跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余世傑
研究生(外文):Shih-Chieh Yu
論文名稱:在無線網狀網路中提供即時內容配送服務之設計與效能分析
論文名稱(外文):Live Content Distribution Service in Wireless Mesh Networks with Minimal Interference
指導教授:孫雅麗孫雅麗引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:72
中文關鍵詞:無線網狀網路即時內容配送無線服務品質覆蓋網路多媒體通訊
外文關鍵詞:wireless mesh networkslive content distributionwireless QoSoverlay networkmultimedia communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們探討如何在無線網狀網路中提供即時多媒體內容廣播服務的問題。傳統使用空間通道再用以改善無線網路效能的方法只考慮單播通訊,然而在內容群播/廣播服務中,每次的傳送可能有超過一個接收者。我們提出干擾最小化的內容配送架構,及其相關聯的路由和排程演算法之跨層設計,在無線網狀網路中:(1)提供端對端服務品質保證的即時內容配送;(2)藉由結合空間通道再用和排程,達到有效率的網路群播/廣播通量能力;以及(3)支援具有服務品質保證的網路換手,以處理動態移動用戶的行為。共有三個機制被提出,以建構從網際網路閘道器節點到每個定錨骨幹節點之干擾最小化的個別最短路徑,使得每個網狀節點距離配送骨幹只需一次跳躍。接著,我們提出基於時分的排程演算法,來安排在配送骨幹上無線鏈結的通道存取,以保證即時內容遞送。在這個演算法中只需要少數的時槽即可,並且當網路擴建時所需的時槽數相當穩定,並不隨之成長。實驗結果顯示,我們所提出的架構和演算法,確實能最大化整體網路頻寬的使用,並且符合即時內容配送的服務延遲效能需求,進而提供服務使用者極佳的觀賞經驗,此架構也良好地支援網路的擴充性。
In this thesis, we study the problem of how to support live multimedia content broadcasting in wireless mesh networks. Traditional approach of exploiting spatial channel reuse to improve network performance for wireless networks only considers unicast communication. In content multicasting/broadcasting service, a transmission instance may have more than one receiver. A cross-layer design of a minimal-interference content distribution architecture and associated routing and scheduling algorithms are proposed to a) provide end-to-end QoS-guaranteed live content distribution; b) achieve efficient network multicast/broadcast throughput capacity by combined spatial channel reuse and scheduling; and c) support QoS-guaranteed handoff to address the dynamic mobile subscriber behavior in the wireless mesh network. Three mechanisms are proposed to construct individual minimal-interference shortest-paths from the Internet gateway node to each anchor backbone node such that every mesh node is one-hop from the distribution backbone. A time division-based scheduling algorithm is then proposed to arrange channel access of the wireless links on the distribution backbone to guarantee live content delivery. Under the algorithm, only a small number of time slots are needed and it remains quite stable when the network size increases. The simulation results show that this architecture and algorithms indeed maximize the overall network bandwidth use and meet real-time delay performance of live content distribution to provide service users with excellent viewing experience. The architecture also well supports incremental network expansion and scalability.
論文摘要 I
Thesis Abstract II
Table of Content IV
List of Figures V
List of Table VI
1 INTROCTION 1
1.1 Wireless Mesh Networks 1
1.2 Content Distribution Network 4
1.3 Cross-layer Design 5
1.4 Thesis Organization 7
2 Related Work 8
2.1 Wireless Infrastructure for Delivering Multimedia Services 8
2.2 Link Scheduling and Spatial Reuse 10
2.3 Quality of Service and Delay Guarantee 13
2.4 Connected Dominating Set 17
3 Model Design Issues and Goals 19
3.1 Interference Range 19
3.2 Hidden Terminal and Exposed Terminal Problem 22
3.3 Scalability and Mobility 26
4 The Minimal-Interference Content Distribution Backbone Network 29
4.1 Round 1: Selection of Interference-Free Anchor Backbone Nodes 31
4.2 Round 2: Find Routes from Gateway to Anchor Backbone Nodes 40
4.3 Round 3: Live Content Distribution Backbone Network Configuration 47
5 Content Delivery Scheduling 50
6 Performance Evaluation 56
6.1 The Time Slots Required per Scheduling Cycle 56
6.2 End-to-end Distribution Delay 58
6.3 Spatial Channel Reuse 62
7 Conclusion 65
Reference 68
[1] U. Reimers, “Digital Video Broadcasting (DVB): The Future of Television, Television,” Physics World, Apr. 1998.
[2] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std. 802.11-1997.
[3] http://www.akamai.com/
[4] I Djama and T Ahmed “A Cross-Layer Interworking of DVB-T and WLAN for Mobile IPTV Service Delivery” in IEEE Transaction on Broadcasting, Volume: 53 Issue: 1 Part: 2, March 2007
[5] J-W Ding, C-T Lin, and S-Y Lan "A Unified Approach to Heterogeneous Video-on-Demand Broadcasting" in IEEE Transaction on Broadcasting, Volume: 54 Issue: 1, March 2008
[6] L Huang, K A Chew, S Thilakawardana, Y Liu, K, Moessner, and R Tafazolli "Efficient Group-Based Multimedia-on-Demand Service Delivery in Wireless Networks" in IEEE Transaction on Broadcasting, Volume: 52 Issue: 4, December 2006
[7] F. Ye, S. Yi, and B. Sikdar, “Improving Spatial reuse of IEEE 802.11 Based Ad Hoc Networks,” In IEEE Globecom, 2003.
[8] Jian Tao, Fuqiang Liu, Zhihui Zeng, and Zhangxi Lin, “Throughput enhancement in WiMax mesh networks using concurrent transmission,” Proceedings of 2005 International Conference on Wireless Communications, Networking and Mobile Computing.
[9] H-Y. Wei, S. Ganguly, R. Izmailov, and Z.J. Haas, “Interference-Aware IEEE 802.16 WiMax Mesh Networks,” In IEEE Vehicular Technology Conference (VTC), 2005.
[10] K.Jain, J. Padhye, V. N, “Impact of Interference on Multi-hop Wireless network performance”, In Proc. of ACM MobiCom, 2003.
[11] W. Wang, Y. Wang, X.-Y. Li, W.-Z. Song, O. Frieder, “Efficient Interference-Aware TDMA Link Scheduling for Static Wireless Networks,” In Proc. of ACM Mobicom 2006.
[12] Randolph Nelson, Leonard Klienrock, “Spatial TDMA: A Collision Free Multihop Channel Access Protocol,” IEEE Trans. on Communication, Vol. Com-33, No. 9, Sep 1985.
[13] S. Lee, G. Narlikar, M. Pal, G. Wilfong, L. Zhang, “Admission Control for Multihop Wireless Backhaul Networks with QoS Support,” In Proc. of IEEE WCNC, 2006.
[14] Girija Narlikar, Gordon Wilfong, Lisa Zhang, “Designing Multihop Wireless Backhaul Networks with Delay Guarantees,” In Proc. of IEEE INFOCOM, 2006.
[15] J. Tang, G. Xue, and W. Zhang, “Interference-aware topology control and QoS routing in multi-channel wireless mesh networks,” In Proc. of ACM Mobihoc, 2005.
[16] S. Sriram, T. B. Reddy, B. S. Manoj, and C. S. R. Murthy, “On the end-to-end call acceptance and the possibility of deterministic QoS guarantees in ad hoc wireless networks,” In Proc. of ACM Mobihoc, 2005
[17] P. Djukic, S. Valaee, “Link Scheduling for Minimum Delay in Spatial Re-use TDMA,” In Proc. of IEEE INFOCOM, 2007.
[18] P. Djukic, S. Valaee, “Quality-of-service provisioning in multi-service TDMA mesh networks”, International Teletraffic Congress 2007
[19] P.-J. Wan, K. M. Alzoubi, O. Frieder, “Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks”, ACM Mobile Networks and Applications (MONET), Vol. 9, No. 2 (2004), pp. 141-149.
[20] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum connected dominating sets,” Proceedings of the IEEE International Conference on Communications, vol. 1, pp. 376–380, 1997.
[21] C. T. Chou, A. Misra, and J. Qadir. “Low latency broadcast in multirate wireless mesh networks,” IEEE JSAC special issue on Wireless Mesh Networks, 2006.
[22] Heui-Jiun Ju, Izhak Rubin, and Yen-Cheng Kuan, “An Adaptive RTS/CTS Control Mechanism for IEEE 802.11 MAC Protocol”, in Proc. Of the Vehicular Technology Conference, 2003
[23] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The Impact of Multihop Wireless Channel on TCP Throughput and Loss”, Proc. IEEE INFOCOM 2003
[24] S. ElRakabawy, A. Klemm, and C. Lindemann, “TCP with Adaptive Pacing for Multihop Wireless Networks”, Proc. ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2005)
[25] J. Li, C. Blake, D. Couto et. Al., “Capacity of Ad Hoc Wireless Networks”, In Proc. ACM MobiCom 2001
[26] K. Xu, M. Gerla, and S. Bae, “How Effective is the IEEE 802.11 RTS/CTS Handshake in Ad Hoc Networks?” In Proc. GLOBECOM 2002
[27] T. C. Tsai, and C. M. Tu, “An Adaptive IEEE 802.11 MAC in Multihop Wireless Ad Hoc Networks Considering Large Interference Range”, in First International Working On-demand Network Systems (WONS 2004)
[28] Jing Deng, Ben Liang, and Pramod K. Varshney, “Tuning the Carrier Sensing Range of IEEE 802.11 MAC”, Global Telecommunications Conference, 2004
[29] T. Rappaport, “Wireless Communications: Principles and Practice,” Prentice Hall, New Jersey, 1996
[30] IEEE 802.16-2004, “IEEE standard for Local Metropolitan Area Networks – Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Oct. 2004
[31] Lee, S-J, Su, W. and Gerla, M., “On-Demand Multicast Routing Protocol in Multihop Wireless Mobile Networks”, ACM Mobile Networks and Applications (MONET), Vol. 7, No. 6 (2002), pp. 441-453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top