
英文摘要 ……………………………………   III
1.導論 …………………………………… 1
2. 材料與方法 …………………………………… 9
3. 結果 …………………………………… 16
4. 討論 …………………………………… 21
5. 圖表 …………………………………… 25
6. 參考文獻 …………………………………… 41
Adams, A. and Lindahl, T. (1975) Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci U S A, 72, 1477-1481.
al-Saleh, W., Delvenne, P., van den Brule, F.A., Menard, S., Boniver, J. and Castronovo, V. (1997) Expression of the 67 KD laminin receptor in human cervical preneoplastic and neoplastic squamous epithelial lesions: an immunohistochemical study. J Pathol, 181, 287-293.
Ardini, E., Sporchia, B., Pollegioni, L., Modugno, M., Ghirelli, C., Castiglioni, F., Tagliabue, E. and Menard, S. (2002) Identification of a novel function for 67-kDa laminin receptor: increase in laminin degradation rate and release of motility fragments. Cancer Res, 62, 1321-1325.
Auth, D. and Brawerman, G. (1992) A 33-kDa polypeptide with homology to the laminin receptor: component of translation machinery. Proc Natl Acad Sci U S A, 89, 4368-4372.
Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C. and et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 310, 207-211.
Berno, V., Porrini, D., Castiglioni, F., Campiglio, M., Casalini, P., Pupa, S.M., Balsari, A., Menard, S. and Tagliabue, E. (2005) The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocr Relat Cancer, 12, 393-406.
Chen, M.R., Chang, S.J., Huang, H. and Chen, J.Y. (2000) A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol, 74, 3093-3104.
Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J. and Sergeant, A. (1986) Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. Embo J, 5, 3243-3249.
Countryman, J., Jenson, H., Seibl, R., Wolf, H. and Miller, G. (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol, 61, 3672-3679.
Ellenbroek, S.I. and Collard, J.G. (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis, 24, 657-672.
42
Epstein, M.A., Achong, B.G. and Barr, Y.M. (1964) Virus Particles in Cultured Lymphoblasts from Burkitt''s Lymphoma. Lancet, 1, 702-703.
Gershburg, E., Raffa, S., Torrisi, M.R. and Pagano, J.S. (2007) Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol, 81, 5407-5412.
Henle, G., Henle, W. and Diehl, V. (1968) Relation of Burkitt''s tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A, 59, 94-101.
Hundt, C., Peyrin, J.M., Haik, S., Gauczynski, S., Leucht, C., Rieger, R., Riley, M.L., Deslys, J.P., Dormont, D., Lasmezas, C.I. and Weiss, S. (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. Embo J, 20, 5876-5886.
Jaffe, A.B. and Hall, A. (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol, 21, 247-269.
Kato, K., Kawaguchi, Y., Tanaka, M., Igarashi, M., Yokoyama, A., Matsuda, G., Kanamori, M., Nakajima, K., Nishimura, Y., Shimojima, M., Phung, H.T., Takahashi, E. and Hirai, K. (2001) Epstein-Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta is universally modified by conserved protein kinases of herpesviruses in mammalian cells. J Gen Virol, 82, 1457-1463.
Kato, K., Yokoyama, A., Tohya, Y., Akashi, H., Nishiyama, Y. and Kawaguchi, Y. (2003) Identification of protein kinases responsible for phosphorylation of Epstein-Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol, 84, 3381-3392.
Kawaguchi, Y., Kato, K., Tanaka, M., Kanamori, M., Nishiyama, Y. and Yamanashi, Y. (2003) Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta. J Virol, 77, 2359-2368.
Kikuta, H., Taguchi, Y., Tomizawa, K., Kojima, K., Kawamura, N., Ishizaka, A., Sakiyama, Y., Matsumoto, S., Imai, S., Kinoshita, T. and et al. (1988) Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature, 333, 455-457.
Klein, E., Kis, L.L. and Klein, G. (2007) Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene, 26, 1297-1305.
Klein, G., Clifford, P., Klein, E. and Stjernsward, J. (1966) Search for tumor-specific immune reactions in Burkitt lymphoma patients by the
43
membrane immunofluorescence reaction. Proc Natl Acad Sci U S A, 55, 1628-1635.
Lee, C.P., Chen, J.Y., Wang, J.T., Kimura, K., Takemoto, A., Lu, C.C. and Chen, M.R. (2007) Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol, 81, 5166-5180.
Lee, C.P., Huang, Y.H., Lin, S.F., Chang, Y., Chang, Y.H., Takada, K. and Chen, M.R. (2008) Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol, 82, 11913-11926.
Lesot, H., Kuhl, U. and Mark, K.V. (1983) Isolation of a laminin-binding protein from muscle cell membranes. Embo J, 2, 861-865.
Lin, C.T., Chan, W.Y., Chen, W., Huang, H.M., Wu, H.C., Hsu, M.M., Chuang, S.M. and Wang, C.C. (1993) Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest, 68, 716-727.
Lindahl, T., Adams, A., Andersson-Anvret, M. and Falk, L. (1978) Integration of Epstein-Barr virus DNA. IARC Sci Publ, 113-123.
Luka, J., Kallin, B. and Klein, G. (1979) Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94, 228-231.
Martignone, S., Menard, S., Bufalino, R., Cascinelli, N., Pellegrini, R., Tagliabue, E., Andreola, S., Rilke, F. and Colnaghi, M.I. (1993) Prognostic significance of the 67-kilodalton laminin receptor expression in human breast carcinomas. J Natl Cancer Inst, 85, 398-402.
McCusker, D., Denison, C., Anderson, S., Egelhofer, T.A., Yates, J.R., 3rd, Gygi, S.P. and Kellogg, D.R. (2007) Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol, 9, 506-515.
Menard, S., Tagliabue, E. and Colnaghi, M.I. (1998) The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat, 52, 137-145.
Miralles, F., Posern, G., Zaromytidou, A.I. and Treisman, R. (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113, 329-342.
Moseley, J.B. and Nurse, P. (2009) Cdk1 and cell morphology: connections and directions. Curr Opin Cell Biol, 21, 82-88.
Murata, T., Goshima, F., Daikoku, T., Takakuwa, H. and Nishiyama, Y. (2000) Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells, 5, 1017-1027.
Rao, N.C., Barsky, S.H., Terranova, V.P. and Liotta, L.A. (1983) Isolation of a
44
tumor cell laminin receptor. Biochem Biophys Res Commun, 111, 804-808.
Rosenblatt, J., Cramer, L.P., Baum, B. and McGee, K.M. (2004) Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361-372.
Sato, M., Kinoshita, K., Kaneda, Y., Saeki, Y., Iwamatsu, A. and Tanaka, K. (1996) Analysis of nuclear localization of laminin binding protein precursor p40 (LBP/p40). Biochem Biophys Res Commun, 229, 896-901.
Schmitz, A.A., Govek, E.E., Bottner, B. and Van Aelst, L. (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res, 261, 1-12.
Sixbey, J.W., Vesterinen, E.H., Nedrud, J.G., Raab-Traub, N., Walton, L.A. and Pagano, J.S. (1983) Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature, 306, 480-483.
Stetler-Stevenson, W.G., Aznavoorian, S. and Liotta, L.A. (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol, 9, 541-573.
Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I. and Miki, T. (1999) Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol, 147, 921-928.
Terranova, V.P., Rao, C.N., Kalebic, T., Margulies, I.M. and Liotta, L.A. (1983) Laminin receptor on human breast carcinoma cells. Proc Natl Acad Sci U S A, 80, 444-448.
Tio, P.H., Jong, W.W. and Cardosa, M.J. (2005) Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J, 2, 25.
Toure, A., Mzali, R., Liot, C., Seguin, L., Morin, L., Crouin, C., Chen-Yang, I., Tsay, Y.G., Dorseuil, O., Gacon, G. and Bertoglio, J. (2008) Phosphoregulation of MgcRacGAP in mitosis involves Aurora B and Cdk1 protein kinases and the PP2A phosphatase. FEBS Lett, 582, 1182-1188.
Tovey, M.G., Lenoir, G. and Begon-Lours, J. (1978) Activation of latent Epstein-Barr virus by antibody to human IgM. Nature, 276, 270-272.
Umeda, D., Yano, S., Yamada, K. and Tachibana, H. (2008) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem, 283, 3050-3058.
Van den Broeke, C., Deruelle, M., Nauwynck, H.J., Coller, K.E., Smith, G.A., Van Doorsselaere, J. and Favoreel, H.W. (2009) The kinase activity of pseudorabies virus US3 is required for modulation of the actin cytoskeleton. Virology, 385, 155-160.
Veettil, M.V., Sharma-Walia, N., Sadagopan, S., Raghu, H., Sivakumar, R.,
45
Naranatt, P.P. and Chandran, B. (2006) RhoA-GTPase facilitates entry of Kaposi''s sarcoma-associated herpesvirus into adherent target cells in a Src-dependent manner. J Virol, 80, 11432-11446.
Wang, J.T., Doong, S.L., Teng, S.C., Lee, C.P., Tsai, C.H. and Chen, M.R. (2009) Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol, 83, 1856-1869.
Wang, J.T., Yang, P.W., Lee, C.P., Han, C.H., Tsai, C.H. and Chen, M.R. (2005) Detection of Epstein-Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. J Gen Virol, 86, 3215-3225.
Wang, K.S., Kuhn, R.J., Strauss, E.G., Ou, S. and Strauss, J.H. (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol, 66, 4992-5001.
Wewer, U.M., Liotta, L.A., Jaye, M., Ricca, G.A., Drohan, W.N., Claysmith, A.P., Rao, C.N., Wirth, P., Coligan, J.E., Albrechtsen, R. and et al. (1986) Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc Natl Acad Sci U S A, 83, 7137-7141.
Yang, P.W., Chang, S.S., Tsai, C.H., Chao, Y.H. and Chen, M.R. (2008) Effect of phosphorylation on the transactivation activity of Epstein-Barr virus BMRF1, a major target of the viral BGLF4 kinase. J Gen Virol, 89, 884-895.
Yates, J., Warren, N., Reisman, D. and Sugden, B. (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A, 81, 3806-3810.
Yates, J.L., Warren, N. and Sugden, B. (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 313, 812-815.
Yue, W., Gershburg, E. and Pagano, J.S. (2005) Hyperphosphorylation of EBNA2 by Epstein-Barr virus protein kinase suppresses transactivation of the LMP1 promoter. J Virol, 79, 5880-5885.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top